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that retains HSC in the BM. This review describes how BM 
niches and HSC themselves change during administration 
of G-CSF—or in the recovery phase of chemotherapy—to 
facilitate movement of HSC into the blood, and research 
now leading to development of novel therapeutics to further 
boost HSC mobilization and transplant success.
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Introduction

Hematopoietic stem cells (HSC) are rare cells residing in 
the bone marrow (BM). Their role is to generate the hemat-
opoietic progenitor cells (HPC) needed to replenish the 
blood and immune system.

The discovery three decades ago that administra-
tion of the cytokine granulocyte colony-stimulating fac-
tor (G-CSF), or the recovery phase from chemotherapy, 
triggered the movement of HSCs from the BM into the 
peripheral blood (mobilization) from where they can be 
harvested, has revolutionized HSC transplant (formerly 
known as BM HSC transplant). HSC transplantation is 
curative and nowadays part of the standard of care for 
~70 diseases including inherited immunodeficiencies, BM 
failure, myelodysplasia and many relapsed hematopoietic 
malignancies. Mobilized blood is now the main source 
of HSC for transplantation, almost completely replacing 
BM aspiration, with the advantage of being easier and 
less painful for donors and a more rapid reconstitution in 
transplant recipients. Over one million transplantations 
have been performed with mobilized blood as a source of 
HSC. Notably, the use of mobilized blood HSC to trans-
plant patients began decades before any understanding of 

Abstract  Hematopoietic stem cells (HSC) reside in 
perivascular regions of the bone marrow (BM) embedded 
within a complex regulatory unit called the niche. Cellular 
components of HSC niches include vascular endothelial 
cells, mesenchymal stromal progenitor cells and a variety 
of mature hematopoietic cells such as macrophages, neu-
trophils, and megakaryocytes—further regulated by sympa-
thetic nerves and complement components as described in 
this review. Three decades ago the discovery that cytokines 
induce a large number of HSC to mobilize from the BM 
into the blood where they are easily harvested, revolu-
tionised the field of HSC transplantation—curative for 
immune-deficiencies and some malignancies. However, 
despite now routine use of granulocyte-colony stimulating 
factor (G-CSF) to mobilise HSC for transplant, only in last 
15 years has research on the mechanisms behind why and 
how HSC can be induced to move into the blood began. 
These studies have revealed the complexity of the niche 
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the mechanisms—why HSC reside in the BM and what 
makes them move into the blood following G-CSF or dur-
ing recovery from chemotherapy. These mechanistic stud-
ies have now unravelled the complexity of the BM niches, 
their cellular and molecular composition, and how they 
dynamically interact with HSC in response to stressors 
in the body. The picture emerging is of a complex system 
comprising a HSC embedded within a regulatory niche 
composed of endothelial cells (EC), mesenchymal stro-
mal progenitor cells (MSPC) and critical involvement of 
mature hematopoietic neutrophils and macrophages with 
further regulation by sympathetic nervous and comple-
ment systems. The role each of these cellular players of the 
HSC niche play in contributing to mobilization is reviewed 
herein. Importantly although many agents or physiological 
events (such as vigorous exercise) can ‘mobilize’ a small 
proportion of HSC or HPC to levels a few fold above base-
line, the therapeutic regimes are able to mobilize large 
numbers of HSC to levels at least 25- to 100-fold above 
baseline (median ~140 × 106 circulating CD34+ cells per 
litre blood after 4–6  days of G-CSF) [1]. In the former 
instance, demargination of HSC from BM perivascular 
niches may be the more appropriate term in comparison to 

the pronounced mobilization that occurs following G-CSF 
where parabiotic mice studies have suggested that around 
20% of total BM reconstituting HSC entered the blood and 
relocated in response to G-CSF [2].

In this review we will summarize the different cellular 
components of the BM that participate in the therapeutic 
mobilization of HSC from their niche reservoir into the 
peripheral blood as observed in response to G-CSF and 
cytotoxic agents such as cyclophosphamide (CYP). As 
reviewed and detailed elsewhere [3–6], these mechanisms 
of HSC mobilization involve major changes in the HSC 
niches, particularly in respect to molecules that actively 
retain HSC within their niches, such as vascular cell adhe-
sion molecule-1 (VCAM-1), transmembrane kit ligand 
(or stem cell factor—SCF), the chemokine CXCL12, and 
its receptor CXCR4. HSC mobilization in response to 
cytokines such as G-CSF or to CYP involve several mecha-
nisms working in concert as detailed in this review, such as 
proteolytic cleavage and down-regulation of expression of 
key retention factors, all of which involve several intercon-
nected cellular mechanisms mediated by BM myeloid cells, 
macrophages, MSPCs, ECs, adrenergic nerves and erythro-
cytes. These roles are summarised in Fig. 1 and Table 1. 

Fig. 1   Overview of the effects of G-CSF on key cellular components 
in the BM niche. During homeostasis, HSCs are retained in the BM 
niche via chemokine/adhesion molecules expressed primarily by 
mesenchymal stromal progenitor cells (MSPCs) and endothelial cells 
(EC). G-CSF expands neutrophil numbers in the BM, which releases 
proteolytic enzymes that cleave and inactivate chemokine/adhesion 
factors such as CXCL12, SCF, and VCAM-1. Macrophages (Mϕ) are 
depleted following G-CSF administration, which is associated with 
osteoblast (OB) ablation and reduced CXCL12, SCF, and VCAM-1 

expression in the BM, which is partially explained by sympathetic 
nervous downregulation of MSPC expression of CXCL12, SCF, and 
VCAM-1. G-CSF also induces EPHB4 clustering on EC away from 
the lumen of the sinusoid, which couples to Ephrin B2 on HSC and 
promotes transendothelial migration. G-CSF activates the comple-
ment system, leading to hemolysis and the release of chemotactic 
sphingosine-1-phosphate (S1P) in the blood. These interconnected 
mechanisms lead to HSC mobilization into the blood
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Myeloid cells within the BM

Neutrophils

Neutrophils are well known for their rapid response to 
inflammatory signals by migrating to sites of infections and 
inflammation, degranulating their content to kill microbes 
and phagocytosis, with release of cytokines by neutrophils 
also contributing to the recruitment of other immune leu-
kocytes (reviewed in [7, 8]). In steady state, about a third 
of all circulating senescent neutrophils are phagocytosed by 
in the BM by CD169+ resident macrophages, which subse-
quently release G-CSF to promote granulopoiesis [9, 10], 
and mobilization of HPCs via activation of cholesterol-
sensing nuclear receptors [11].

In the context of pharmacological mobilization, neutro-
phils are activated and expand their pool size significantly 
in the BM in response to mobilizing agents G-CSF, cyclo-
phosphamide (CYP), IL-8, and GROβ [12–15]. Several 
studies over the decades have demonstrated that neutrophil 
depletion such as induced by anti-Gr-1 antibody adminis-
tration or by homozygous deletion of the Csf3r gene encod-
ing the G-CSF receptor, severely hampered HSPC mobi-
lization in response to G-CSF, cyclophosphamide, IL-8 
or GROβ [14, 16–18]. As the main biological response 
to G-CSF administration in  vivo is a pronounced neutro-
philia, while anti-Gr1 administration or Csf3r gene deletion 
leads to a profound neutropenia, this led to the view that 
neutrophils play an important role in HSPC mobilization in 
response to these agents [19].

Initial studies performed in BALB/c and 129SvJ strains, 
and evidence from human samples showed that follow-
ing G-CSF or cyclophosphamide, BM neutrophils release 
proteases such as neutrophil elastase, cathepsin G, matrix 
metalloproteinase (MMP)-9, and dipeptidyl peptidase I 
(required for functional activation of a wide variety of ser-
ine proteases) [12, 20, 21]. These proteases then cleave and 
inactivate cell adhesion molecules such as VCAM-1 and 
Kit ligand in the BM as well as the chemokine CXCL12 
[12, 20–23]. Active proteases are inhibited by specific 
inhibitors such as serine-protease inhibitors (serpins) and 
tissue inhibitors of metalloproteinases (TIMPs) in many 
tissues in vivo. The fact that expression of serpins A1 and 
A3, which are the main neutrophil elastase and cathepsin 
G inhibitors in blood and tissues, is repressed in the BM 
following administration of G-CSF or cyclophosphamide 
suggests that these agents not only promote neutrophil pro-
tease release but also dampens expression of the physiolog-
ical inhibitors leading to HSPC mobilization [24].

Neutrophils have also been implicated in mediating 
apoptosis and reduction in CXCL12 production in BM 
osteolineage stromal cells during G-CSF mobilization, 
reportedly via a reactive oxygen species (ROS)-dependent 

mechanism which can be partially abrogated with antioxi-
dant N-acetyl cysteine treatment [17]. As G-CSF has been 
shown to ramp up ROS activity in HSPCs via the c-Met/
mTOR/FOXO3 signalling axis [25], it is plausible that ele-
vated ROS produced by neutrophils during G-CSF mobili-
zation contributes to the general heightened ROS levels in 
HSPCs and their subsequent egress from the BM.

Unexpectedly however, in C57BL/6 mice lacking the 
genes encoding neutrophil elastase (Elane), cathepsin G 
(Ctsg), or dipeptidyl peptidase I (Ctsc) necessary for the 
functional maturation of these leukocyte serine-proteases—
that are also infused with a pan-MMP inhibitor, CFC 
mobilization in response to G-CSF was normal compared 
to wild-type C57BL/6 mice [26]. Does this mean that neu-
trophil proteases and neutrophil are unnecessary or not 
involved in HSPC mobilization? To-date we have not fully 
answered this question. Indeed, it must be noted firstly that 
the protease-deficient strains were all backcrossed into 
the C57BL/6 genetic background which releases very low 
levels of neutrophil elastase, cathepsin G and MMP-9 in 
response to G-CSF and CYP in the BM and have three to 
fivefold lower HSPC mobilization compared to BALB/c 
and 129SvJ strains. Therefore, C57BL/6 strain may not be 
the best inbred strain to study neutrophil protease-mediated 
mechanisms. Secondly, germinal deletion of these protease 
genes may let the organism adapt by developing redundant 
pathways. Indeed administration of neutrophil elastase 
and cathepsin G inhibitors in wild-type animals has been 
reported to reduce HSPC mobilization in response to 
G-CSF [23]; whereas infusion of serpin A1 or an neutral-
izing anti-serpina1 antibody in mice, respectively inhibited 
or enhance HSPC mobilization in response to IL-8 [27]. 
Finally in experiments in C57BL/6 mice in which HSPC 
mobilization is induced by injections of clodronate-loaded 
liposomes to deplete mononucleated phagocytes such as 
macrophages, additional deletion of the Csf3r gene delays 
mobilization in response to these liposomes [28]. There-
fore, neutrophil and their proteases may amplify HSPC 
mobilization by cleaving VCAM-1, SCF and CXCL12 in 
HSPC niches, while additional mechanisms are obviously 
in play when protease release is reduced or inhibited.

Macrophages

The fact that homozygous deletion of neutrophil protease 
genes did not result in reduced HSPC mobilization in 
C57BL/6 mice led to studies to discover alternative mecha-
nisms. Clues about the role of BM macrophages in HSPC 
mobilization in response to G-CSF or CYP were the initial 
observations that (1) G-CSF ablates osteoblasts and bone 
formation in humans and mice [29–31] and (2) a special-
ized population of macrophages called osteomacs forms a 
canopy over active osteoblasts on endosteal and periosteal 



133Cellular players of hematopoietic stem cell mobilization in the bone marrow niche

1 3

surfaces and are necessary to maintain osteoblasts and bone 
formation in  vivo [32]. We found that G-CSF and cyclo-
phosphamide depletes F4/80+ osteomacs on endosteal sur-
faces associated with down-regulated expression of the Scf, 
Cxcl12 and Vcam1 genes [28]. G-CSF also depletes other 
macrophage subsets in the BM such as erythroblastic island 
macrophages leading to medullar anemia [33]. In two mod-
els of targeted macrophage depletion, such as injection of 
clodronate-loaded liposomes or macrophage-Fas-induced-
apoptosis (Mafia) transgenic mice, macrophage depletions 
also leads to dramatic reduction of Cxcl12, Scf, Vcam1, 
and Angpt1 expression in the BM, loss of osteomacs and 
osteoblasts mobilization of HSPCs into the blood [28]. This 
effect of G-CSF may be autonomous to macrophages as 
macrophages also express Csf3r [33].

This initial study was rapidly confirmed by two other 
groups showing firstly that CD169+ macrophages pro-
mote Nestin+ MSPC secretion of CXCL12 and expression 
of Vcam1 and Scf, leading to HSC retention in the niche 
whereas selective depletion of CD169+ macrophages leads 
to down-regulated expression of these genes and HSPC 
mobilization [34]. Secondly, Csf3r knock-out mice con-
taining a single Csf3r transgene driven by Cd68 promoter 
to restrict G-CSFR expression to monocytes/macrophages 
exhibited HSPC mobilization, loss of endosteal osteoblasts 
and reduced expression of Cxcl12 despite their profound 
neutropenia [35]. This suggests that G-CSF signalling in 
and subsequent depletion of macrophages and monocytes is 
sufficient to initiate HSPC mobilization.

Interestingly, macrophage activation and expansion can 
also lead to HSPC mobilization, as suggested by recent 
findings showing that liver-secreted leukocyte cell-derived 
chemotaxin 2 (LECT2) mobilizes HSPC via macrophages 
and osteolineage cells expressing the LECT2 receptor 
CD209a via a complex mechanisms involving TNF-α and 
increased expression of CD26 (dipeptidyl peptidase IV) 
and cleavage and inactivation of CXCL12 [36]. These stud-
ies shed light on the complex mechanisms behind mac-
rophage regulation of HSPC mobilization, and the iden-
tity of the precise macrophage population and its mediator 
cytokine(s) in regulating HSPC retention remains an area 
of exciting research.

Osteoclasts

Osteoclasts (OCs) are hematopoietic derived bone resorb-
ing cells found adjacent to osteocytes and osteoblasts at 
the endosteum implicated in HSC niche regulation by 
remodelling of the BM cavity. Since osteoclastogenesis 
and bone resorption releases extracellular Ca2+ from the 
bone into the marrow space [37] and that disruption of cal-
cium sensing receptor (CaR) on HSPCs either pharmaco-
logically or using knockout models resulted in significant 

extramedullary haematopoiesis [38, 39], OCs may regulate 
HSC retention in the endosteum by modulating the Ca2+ 
gradient.

Both human and mouse OC express Cxcr4 and Cxcl12 
[40–42]. The number of tartrate-resistant acid phos-
phatase positive (TRAP+) OC as well as bone resorp-
tion increase in association with G-CSF treatment [29]. 
Mouse receptor activator of nuclear factor-κB ligand 
(RANKL)-stimulated OCs have been shown to enhance 
G-CSF-induced hematopoietic progenitor mobilization 
via CXCL12, matrix metalloproteinase-9 (MMP-9) and 
cathepsin K-dependent mechanisms [42]. However, one 
study has also shown that pharmacological inhibition of 
OCs using bisphosphonate led to slightly reduced repopu-
lation capacity of HSCs [43].

However, several other studies have called the involve-
ment of osteoclasts in HSPC mobilization into question. 
Macrophage depletion strategies using clodronate liposome 
and the macrophage-Fas-induced apoptosis (Mafia) mod-
els both reduced osteoclast numbers, yet resulted in robust 
HSC mobilization [28]. Administration of bisphosphonates 
and anti-RANKL antibody to suppress OC activity instead 
enhanced mobilization of HSPCs in response to G-CSF 
[28, 29, 44]. Furthermore, the timing of G-CSF-induced 
elevation in osteoclast number and activity seems to occur 
after the peak of HSPC mobilization [28, 29]. Studies uti-
lising gene knockout models with defective OCs at birth 
are confounded by a perturbed BM niche, including osteo-
petrosis, leading to abnormal levels and response of HSPCs 
depending on the severity of the OC defect [44, 45]. A 
recent study by Daniel Link’s group employing two mouse 
models with selective OC depletion without osteopetrosis 
again found no effect on G-CSF-induced HSPC mobiliza-
tion [46]. These later studies conclusively demonstrate that 
OC are dispensable for HSPC mobilization.

Mesenchymal cells

Mesenchymal stromal progenitor cell (MSPC) 
and CXC12‑abundant reticular (CAR) cells

Mesenchymal stromal progenitor cells (MSPCs) are 
defined by their capacity to generate differentiated osteo-
blasts, chondrocytes and adipocytes in vitro and in vivo if 
implanted in the correct environment. Although present in 
the BM and other tissues such as the adipose, their precise 
location remained hampered by the lack of specific mark-
ers [47–49]. CD146 is used to identify MSPC in humans 
[50–52], and help demonstrate that these cells are perivas-
cular similar to pericytes and that in addition to their abil-
ity to generate bone, cartilage and adipose when implanted 
in mice, MSPC also express HSC regulators such as Kit 
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ligand and CXCL12 and could support HSC maintenance 
in vitro (reviewed in [53]).

Identification and visualisation of murine MSPCs in 
the BM has proven protracted. Initial studies using mice 
in which a green fluorescent protein (GFP) was knocked-
in the Cxcl12 gene, showed that primitive HSPC and HSC 
were adjacent to CXCL12-abundant reticular (CAR) cells 
that were mostly perivascular in the BM [54]. Different 
groups have used different genetic approaches to identify 
HSC niche supportive cells such as nestin-GFP transgenic 
mice in which GFP is driven by a nestin gene promoter and 
Lepr-Cre mice to identify leptin receptor expressing peri-
cytes. Others have identified MSPCs as CD45− Ter119− 
CD31− Sca1+ platelet-derived growth factor receptor 
(PDGFR)-α+ (or PαS) cells [55] whereas CAR cells are 
reported to be PDGFRα+ Sca1− [56]. Despite some con-
troversies on which MSPC subsets—CAR cells, PαS or 
pericytes -express these different markers, all these cells 
express high levels of Cxcl12, Scf, Angptl1 and Vcam1 
mRNA [47, 56]. Importantly, administration of G-CSF 
decreases expression of such HSC retention factors by 
these BM mesenchymal cells, suggesting an essential role 
in HSC retention within the BM [47]. Likewise deple-
tion of CAR cells [56], nestin-expressing cells [34, 47], 
or conditional deletion of the Cxcl12 gene in MSPCs [57] 
results in HSPC mobilization. Interestingly, depletion of 
macrophages leads to a similar outcome, with reduced 
expression of Cxcl12, Scf, Angpt1 and Vcam1 mRNA in 
MSPCs [34]. Therefore, specialized macrophages may act 
as a relay between MSPC that do not express G-CSFR and 
G-CSF itself to down-regulate the expression of CXCL12, 
VCAM-1, and transmembrane SCF, which retain HSPC 
within their niche. The precise identity of macrophages 
regulating mesenchymal cells in HSC niches is not estab-
lished and neither are the mechanisms involved understood.

Osteolineage cells

MSPCs migrate from perivascular sites towards the bone 
down the osteolineage differentiation pathway into osteo-
blasts [58], which form a layer of bone depositing cells 
before being entrapped in the mineralized compact bone 
matrix and become osteocytes. Osteoblasts were ini-
tially thought to be a candidate HSC niche component 
as suggested by gene deletion studies. However, the ear-
lier mouse studies demonstrating osteoblast regulation of 
HSC were misinterpreted because the phenotype used to 
identify “HSC” was limited to Lin−Kit+Sca-1+, 95% of 
which is made of primitive HPC, not HSC [59, 60]. Sub-
sequent studies using more sophisticated phenotypes such 
as Lin−CD48−CD244−CD150+, or transgenic and knock-
in mice with fluorescent reporters more restricted to HSC, 
combined with enhanced in  vivo imaging techniques 

showed that only a small proportion of HSC are found in 
contact with osteoblasts with most HSC in a perivascular 
location [54, 61–65]. The higher density of HSC near the 
endosteum may be a reflexion of the high vascularization 
of the endosteal regions of the BM [62]. Furthermore, oste-
oblast depletion using transgenic biglycan deficient mice 
[66], or expansion via strontium administration [67] pro-
duced no change in HSC number or mobilization into the 
blood although depletion of osteoblasts in the Col2.3-HTK 
transgenic model resulted in HSPC mobilization 2  weeks 
after osteoblast depletion suggesting possible indirect 
effects. Furthermore, three recent studies with conditional 
deletion of the Cxcl12 or Scf genes from mature osteoblasts 
using Ocn-Cre or the 2.3-kb fragment of the rat collagen 
1a (Col2.3)-Cre did not result HSC mobilization [48, 57, 
68]. However, consistent with the observation that G-CSF 
ablates osteoblasts and medullar B lymphopoiesis [69] 
(B lymphocyte progenitors need contact with osteoblasts 
and CXCL12 to develop [70, 71]), conditional deletion of 
Cxcl12 gene in osteoblasts resulted in the loss of medullar 
B lymphopoiesis [57, 68].

Terminally differentiated from osteoblasts and embed-
ded in the cortical bone matrix, osteocytes have recently 
been implicated in HSC mobilization in response to G-CSF. 
In transgenic mice expressing the human diphtheria toxin 
receptor under the control of the Dmp1 gene promoter, 
treatment with diphtheria toxin which kills osteocytes in 
these mice abolished HSPC mobilization in response to 
G-CSF [72]. However, the recent discovery that the 9.6-kb 
Dmp1 promoter employed to deplete osteocytes in these 
mice is also expressed in approximately 30% of CAR cells 
throughout the BM [73] questions the validity of this inter-
pretation as depletion of CAR cells is also known to cause 
HSPC mobilization [56].

The exact role of immature osteoprogenitors expressing 
the SP7/osterix transcription factor also remains uncertain. 
SP7+ osteoprogenitors are important to maintain normal 
HSPC niches as conditional deletion of the Dicer1 gene 
essential for microRNA generation, results in myelodys-
plasia [74], as does conditional deletion of the Sbds gene 
which regulates ribosome formation in SP7+ osteoprogeni-
tor cells. However, the role of osteoprogenitors as genuine 
HSC niche cells remains controversial as conditional dele-
tion of the Scf or Cxcl12 genes in SP7+ osteoprogenitors 
did not impair HSC number and function in the BM. Nev-
ertheless conditional deletion of the Cxcl12 gene in SP7+ 
osteoprogenitors did cause mobilization of CFU-C, which 
are mostly myeloid progenitors [57].

Endothelial cells (ECs)

EC express many of the factors necessary to HSC main-
tenance such as SCF, VCAM-1, CXCL12, angiopoietin-1, 
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or E-selectin. Furthermore, conditional deletion of either 
the Scf gene or Cxcl12 gene in endothelial cells results 
in a dramatic loss of HSC within the BM [48, 68]. It 
remains, however, controversial whether EC express the 
G-CSF receptor and can thus directly respond to G-CSF 
administered during therapeutic HSC mobilization. How-
ever, endothelial cells themselves are the major source of 
endogenous G-CSF production in response to physiologi-
cal stress or bacterial infections [75]. This is relevant to 
bacterial infections as lipopolysaccharide (LPS) mobilizes 
HSC into blood [42] and spleen [76]. Indeed, HSC mobi-
lization in response to LPS is impaired in mice lacking the 
Csf3r gene, showing that the robust HSC mobilization that 
takes place in response to G-CSF is indirectly mediated by 
endogenous release of G-CSF. Using mice floxed for tissue 
specific myeloid differentiation response gene Myd88 with 
LPS administration to model severe infection, it was shown 
that endothelial cells, not MSC or macrophages were the 
primary producers of G-CSF after inflammation [75]. In 
these models Myd88 gene was conditionally deleted using 
PDGFβ-Cre (MSPC cells) Nestin-Cre (MSPC and nerves), 
LysM-Cre (macrophages, monocytes, granulocytes), Tie2-
Cre (endothelial) cell populations [75]. Moreover the 
G-CSF production by endothelial cells during inflamma-
tion is responsible for triggering emergency granulopoiesis, 
and BM myeloid progenitor skewing [75], as well as HSC 
egress into the blood during acute inflammatory response 
[76].

Endothelial cells also serve as the gatekeepers at the 
BM-blood interface, controlling bidirectional transendothe-
lial migration (TEM) of leukocytes to and from differ-
ent organ systems, this function may be perturbed during 
G-CSF mobilization [77, 78]. In the BM, G-CSF-induced 
upregulation of sinusoidal endothelial CD26 (dipeptidyl 
peptidase 4) has been indicated to be important for HSPC 
transendothelial migration and mobilization via cleavage 
of full length neuropeptide Y (NPY) to NPY3-36 [79]. The 
in vivo effects of G-CSF on EC are also influenced by the 
involvement of infiltrated neutrophils and their secreted 
proangiogenic cytokines such as vascular endothelial 
growth factor (VEGF) and basic fibroblast growth factor 
(bFGF), which leads to neovascularisation [80, 81] and 
dissociation of tight junction element vascular endothe-
lial cadherin (VE-cad) [82, 83]. However, it must be noted 
that G-CSF treatment does not lead to measurable vascu-
lar leakage as determined by Evans Blue perfusion [84]. 
This is in contrast with CYP treatment, which disrupts 
the continuity of BM vascular beds [15, 85] and dramati-
cally increases vascular leakage in the BM [84]. The fact 
that cyclophosphamide causes vascular leakage in the BM 
while G-CSF does not may explain in part why cyclophos-
phamide is a more potent mobilizer than G-CSF, and that 
these two agents synergize together.

It is possible that interactions with adhesion molecules, 
cytokines and other membrane bound factors on ECs may 
alter the activation state of mobilized HSC during transmi-
gration—an area that would benefit from further study.

The majority of HSCs are perivascular in location [54, 
61, 65, 68] and although endothelial cells from both arte-
rioles and sinusoids express key factors involved in reten-
tion of HSC –CXCL12, SCF, VCAM-1, conditional dele-
tion of the Cxcl12 and Scf genes using Tie2-Cre mice did 
not trigger mobilization of HSC even though an overall 
reduction in BM HSC number and reconstitution potential 
occurred [48, 68] further demonstrating the complexity of 
this system.

Finally, part of the confusion of whether EC express 
G-CSF receptor may be due to the potential of residual 
macrophage contamination in the primary EC cultures used 
in many studies. Indeed macrophage populations can per-
sist for several cell passages in such cell cultures influenc-
ing EC responses. Furthermore, endothelial lineage trac-
ing studies in mice commonly use Tie2 as an endothelial 
reporter. Tie2 is also expressed by some macrophage sub-
sets [86], again highlighting the uncertainty in interpreta-
tion of data from targeted Cre mouse strains.

Sympathetic nervous system (SNS)

The BM is richly innervated with myelinated and non-
myelinated neurons [87], with sympathetic nerve fibre end-
ings found in close contact with bone-lining osteoblasts 
and osteoclasts [88], as well as perivascular Nestin+ MSCs 
[47] and known to control homeostatic bone remodelling 
via β-adrenergic receptor (β-AR) on osteoblasts [89, 90]. 
In humans, chronic stress-induced β-AR signalling in the 
bone marrow has been suggested to reduce Cxcl12 expres-
sion on stromal cells and promote mobilization of hemat-
opoietic cells [91], and catecholaminergic neurotransmit-
ters dopamine and adrenaline directly induce migration 
and proliferation of CD34+ HSPCs in vitro and in immu-
nodeficient mice, with greater effect observed in vivo [92]. 
The first conclusive evidence of sympathetic nervous regu-
lation of HSCs came from two consecutive studies by the 
Paul Frenette’s group that showed photic-controlled circa-
dian oscillations of adrenergic signals inversely regulate 
CXCL12 secretion in the BM, ultimately regulating release 
of HSPCs into the bloodstream during steady state [31, 93]. 
They have since reported electromechanical associations 
between Nestin+ MSCs and noradrenergic neurons, and 
that β-AR agonists administration downregulated Nestin+ 
MSC expression of HSC retention genes Cxcl12, Vcam-1, 
and Scf [47].

As the regulation of HSPC retention by the SNS is rela-
tively new, knowledge regarding the effect of G-CSF act-
ing via the sympathetic nervous system to elicit HSPC 



136 J. Tay et al.

1 3

mobilization is scarce. Sympathetic neurons are known to 
express both G-CSF and G-CSFR, with G-CSF as a known 
neuroprotective agent [94–96]. In sympathetic neurons, 
G-CSF administration was reported to upregulate produc-
tion of the rate limiting enzyme in noradrenaline synthesis 
tyrosine hydroxylase, as well as downregulate catechola-
mine-inactivating enzymes and noradrenaline uptake trans-
porter activity, which clears noradrenaline from the synap-
tic cleft [97]. Overall, this leads to increased sympathetic 
tone and subsequent osteoblast depletion, Cxcl12 downreg-
ulation, and HSPC mobilization, which can be attenuated 
by catecholaminergic neuron ablation with 6-hydroxydopa-
mine [31].

Interestingly, cytotoxic chemotherapy drugs such as cis-
platin and vincristine well known to cause peripheral neu-
rotoxicity also cause dopaminergic/adrenergic neuron death 
in the BM [98]. Vincristine or cisplatin treatment in patients 
also results in impaired HSC mobilization in response 
to G-CSF [98]. Adjuvant treatment with neuroprotective 
4-methylcatechol or glial cell–derived neurotrophic factor 
protected sympathetic nerves in the BM from vincristine 
or cisplatin and was shown to restore HSC mobilization in 
response to G-CSF [98]. Therefore, adrenergic nerves in 
the BM are necessary to maintain the function of MSPCs in 
HSC niches and promote HSC mobilization in response to 
G-CSF [98, 99].

The neurotransmitter neuropeptide Y (NPY) has also 
recently been discovered as an acute mobilizing agent 
that influences BM CXCL12 levels, apparently acting via 
osteoblastic Y1/MMP-9/CXCL12 axis [100]. Interestingly 
G-CSF, CXCR4 antagonist AMD3100, and 5-fluorouracil 
(5-FU) failed to mobilize HSPCs in NPY knockout mice, 
suggesting NPY as a downstream effector of these mobiliz-
ing agents [100]. Collectively, these studies demonstrate an 
essential role of the sympathetic nervous system in regu-
lating HSPC retention and/or mobilization indirectly via 
modulation of the MSPC function in HSC niches.

Erythrocytes

G-CSF is well known to activate the complement cascade 
and complement fragment C3 and C5 activation, which 
seems to play a determinant role in HSPC mobilization. 
Indeed mice with homozygous deletion of the C3 gene 
have enhanced mobilization in response to G-CSF [101], 
whereas mice lacking the C5 gene have impaired mobili-
zation in response to G-CSF [102]. The fact that immune 
deficient mice such as NOD/SCID cannot activate the com-
plement cascade because they lack immunoglobulins may 
explain why they mobilize poorly in response to G-CSF 
[103].

Mechanistically, the role of C5 to promote HSC mobili-
zation in response to G-CSF has been proposed to involve 

blood erythrocytes [104]. In this study, G-CSF was found 
to activate the complement cascade (including fragment 
C5), resulting in the formation the membrane attack com-
plex that lyses erythrocytes in the peripheral blood, caus-
ing the release of hemoglobin and sphingosine-1 phosphate 
(S1P) (erythrocytes are a large reservoir of S1P). This 
phenomenon was C5-dependant as it was not observed in 
C5−/− mice. As S1P is a potent chemoattractant of HSPC, 
the formation of this counter-gradient in the blood from 
hemolysis has been proposed to contribute to HSPC mobi-
lization [104].

HSCs

Finally, HSC mobilization is not a fully HSC extrinsic 
mechanism in which the function of the niche is impaired 
with HSC flushing passively in the circulation as a result. 
Indeed HSC need to actively migrate out of their niche and 
intravasate across the BM endothelium. This is an active 
mechanism which involve in part the adhesive interaction 
between the tyrosine kinase receptor EPHB4 on sinusoi-
dal endothelial cells and its transmembrane ligand ephrin 
B2 expressed by HSC [105, 106]. Indeed inhibition of 
EPHB4 kinase or antibody mediated neutralization of 
ephrin B2 impairs HSC mobilization in response to G-CSF 
or AMD3100 [105]. Remarkably, inhibition of EPHB4 
or ephrin B2 did not impair HSC homing [105], further 
illustrating that HSC mobilization is not the mirror image 
of HSC homing as suggested in experiments performed 
in mice with conditional deletion of both Rac1 and Rac2 
GTPase genes in hematopoietic cells, which cause a very 
pronounced HSC mobilization with only mild effect on 
HSC homing [3, 107].

Conclusion

Approximately 100,000 mobilized HSC transplants are 
performed worldwide each year. Therapeutic mobilization 
for harvesting HSC for transplant was performed decades 
before the research on understanding how administration 
of cytokines causes the egress of HSC into the blood. This 
research has shown that it is not a HSC intrinsic event but 
rather the disruption of a complex HSC: niche unit in the 
BM with the severing of HSC retention factors that leads to 
their mobilization into the blood (summarised in Table 1; 
Fig. 1), discoveries that lead to the emerging field of niche 
biology. This example of ‘reverse translation’ (bedside to 
bench) has now revealed many aspects and a better appre-
ciation of the dynamics of HSC:BM niche interactions. 
These discoveries have led to targeted strategies to further 
improve therapeutic HSC transplantation protocols with 
the addition of new synthetic agents directly targeting HSC 
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niche retention factors (such as AMD3100/Plerixafor which 
blocks CXCR4) to boost mobilization efficiency in combi-
nation with G-CSF. In the future, these studies are likely 
to provide alternative HSC mobilization regimes that do 
not require perturbation of the BM niche as occurs with the 
current regimes involving G-CSF and cyclophosphamide.
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