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Abstract

Frontotemporal lobar degeneration (FTLD) is a clinically, genetically, and neuropathologically heterogeneous group
of neurodegenerative syndromes, leading to progressive cognitive dysfunction and frontal and temporal atrophy.
CYorf72 hexanucleotide repeat expansion (C9-HRE) is the most common genetic cause of FTLD, but pathogenic
mechanisms underlying FTLD are not fully understood. Here, we compared cellular features and functional proper-
ties, especially related to protein degradation pathways and mitochondrial function, of FTLD patient—derived skin
fibroblasts from C9-HRE carriers and non-carriers and healthy donors. Fibroblasts from C9-HRE carriers were found
to produce RNA foci, but no dipeptide repeat proteins, and they showed unchanged levels of C9orf72 mRNA
transcripts. The main protein degradation pathways, the ubiquitin—proteasome system and autophagy, did not show
alterations between the fibroblasts from C9-HRE-carrying and non-carrying FTLD patients and compared to healthy
controls. An increase in the number and size of p62-positive puncta was evident in fibroblasts from both C9-HRE
carriers and non-carriers. In addition, several parameters of mitochondrial function, namely, basal and maximal
respiration and respiration linked to ATP production, were significantly reduced in the FTLD patient—derived fibro-
blasts from both C9-HRE carriers and non-carriers. Our findings suggest that FTLD patient—derived fibroblasts,
regardless of whether they carry the C9-HRE expansion, show unchanged proteasomal and autophagic function,
but significantly impaired mitochondrial function and increased accumulation of p62 when compared to control
fibroblasts. These findings suggest the possibility of utilizing FTLD patient—derived fibroblasts as a platform for
biomarker discovery and testing of drugs targeted to specific cellular functions, such as mitochondrial respiration.
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Background

Frontotemporal lobar degeneration (FTLD) is one of the most
common causes of early-onset dementia in people under 65
years of age [1]. It is a clinically, genetically, and
neuropathologically heterogeneous group of neurodegenera-
tive syndromes, leading to atrophy predominantly in the fron-
tal and temporal lobes of the brain [2] accompanied by pro-
gressive cognitive dysfunction, behavioral changes, difficul-
ties in understanding or producing speech, and frequently neu-
ropsychiatric symptoms. Some patients show motor symp-
toms resembling those observed in amyotrophic lateral scle-
rosis (ALS), leading to mixed disease of ALS and FTLD.
Moreover, FTLD and ALS share a partially overlapping ge-
netic and molecular pathological background [3, 4]. In addi-
tion to the sporadic forms of FTLD, approximately half of the
FTLD cases can be caused by different mutations in several
genes, including GRN (Granulin), MAPT (Microtubule
Associated Protein Tau), or C9orf72 [5-10]. The GGGGCC
hexanucleotide repeat expansion in C90rf72 (C9-HRE) is the
most common genetic cause of both FTLD and ALS [9-11].
The length of the expansion can vary from tens to thousands
of repeats in affected individuals. The exact pathological
threshold of the C9-HRE is unclear, but fewer than 30 repeats
are generally considered non-pathogenic [12].

The main suggested pathological mechanisms caused by
the C9-HRE are haploinsufficiency, leading to decreased ex-
pression of the normal C9orf72 gene products (loss-of-func-
tion), and a gain-of-toxic-function through formation and ac-
cumulation of RNA foci and dipeptide repeat (DPR) proteins
(poly-GP, poly-GA, poly-GR, poly-PA, and poly-PR) gener-
ated from the expanded repeat through repeat-associated non-
AUG (RAN) translation [13—16]. There is evidence for the
contribution of both gain-of-toxic-function and loss-of-
function mechanisms to the disease pathogenesis, suggesting
that neurodegeneration in C9-HRE-linked FTLD and ALS
could involve co-operation between the two mechanisms
[17]. In addition to the abovementioned pathological hall-
marks specific for C9-HRE carriers, other hallmarks such as
inclusions of accumulated sequestosome 1 (p62/SQSTMI,
hereafter p62) and TAR DNA-binding protein-43 (TDP-43)
have been detected in the central nervous system (CNS) of
FTLD and ALS patients, including patients carrying the C9-
HRE [18-22].

The physiological function of C9orf72 proteins, which
might be compromised by the haploinsufficiency caused by
the C9-HRE, is not yet fully understood. The C90rf72 gene
produces three protein-coding transcript variants, which in
humans are translated into two protein isoforms: the long iso-
form A (~50 kDa) and the short isoform B (~25 kDa) [23].
Isoform A, which is the main isoform expressed in neurons
[16, 24], contains a differentially expressed in normal and
neoplastic cells (DENN) domain, suggesting that it acts as a

guanosine exchange factor for Rab-GTPases, which are im-
portant regulators of the dynamics of cellular vesicles [25, 26].
In line with this, current studies suggest that C9orf72 isoform
A might be involved in the regulation of vesicular trafficking
in the endosomal-lysosomal and autophagosomal-lysosomal
pathways through activation of different Rab-GTPases [16,
25,27-32].

Autophagy and the ubiquitin—proteasome system (UPS)
are essential pathways controlling cellular proteostasis by
degrading unfolded, misfolded, and aggregated proteins.
Defects in protein degradation have been implicated in the
pathogenesis of several neurodegenerative diseases, including
Huntington’s disease, Alzheimer’s disease, and ALS [33].
Autophagy can be induced by different stimuli, such as accu-
mulation of misfolded or aggregated proteins or nutrient dep-
rivation [34, 35]. In selective autophagy, ubiquitinated pro-
teins are conjugated to adaptor molecules, such as p62, which
itself is also a substrate of selective autophagy. They are then
targeted to the phagophore by binding of the adaptor molecule
to a membrane-bound receptor protein on the phagophore, for
example, Microtubule-associated protein 1 light chain 3B
(LC3B). Through elongation and subsequent fusion of the
membrane endings, the phagophore forms an autophagosome,
which then fuses with a lysosome, and the autolysosomal
contents are degraded by lysosomal enzymes [36]. In the
UPS, proteins ubiquitinated at their lysine residues are
targeted to the proteasome and degraded into smaller peptides
and amino acids, which can be re-utilized for protein synthesis
[33]. The two pathways are suggested to be part of a single
proteolytic network, co-operating in the maintenance of cellu-
lar proteostasis [33, 37, 38]. Several studies have reported that
C9orf72 regulates autophagy, but results have been controver-
sial on whether the reduced levels of C9orf72 lead to increased
or decreased autophagy [16, 27-31, 39-42]. Moreover, it has
been suggested that autophagic degradation is reduced upon
loss of C90orf72 function, leading to the accumulation of DPR
proteins [43]. DPR proteins, in turn, have been reported to
impair protein degradation through autophagy and the UPS
in C9-HRE-associated FTLD or ALS [44, 45]. These data
together suggest that the C9orf72 loss-of-function might fur-
ther aggravate the gain-of-toxic-function effects.

Autophagy is also intimately linked to mitochondrial qual-
ity control via a specialized form of autophagy, termed
mitophagy, which eliminates damaged mitochondria [46].
The mitochondrial metabolism produces reactive oxygen spe-
cies (ROS), mostly in complexes I and III of the electron
transport chain (ETC) [47, 48], and mitochondrial DNA
(mtDNA) might be particularly vulnerable to oxidative DNA
damage [49, 50]. Even under normal conditions, reduced ATP
production, accelerated production of ROS, and release of
proapoptotic proteins from mitochondria may cause cellular
damage. These processes are exacerbated in many neurode-
generative diseases such as Alzheimer’s disease, Parkinson’s
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disease, and ALS [51]. Impaired mitophagy can lead to mito-
chondrial dysfunction, which has been reported in both ALS
and FTLD [52]. In C9-HRE carriers, mitochondrial function
can also be impaired due to the expression of DPR proteins.
Poly-GR proteins have been shown to bind to mitochondrial
ribosomal proteins needed for the translation of mitochondrial
complex subunits, leading to impaired mitochondrial function
in induced pluripotent stem cell (iPSC)—derived motor neu-
rons from C9-HRE carriers [53]. Poly-GR can also bind to
ATP synthase F1 subunit alpha (ATP5FA1), a subunit of mi-
tochondrial respiratory chain complex V, enhancing its
ubiquitination and degradation and thus compromising mito-
chondrial function [54]. Taken together, these results suggest
that mitochondrial function might be compromised due to
both loss-of-function and gain-of-toxic-function mechanisms.

The research in ALS and FTLD has largely focused on
pathological mechanisms in neurons. However, there are
some studies demonstrating that also peripheral cells of the
patients display C9-HRE-related and other pathological alter-
ations. For example, biopsies from skeletal muscles of ALS
patients carrying the C9-HRE have been reported to show
both RNA foci and the poly-GA and poly-GP DPR proteins
[55]. iPSC-derived skeletal myocytes from C9-HRE-carrying
ALS patients also display RNA foci [56, 57] and express the
poly-GR protein [57]. Moreover, RNA foci have been ob-
served in fibroblasts from ALS patients carrying the C9-
HRE [58]. In a previous study, increased levels of the
autophagosome markers p62 and LC3II were present in fibro-
blasts derived from ALS/FTLD patients carrying the C9-
HRE, suggesting impaired degradation of autophagosomes
and inhibition of autophagy under stress conditions [30]. In
mouse embryonic fibroblasts, C90rf72 knockdown disrupted
rapamycin-induced autophagy but, in contrast to the study on
human fibroblasts, the results suggested a reduced number of
autophagosomes in C9orf72 knockdown cells [31]. Despite
the discrepancies, these data link disrupted autophagy to the
C9-HRE and CYorf72 loss-of-function, and further research
on their effects on autophagy is warranted. Furthermore, mi-
tochondrial dysfunction has been observed in fibroblasts from
sporadic ALS cases [59]; ALS patients carrying mutations in
VCP, SOD1, or TARDBP (p.A382T) genes [60, 61]; and ALS
and FTLD patients carrying the C9-HRE [62]. Further
supporting potential mitochondrial changes in FTLD and
ALS pathogenesis, RNA sequencing of iPSC-derived
myocytes from ALS patients carrying the C9-HRE revealed
changes in genes that regulate mitochondrial function. The
myocytes were also more susceptible to oxidative stress,
which might be caused by inherent mitochondrial abnormali-
ties [57]. These data collectively suggest that also other cell
types besides neurons, such as fibroblasts, may display path-
ological hallmarks and altered cellular function in FTLD pa-
tients. This might offer possibilities for the identification of
novel biomarker candidates or using these cells as platforms
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for testing the effects of different therapeutic agents targeting
specific cellular pathways or functions. In the present study,
we have characterized fibroblasts derived from skin biopsies
of FTLD patients carrying or not the C9-HRE and healthy
donors. We examined the cellular pathological hallmarks re-
lated to FTLD and the C9-HRE and the functionality of the
patient-derived fibroblasts, focusing especially on the protein
degradation mechanisms and mitochondrial function.

Material and Methods

Study Subjects, Skin Biopsies, Ethical Permits, and
Genotyping

Skin punch biopsies were obtained at Neuro Center,
Neurology, Kuopio University Hospital, Kuopio, Finland,
from six FTLD patients, three of whom were carriers of the
C9-HRE and three were non-carriers, and three age- and
gender-matched healthy control donors were included in the
study. All the participants gave written informed consent. The
study was performed according to the Declaration of Helsinki.
The research in human subjects has been approved by the
Research Ethics Committee of the Northern Savo Hospital
District, Kuopio, Finland (ethical permits 16/2013 and 254/
2015). Skin biopsy samples were pseudonymized and handled
using code numbers. Studies on FTLD patient—derived skin
fibroblasts have been performed with the permission 123/
2016 from the Research Ethics Committee of the Northern
Savo Hospital District.

The presence or absence of the C9-HRE in these individ-
uals was confirmed from both the blood samples and the skin
biopsy—derived fibroblasts by repeat-primed PCR [9]. All the
three C9-HRE carriers had >60 repeats and the non-carrying
FTLD patients or healthy controls all had <30 repeats.

Culturing of Fibroblasts, Transfection, and
Treatments

The skin biopsy samples were cut into pieces of approximate-
ly 1 mm?® in size. The pieces were then transferred to a
Primaria six-well plate (# 353846; Corning) with 46 pieces
per well and 1 ml of fibroblast medium was added. After 2, 4,
and 6 days, 100, 200, and 500 pl of fresh media were added,
respectively. After that, 1 ml of medium was changed every
other day until the fibroblast cultures were confluent. The
fibroblasts were then washed with PBS, incubated with
TrypLExpress (12604013; Gibco) at 37 °C, and transferred
into cell culture bottles. The fibroblasts were cultured in
Iscove’s Modified Dulbecco’s Medium (IMDM, 21980032;
Gibco) supplemented with 20% heat-inactivated fetal bovine
serum (FBS, 10270106; Gibco), 1x MEM Non-Essential
Amino Acids Solution (11140050; Thermo Fisher), 100
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U/ml penicillin, and 100 pg/ml streptomycin (15140122;
Thermo Fisher) (= fibroblast medium) at +37 °C and 5%
CO,. For transfections, a total of 0.8 pg of the plasmid
DNA and 2 ul Lipofectamine 2000 reagent (11668-019;
Invitrogen) were used per transfection of 10,000 cells accord-
ing to the manufacturer’s instructions to overexpress the GFP-
tagged LC3 construct (kind gift from Prof. Kai Kaarniranta,
UEF; [42]). Fresh medium was added 24 h post-transfection.
To induce autophagy, 200 nM of Torin 1 (4247; Tocris) was
used overnight. To assess basal autophagy, cells were treated
with 300 nM bafilomycin A1 (BafA 1, B1793; Sigma-Aldrich)
for 6 h to block the late phase of autophagy. To block protein
degradation through the UPS, 10 uM lactacystin (Enzo Life
Sciences) was added overnight [27]. Dimethyl sulfoxide
(DMSO, D2650; Sigma-Aldrich) was used as a vehicle
control.

Immunocytochemistry

For immunocytochemistry experiments, glass coverslips were
placed in 24-well plates and coated with 0.3% gelatin for
30 min at +37 °C. Fibroblasts were plated (20,000 cells/well)
and fixed after 24 h in 4% paraformaldehyde (PFA, 28908;
Thermo Scientific) for 10 min at room temperature (RT). Cells
were permeabilized with 0.1% Triton X-100 (X100; Sigma-
Aldrich) in PBS for 10 min and blocked in 1% bovine serum
albumin (BSA, A9647; Sigma-Aldrich) for 30 min (both at
RT). Afterwards, the following primary antibodies were
added and incubated overnight at +4 °C: anti-TDP-43
(1:100, 10782-2-AP; Proteintech), anti-phospho-TDP-43
(1:200, CAC-TIP-PTD-MO01; CosmoBio), or anti-p62
(1:200; sc-28359; Santa Cruz). As secondary antibodies, goat
anti-rabbit Alexa Fluor 488 (1:500, A-11008; Invitrogen) was
used for TDP-43, goat anti-mouse Alexa Fluor 488 (1:500,
A-11029; Invitrogen) for phospho-TDP-43, and goat anti-
mouse Alexa Fluor 568 (1:500, A11004; Invitrogen) for
p62. Cells were either mounted using Vectashield Vibrance
antifade mounting medium containing 4',6-diamidino-2-
phenylindole (DAPI) (H-1800; Vector Laboratories) or with
a 1:1 mix of mounting medium with DAPI and Vectashield
Vibrance antifade mounting medium with TRITC-Phalloidin
(H-1600; Vector Laboratories). Images were taken with an
Olympus BX51 microscope and analyzed with ImagelJ (ver-
sion 1.52 p, Fiji, NIH).

For the experiments with transfected fibroblasts, glass cov-
erslips were coated with 0.3% gelatin for 30 min at +37 °C.
Fibroblasts were transfected with GFP-tagged LC3 construct.
Fresh media were changed 24 h after transfection. At 30 h
post-transfection, the cells were fixed in 4% PFA for 10 min
at RT and mounted with Vectashield Vibrance antifade
mounting medium containing DAPI. Images were taken with
an LSM700 (Zeiss) confocal microscope and analyzed with
ImagelJ. Quantification of the LC3-positive puncta was

performed as previously described [42]. First, the background
was subtracted and then the image was filtered by using the
blur option. Correct threshold settings were chosen to ensure
that the background signal was not detected as puncta but also
that the signal from the puncta was not lost. A puncta analysis
tool in ImageJ was used to quantify the number of puncta in
each cell.

Fluorescence In Situ Hybridization (FISH)

FISH was performed using a protocol based on a previous
publication [14], with some modifications. Cells were fixed
with 4% PFA in diethyl pyrocarbonate (DEPC)-PBS, perme-
abilized with 0.1% Triton X-100/DEPC-PBS, and washed
twice with DEPC-PBS. This was followed by incubation in
hybridization buffer (10% dextran sulfate, 50% formamide,
50 mM sodium phosphate buffer (pH 7), 2x SSC) at 60 °C
for 30 min. Prior to use, the locked nucleic acid (LNA) probe
TYE 563-(CCCCGQG);z (Exiqon) and the TYE 563-(CAG)g
negative control probe (Exiqon) were denatured at 85 °C for
75 s and diluted to 40 nM with hybridization buffer. The
hybridization of the samples with either probe was performed
in a light-protected chamber at 60 °C for 16 h. Confocal im-
ages were acquired with LSM800 (Zeiss) microscope.

TDP-43 translocation and p62 puncta analysis

Fibroblasts were stained for phospho- and total TDP-43, and
p62, and with phalloidin and DAPI as described above.
Microscopy images were processed using Imagel. For
(phospho)TDP-43-translocation analysis, phalloidin images
were converted into binary images to depict cell bodies and
measure total cell body areas [63]. DAPI images were con-
verted into binary images to depict nuclei. Phospho- and total
TDP-43 signals were quantified as sum intensities of second-
ary antibody fluorescence in nuclear and cytosolic areas (nu-
clear signal subtracted from signal within whole cell body).
Sum intensities were normalized to nuclear and cytosolic
areas, respectively. To determine unspecific signal intensities
for each cell line, secondary antibody intensity values for nu-
cleus and cytosol were obtained from samples stained without
primary antibody. To determine the extent of TDP-43 trans-
location into the cytosol, a recently developed TDP-43 trans-
location analysis has been used. In brief, this analysis catego-
rizes the ratio of nuclear to cytosolic TDP-43 into four cate-
gories (no, mild, moderate, severe TDP-43 translocation from
nucleus to cytosol). This approach was used here to categorize
both total and phospho-TDP-43 signals. For p62 puncta anal-
ysis, DAPI images were used to calculate the number cells per
image. p62 images were converted into binary images and
puncta with a defined size were used for further analysis.
p62 signals were quantified as sum intensity of the secondary
antibody and normalized to puncta area. Mean size of p62
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puncta per image and mean number of p62 puncta per cell
number per image were calculated. Background subtraction
and thresholding was applied in that way that no puncta were
detected in samples stained without primary antibody.

Protein Extraction from Cells and Western Blotting

Proteins were extracted in lysis buffer (10 mM Tris—HCI,
2 mM EDTA, 1% SDS) supplemented with 1:100 protease
and 1:100 phosphatase inhibitors (1862209 and 1862495;
Thermo Scientific). Protein concentrations were measured
using bicinchoninic acid assay (BCA, 23225; Thermo
Scientific) and plate reader (Infinite M200; Tecan Group
Ltd.). Then, 10-50 ug of protein was separated on SDS-
PAGE gels (NuPAGE Novex 4-12% Bis—Tris mini or midi,
NP0335 or WG1402BOX; Invitrogen) for 1 h 55 min at 100
V. Proteins were transferred on 0.2-pum polyvinylidene fluo-
ride (PVDF) membranes (1704157; Bio-Rad) using Trans-
Blot Turbo Transfer System (Bio-Rad, 25 V, 1.0 A, 30 min).
After the transfer, unspecific binding sites on the membranes
were blocked with 5% non-fat dry milk or bovine serum al-
bumin (BSA A9647; Sigma-Aldrich) in 1x Tris-buffered sa-
line with 0.1% Tween 20 (93773; Sigma-Aldrich) (TBST) for
1 h at RT. The protein bands were detected by incubating the
membrane with protein-specific primary antibodies (see be-
low) overnight at +4 °C and appropriate horseradish
peroxidase-conjugated secondary antibodies (1:5000,
NA934 or NA931; GE Healthcare) for 1 h at RT. The proteins
were detected using enhanced chemiluminescence (ECL) de-
tection reagents (RPN2236 or RPN2235; Amersham
Biosciences, GE Healthcare) and ChemiDoc XRS+ System
(Bio-Rad). The intensities of the detected protein bands were
quantified with Image Lab software (6.0.1; Bio-Rad). The
membrane was stripped with a stripping buffer (21063;
Thermo Scientific) for 10 min at RT, after which it was
washed in 1x TBST and re-probed with other antibodies.
The following primary antibodies were used: anti-Fissionl
(1:1000, ALX-210-1037-0100; Enzo), anti-Mitofusin
(1:1000, ab57602; Abcam), anti-eIF2¢ (1:1000, #9722; Cell
Signaling Technology), anti-phospho-elF2«x (1:1000, #3597;
Cell Signaling Technology), anti-pULK1Ser757 (1:1000,
#14202S; Cell Signaling Technology), anti-ULK1 (1:1000,
#8054; Cell Signaling Technology), anti-C9orf72 (1:500,
22637-1-AP; Proteintech), anti-SQSTM1/p62 (#5114,
1:1000; Cell Signaling Technology), anti-LC3B (1:3000,
ab51520; Abcam), anti-poly-ubiquitinated proteins (FK1,
1:1000, BML-PW8805-0500; Enzo Life Sciences), anti-
TDP-43 (1:1000, 10782-2-AP; Proteintech), anti-phospho-
TDP-43 (1:1000, TIP-PTD-P02; CosmoBio), anti-beta-actin
(1:1000, ab8226; Abcam), and anti-GAPDH (1:5000,
ab8245; Abcam).

The data are shown as median + interquartile range or mean
+ SEM. The levels of each protein were normalized to the
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levels of 3-actin or GAPDH in the same sample and this ratio
was set to 100 in (vehicle-treated) control cells. The protein
levels are shown as percentage compared to those in vehicle-
treated control cells (set to 100%).

Dot Blot Analysis

For the dot blot, 1 pg of protein was added onto a nitrocellu-
lose membrane (GE10600011; Sigma-Aldrich) and left to dry
for 1 h at RT. As controls, samples from N2a cells transfected
(using Lipofectamine 2000 reagent) with control (2R) and
pathological (66R) GGGGCC hexanucleotide repeat
expansion-containing constructs and specific constructs
encoding for 100x GP, GA, GR, PA, and PR were used.
Unspecific binding sites on the membranes were blocked with
5% non-fat dry milk in 1x Tris-buffered saline with 0.1%
Tween 20 (Sigma-Aldrich) (TBST) for 1 h at RT. The proteins
were detected by incubating the membrane with protein-
specific primary antibodies (see below) for 30 min at RT
and appropriate horseradish peroxidase-conjugated secondary
antibodies (1:5000, NA935, NA934, or NA931; GE
Healthcare) for 30 min at RT. The proteins were detected
using enhanced chemiluminescence (ECL) detection reagent
(RPN2236; Amersham Biosciences, GE Healthcare) and
ChemiDoc XRS+ System (Bio-Rad). The following primary
antibodies were used: anti-poly-GA (1:1000, MABNS&89;
EMD Millipore), anti-poly-GP (1:1000, ABN455; EMD
Millipore), anti-poly-GR (1:1000, MABN778; EMD
Millipore), anti-poly-PR (1:1000, 23979-1-AP; Proteintech),
and anti-poly-PA (1:1000, ABN1356; EMD Millipore).

Proteasomal Activity Measurement

Proteasomal chymotrypsin-like activity was measured with a
UBPBio kit (J4110) or Abcam proteasomal activity kit
(ab107921) according to the kit instructions. Briefly, proteins,
including proteasomes, were extracted from all fibroblast lines
using a 0.5% NP-40 (Sigma-Aldrich) lysis buffer (prepared in
distilled water) and centrifugation at 16,000xg for 20 min at
+4 °C. The protein concentrations were measured using a
Pierce BCA Protein Assay Kit and adjusted to same in all
samples. In two separate wells, 10 pl of each protein lysate
was incubated with the proteasomal substrate Succ-LLVY-
AMC without or with the proteasomal inhibitor MG-132
(negative control). The resulting fluorescence, i.e.,
proteasomal activity, was measured at excitation/emission
wavelength of 360 nm/460 nm, respectively, with an Infinite
M200 (Tecan) plate reader. To specifically acquire the activity
of only the proteasomes, excluding the activity of other pro-
teases present in the sample, the fluorescence value of the
corresponding MG-132-treated sample was subtracted from
the total fluorescence value in the sample without MG-132
treatment. The values were further normalized to the protein
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concentration of each sample and shown as percentage of
control fibroblast samples (set to 100%).

Mitochondrial Function Assay

For the experiments on mitochondrial function, fibroblasts
were plated (5000 cells/well) in an uncoated Seahorse XF96
Cell Culture Microplate (101085-004; Agilent) with 8 wells
per cell line in each experiment. The Cell Mito Stress Test was
performed 48 h after plating using assay parameters provided
by Agilent. On the day of the experiment, medium was
changed to Seahorse XF DMEM medium (103575-100;
Agilent) supplemented with 10 mM Seahorse XF glucose so-
lution, 2 mM Seahorse XF L-glutamine solution, and 1 mM
Seahorse XF pyruvate solution (103577-100, 103579-100,
and 103578-100, all from Agilent) and cells were kept in a
CO,-free incubator for 1 h prior to starting the Cell Mito Stress
Test. For the experiments, the following final concentrations
of ETC modulators were used: carbonyl cyanide-
4-(trifluoromethoxy)phenylhydrazone (FCCP) 2 uM,
oligomycin 1 uM, and a mixture of antimycin A 1 uM and
rotenone 1 uM (C2920, 75351, A8674, and R8875, all from
Sigma-Aldrich). Changes in oxygen consumption rate (OCR)
in response to injections were detected with Seahorse XFe96
analyzer (Agilent). In the Seahorse Cell Mito Stress Test, after
measuring basal respiration, oligomycin, which blocks com-
plex V (ATP synthase), is added. The subsequent decrease in
OCR is linked to cellular ATP production. The uncoupling
agent FCCP collapses the proton gradient, leading to uninhib-
ited electron flow through the ETC and oxygen consumption
by complex IV reaches the maximum. With the OCR follow-
ing FCCP injection, the spare capacity can be calculated,
which is a measure of the cell’s ability to respond to an in-
creased energy demand. The injection of rotenone and
antimycin A blocks complexes I and III, respectively, and
shuts down mitochondrial respiration completely, allowing
the calculation of non-mitochondrial respiration driven by
processes outside the mitochondria [64]. For normalization
of the data, cells were stained with Vybrant DyeCycle Green
Stain (5 uM, V35004; Thermo Fisher) after completing the
Cell Mito Stress Test and microscopy images were acquired
with 4% objective from brightfield and green fluorescence
channel using IncuCyte S3 (Essen BioScience). IncuCyte
software (v2019B) was used to count the number of cells
per well. Mitochondrial parameters were calculated using the
Wave 2.6.0 software (Agilent), and results were normalized to
the number of cells counted per well.

TaqMan Assay for C90rf72 Transcripts
The RNA from fibroblast lines was extracted with RNA ex-

traction kit (11828665001; Roche) and concentrations were
measured with NanoDrop One (Thermo Scientific). A total

of 1000 ng of extracted RNA was reverse transcribed into
c¢DNA using random hexamer primers (Roche). C90rf72 total
(both isoforms A and B) and isoform A-specific RNA tran-
script levels were assessed in triplicates with TagMan assays
(Hs00945132 ml for transcript variants 2 and 3 (= isoform A)
and Hs00376619 m1 for transcript variants 1, 2, and 3 (= total
C90rf72), both ThermoFisher) and TagMan Fast Advances
Master Mix using LightCycler 480 II (Roche). Final results
were obtained by normalizing the Ct values to those of 3-actin
and using the ~AACt method to determine the expression
levels compared to the controls.

Statistical Analyses and Presentation of Data

The data are shown either as median + interquartile range or
mean + SEM, depending on their distribution, as indicated in
the figure legends. Statistical analyses were performed using
GraphPad Prism5 (version 8.3.1). Shapiro—Wilk test was used
to test if data points were normally distributed. For data with
more than two groups and no additional variables (i.e., no
treatment with Torin 1, Lactacystin, or Bafilomycin A1) either
one-way ANOVA (normally distributed data) or Kruskal—
Wallis test (not normally distributed data) was per-
formed. If a significant difference was observed in the
initial ANOVA, this was followed by either Tukey’s or
Sidak’s multiple comparison test (for normally distribut-
ed data) or Dunn’s multiple comparison test (for not
normally distributed data). P values <0.05 were consid-
ered statistically significant and only p values that were
significant in the post hoc tests are indicated in the
graphs. For data with more than two groups and an
additional variable (i.e., treatment with treatment with
Torin 1, Lactacystin, or Bafilomycin Al), two-way
ANOVA was performed (with or without transformation
of the data). If a significant difference was observed in
the initial ANOVA, this was followed by Tukey’s mul-
tiple comparison test and only p values that were sig-
nificant in the post hoc tests are indicated in the graphs.

Graphs were drawn using the GraphPad Prism software
(version 8.3.1). For Western blot, samples from independent
experiments were considered biological replicates. For
proteasomal activity, cells of the same passage plated in sep-
arate wells before the measurements were considered biolog-
ical replicates. In the Seahorse assay, results from plating of
different passages were considered biological replicates. For
immunofluorescence data quantification (p62, TDP-43, and
phospho-TDP-43), individual pictures, each containing sever-
al cells, taken from the same coverslip were considered bio-
logical replicates. For LC3-positive puncta, each analyzed cell
was considered a biological replicate. The number of » indi-
cated in the figure legends describes the number of biological
replicates according to the definitions above.
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Results

C9-HRE Carrier Fibroblasts Do Not Show Altered
C90rf72 mRNA or Protein Levels nor Express DPR
Proteins But Display RNA Foci

Previous studies have suggested that the C9orf72
haploinsufficiency, leading to decreased C9orf72 mRNA
and protein levels, associates with C9-HRE-related pathogen-
esis. To assess whether FTLD patient—derived fibroblasts
from C9-HRE carriers show alterations in C90rf72 mRNA
levels compared to fibroblasts from FTLD patients not carry-
ing the C9-HRE or control subjects, total and isoform A-
specific C9orf72 mRNA levels were detected using qPCR.
Based on this analysis, we did not observe decreased
C90rf72 transcript levels in the fibroblasts of C9-HRE carriers
in comparison to non-carriers or controls. In fact, fibroblasts
from one C9-HRE carrier even showed increased CYorf72
transcript levels (Fig. 1a, b).

To study possible differences in the C9orf72 expression at the
protein level between C9-HRE carriers, non-carriers, and con-
trols, protein samples were extracted. Some of the cells were
treated with the proteasomal inhibitor lactacystin to assess the
possible regulation of C9orf72 levels via UPS. Similar to the
results at the mRNA level, we did not observe any differences
in C9orf72 protein levels based on Western blot analysis between
the C9-HRE carriers, non-carriers, or controls (Fig. 1c, d). A
significant increase in C9orf72 levels after lactacystin treatment
was detected in fibroblasts without the C9-HRE, with a similar
trend showing in healthy controls (p = 0.07) and fibroblasts with
the C9-HRE (p = 0.08) (Fig. 1c, d), which might suggest
proteasomal regulation of C9orf72 protein levels in the fibro-
blasts in a similar manner to our previous studies in mouse neu-
ronal cells overexpressing the C9orf72 isoform A [42]. These
findings altogether suggest that the C9-HRE carrier fibroblasts
do not show evidence for C9orf72 haploinsufficiency at the
mRNA or protein level.

Several previous studies have indicated the presence of
RNA foci in fibroblasts, cortex, spinal cord, white blood cells,
and iPSC-derived skeletal myocytes of C9-HRE-carriers, but
whether the fibroblasts express the DPR proteins, the other
key C9-HRE gain-of-toxic-function-associated pathological
hallmark, is not clear [23, 57, 58, 65]. FISH analysis indicated
that the fibroblasts from the C9-HRE carriers specifically
displayed RNA foci, whereas the fibroblasts from non-
carriers did not (Fig. le), similarly to previous studies
[65—67]. No foci were detected when the fibroblasts from
C9-HRE carriers and non-carriers were probed with the neg-
ative control probe detecting GAC repeats (Fig. S1), further
indicating the specificity of the analysis. The expression of the
poly-GP, poly-GA, poly-GR, poly-PR, and poly-PA DPR
proteins in the patient fibroblasts was assessed by dot blot
analysis similarly to a previous study in skeletal muscle
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samples [55]. Samples from N2a mouse neuroblastoma cells
transfected with a plasmid encoding 66 GGGGCC expanded
repeats (66R, [68] for poly-GP) or plasmids encoding the in-
dividual DPR proteins (100x, [69] for poly-GA, poly-GR,
poly-PR, and poly-PA) were used as positive controls in the
analyses. This analysis indicated that the C9-HRE-carrying
fibroblasts did not express detectable levels of the DPR pro-
teins (Fig. 11).

Fibroblasts from FTLD Patients Do Not Show
Alterations in Basal Autophagy, But Display Increased
p62 Puncta

Defects in autophagy are suggested to contribute to the path-
ogenesis of FTLD and ALS [33]. During autophagy induc-
tion, phosphatidylethanolamine (PE) is conjugated with cyto-
solic LC3BI to form a membrane-bound lipidated LC3BII.
Consequently, increased levels of LC3BII or increased
LC3BII/LC3BI ratio can be used as a marker of autophagy
induction and the number of autophagosomes present in the
cells [35]. Accumulation of p62, a known autophagy receptor
and substrate, has been observed in the brain of C9-HRE
carriers and could indicate compromised autophagy [18]. To
assess basal autophagy, the control and FTLD patient—derived
fibroblasts were treated with BafAl to block the fusion of
autophagosomes with lysosomes and, thus, the late phases
of the autophagosomal degradation pathway [35, 42, 70].
Subsequently, the protein levels of LC3BI, LC3BII, and p62
were analyzed using Western blot (Fig. 2c—g). Also, the num-
ber of GFP-LC3-positive puncta in the fibroblasts was quan-
tified from immunofluorescence images (Fig. 2a). Slightly
increased LC3BI protein levels in FTLD patient fibroblasts
without the C9-HRE were observed compared to fibroblasts
with the C9-HRE and healthy controls in vehicle treatment
(DMSO) (Fig. 2c¢, 1), but no significant differences in the pro-
tein levels of LCBII (Fig. 2c, e) or the ratio of LC3BII/LC3BI
(Fig. 2¢, d) were detected between the fibroblasts from con-
trols and FTLD patient fibroblasts with and without the C9-
HRE. Treatment with BafA1 increased the LC3BII levels and
thus the ratio of LC3BII/LC3BI to a similar extent in all fi-
broblasts, suggesting that basal autophagy was not altered in
any of the fibroblasts. The number of GFP-LC3-positive
puncta was also unchanged (Fig. 2b), further indicating that
autophagosome formation and basal autophagic flux in FTLD
patient fibroblasts were not affected.

A significant increase in p62 levels in FTLD fibroblasts
without the C9-HRE as compared to control fibroblasts was
observed (Fig. 2¢, g), which might indicate subtle changes in
autophagosomal function. p62 forms aggregates and inclu-
sions in the brains of FTLD patients [71]. To examine possible
aggregation or changes in p62 subcellular localization, the
fibroblasts were stained with a p62 antibody and analyzed
by immunofluorescence microscopy. This analysis did not
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reveal clear cytoplasmic p62 inclusions in FTLD patient fibro-
blasts. However, quantitative analysis of p62-positive puncta
showed a significant increase in the number of puncta in fi-
broblasts without the C9-HRE (Fig. 3b), in the size of puncta
in fibroblasts with and without the C9-HRE (Fig. 3c), and
intensity of puncta in fibroblasts with and without the C9-
HRE (Fig. 3d) compared to healthy controls, suggesting ac-
cumulation of p62 proteins similarly to the Western blot anal-

ysis (Fig. 2c, g).

Fibroblasts from FTLD Patients Respond to
Autophagy-Inducing Stimulus Similarly to Control
Fibroblasts

It has been shown previously that even when basal autophagy
is not impaired, pharmacological induction of autophagy can
unveil defects in autophagy [28]. We therefore treated the
fibroblasts with Torin 1 to induce autophagy and assessed
the protein levels of the autophagy-associated proteins
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<« Fig. 1 Fibroblasts of C9-HRE carriers show unaltered C90r/72 levels,
express RNA foci, but do not display DPR proteins. a TagMan assay
from fibroblast RNA for C90rf72 all variants. b TagMan assay from
fibroblast RNA for isoform A specific transcript levels. For (a) and (b),
data are shown as mean of data points in one biological replicate = SEM.
One-way ANOVA followed by Sidak’s multiple comparison test was
performed. Only p values that were significant in the post hoc test are
indicated in the graph. ¢ A representative Western blot of the total protein
lysates of fibroblasts from a control subject (Con), FTLD patient without
the C9-HRE (C9-), and FTLD patient with the C9-HRE (C9+). Cells
were treated with 10 uM lactacystin (Lact.) overnight to block protein
degradation through UPS. Poly-ubiquitinated proteins (poly-ub. proteins)
accumulated similarly in all the fibroblast lines treated with lactacystin.
DMSO was used as a vehicle. d Quantification of the C9orf72 levels from
the Western blot images. Data are shown as the mean of three biological
replicates = SEM. Data were transformed to achieve normality and two-
way ANOVA followed by Tukey’s multiple comparison test was
performed. *p < 0.05, **p <0.01. Only p values that were significant in
the post hoc test are indicated in the graph. e A Representative image of
RNA foci (red) in the fibroblasts of a C9-HRE carrier (lower images). A
C9-HRE non-carrier does not show any RNA foci (upper images). DAPI
(blue) was used to stain the nuclei. f Dot blot images of the total protein
lysates of fibroblasts from controls, FTLD patients without the C9-HRE
(C9-1-3), and FTLD patients with the C9-HRE (C9+ 1-3). Lysates from
N2a cells transfected with 2R plasmid were used as negative control and
lysates from N2a cells transfected with 66R plasmid (positive control for
Poly-GP) or plasmids encoding the individual 100x DPR proteins
(positive control for poly-GA, poly-GR, poly-PR, and poly-PA) were
used as positive controls

ULK1, phospho-ULK1 (p-ULK1-Ser757), LC3BI and II, and
p62, as well as TDP-43 (Fig. 4a—i). As expected, treatment
with Torin 1 significantly decreased the ratio of p-ULKI-
Ser757 to ULK1, indicating induction of autophagy, but no
differences could be observed between the fibroblasts from
healthy controls and FTLD patients (Fig. 4a, b). Induction of
autophagy also significantly increased the LCBII to LC3BI
ratio, but again no difference was observed between any of
the cells (Fig. 4a, ). These results suggest that fibroblasts from
FTLD patients can respond normally to this autophagy-
inducing stimulus and that the C9-HRE FTLD fibroblasts do
not differ in their response as compared to the fibroblasts from
FTLD patients not carrying the C9-HRE nor the control indi-
viduals. The levels of TDP-43, another protein showing path-
ological accumulation in FTLD brain [71, 72], were signifi-
cantly increased in fibroblasts without the C9-HRE and also
showed a trend toward increased levels in fibroblasts with the
C9-HRE compared to controls but did not show alterations
after induction of autophagy with Torin 1 (Fig. 4a, 1).

Fibroblasts from FTLD Patients Display Unchanged
Proteasomal Activity and Subcellular Localization of
TDP-43 and Phosphorylated TDP-43 Is Mostly
Unchanged

In addition to dysfunctional autophagy, defects in the UPS
have been suggested to underlie abnormal protein aggregation
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in neurodegenerative diseases. We next assessed proteasomal
activity in control and FTLD patient fibroblasts but did not
observe any differences between them (Fig. 5a). Also,
blocking the UPS with the proteasomal inhibitor lactacystin
led to a similar significant accumulation of poly-ubiquitinated
proteins both in healthy control and FTLD patient fibroblasts
(Fig. 5b, g). Treatment with lactacystin did not change levels
of p-TDP-43 or TDP-43 in either control or FTLD fibroblasts.
The RNA-binding protein TDP-43 shuttles between the nu-
cleus and the cytosol [73] and accumulation of cytoplasmic
TDP-43 has been observed in the CNS of patients with FTLD
and ALS, including C9-HRE carriers, indicating altered sub-
cellular localization [18, 66—68], Examination of TDP-43 sub-
cellular localization demonstrated that TDP-43 is strongly lo-
calized in the nucleus in all fibroblasts (Fig. 6a). The cytoplas-
mic localization was slightly stronger in fibroblasts with the
C9-HRE when compared to fibroblasts without the C9-HRE
(Fig. 6a, c). p-TDP-43 showed both nuclear and cytoplasmic
subcellular localization (Fig. 6b). Fibroblasts without the C9-
HRE showed a significantly stronger p-TDP-43 cytoplasmic
localization when compared to fibroblasts with the C9-HRE
(Fig. 6b, d). However, no significant differences between
healthy controls and fibroblasts with or without the C9-HRE
were observed.

FTLD Patient-Derived Fibroblasts Show Significantly
Altered Mitochondrial Metabolism

A previous study on brain samples of sporadic FTLD patients
has shown changes in the expression of several subunits of the
complexes of the ETC and significantly reduced enzymatic
activity of mitochondrial complexes I, IV, and V [74].
Reduced activity of complexes I, 11, III, and I'V has also been
observed in postmortem spinal cord of sporadic ALS patients
[75]. In addition to neurons, mitochondrial dysfunction has
been observed in fibroblasts from sporadic ALS cases and
ALS or FTLD cases carrying different mutations [60, 61],
including patients carrying C9-HRE [62]. To assess mito-
chondrial function, we examined changes in OCR after injec-
tion of different ETC modulators in the control and FTLD
fibroblasts (Fig. 7a). A significant reduction in the basal res-
piration (Fig. 7b) of fibroblasts with and without the C9-HRE
was detected compared to controls. Respiration linked to ATP
production (Fig. 7e) was significantly reduced in fibroblasts
without the C9-HRE and a similar trend (p = 0.07) could be
observed in fibroblasts with the C9-HRE, suggesting an im-
paired mitochondrial function. No difference between the fi-
broblasts of patients with and without the C9-HRE could be
observed. OCR related to maximal respiration (Fig. 7¢), spare
capacity (Fig. 7d), proton leak (Fig. 7f), and non-
mitochondrial respiration (Fig. 7g) was similar in FTLD pa-
tient fibroblasts and control fibroblasts.
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Fig. 2 Fibroblasts from FTLD patients do not show alterations in
autophagy. a Representative fluorescent microscope images of the
control, FTLD without (C9-), and FTLD with the C9-HRE (C9+)
fibroblasts transfected with GFP-LC3 plasmid. b Quantification of the
GFP-LC3 puncta. Data are shown as the median =+ interquartile range
and Kruskal-Wallis followed by Dunn’s multiple comparison test was
performed. Only p values that were significant in the post hoc test are
indicated in the graph. Number of cells analyzed: n = 46 control, n = 87
FTLD. Each datapoint (=cell) represents a biological replicate. ¢
Representative Western blot images from LC3BI and II, p62 and

Because deficits in the mitochondrial function were
observed (Fig. 7b, e), we next examined the levels of
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GAPDH from fibroblast cell lysates. Cells were treated with 300 nM
bafilomycin Al (BafAl) for 6 h to block the fusion of autophagosomes
with lysosomes. DMSO was used as a vehicle. d Ratio of LC3BII/L e
Quantification of LC3BII. f Quantification of LC3BI. g Quantification of
p62. Data are shown as the mean of three biological replicates = SEM and
two-way ANOVA followed by Tukey’s multiple comparison test was
performed (d—g). Only p values that were significant in the post hoc
test are indicated in the graphs. n = 9 control, n = 9 FTLD with C9-
HRE, and n = 9 FTLD without C9-HRE. *p < 0.05, **p <0.01, ***p <
0.001, *###%p <0.0001

two proteins involved in mitochondrial fusion and fis-
sion, Mitofusin (Mfn 1 and 2) and Fissionl (Fisl), to
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Fig. 3 Number, size, and intensity of p62 puncta are increased in FTLD
patient—derived fibroblasts. a Representative fluorescence microscopy
images of staining with anti-p62 antibody (red) in fibroblasts of control,
FTLD patient without (C9-), and FTLD patient with the C9-HRE (C9+).
Nuclei were stained with DAPI (blue). b Quantification of number of p62
puncta. ¢ Quantification of mean area of p62 puncta. d Quantification of
intensity of p62 puncta. Data are shown as mean + SEM and one-way
ANOVA followed by Sidak’s multiple comparison test was performed

assess potential fragmentation of the mitochondria. A
non-significant trend toward increased fission-to-fusion
ratio was observed in the FTLD fibroblasts, especially
with the C9-HRE (p = 0.067) compared to controls
(Fig. 8a, b), suggesting that changes in mitochondrial
structure might occur in the FTLD patient fibroblasts.
Finally, to investigate potential changes upon mitochon-
drial dysfunction in the interorganelle communication
between mitochondria and the endoplasmic reticulum
(ER), suggested by previous studies [76, 77], we
assessed if increased ER stress could be observed in
the FTLD fibroblasts. Attenuation of protein translation
through increased phosphorylation of the eukaryotic
translation initiation factor 2« subunit (eIF2x) is in-
volved in the unfolded protein response (UPR) associat-
ed with ER stress [78]. No differences between the
FTLD and control fibroblasts in the ratio of phospho-
elF2x (p-elF2x) to total elF2 were found (Fig. 8c, d),
indicating that the FTLD patient—derived fibroblasts do
not show signs of UPR activation and ER stress.
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15 FTLD without C9-HRE. Data were obtained from one experiment and
each datapoint represents a biological replicate. **p <0.01, ***p <0.001,
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Discussion

In the present study, we characterized pathological and func-
tional properties of skin fibroblasts derived from FTLD pa-
tients either carrying or not the C9-HRE to evaluate the po-
tential usability of these peripheral and easily accessible cells
as platforms in biomarker discovery as well as in drug
research.

One of the proposed mechanisms underlying C9-HRE-
associated pathogenesis is haploinsufficiency, leading to de-
creased C90rf72 mRNA and protein expression. Decreased
levels of C90rf72 mRNA and proteins have previously been
detected in the affected CNS areas of the C9-HRE carriers as
well as in some peripheral tissues, such as in blood lympho-
cytes [9, 10, 15]. Our study did not indicate decreased
C90rf72 levels at either mRNA or protein level in the fibro-
blasts of the C9-HRE carriers, suggesting that the fibroblasts
of the carriers do not display signs of haploinsufficiency. In
fact, one of the C9-HRE carriers showed elevated C9orf72
mRNA levels compared to the healthy controls and non-
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Fig. 4 FTLD patient—derived fibroblasts can respond normally to
autophagy-inducing stimuli. a Representative Western blot images from
ULKI, p-ULK1-Ser757, p62, LC3BI and II, TDP-43, and GAPDH from
fibroblast cell lysates. Cells were treated with 200 nM Torin 1 overnight
to induce autophagy. DMSO was used as a vehicle. b Ratio of p-ULK1-
Ser757/ULK1. ¢ Quantification of p-ULK1-Ser757. d Quantification of
ULKI. e Quantification of p62. f Ratio of LC3BII/I. g Quantification of
LC3BII. h Quantification of LC3BI. i Quantification of TDP-43. Data are

carrying FTLD patients, but this was not accompanied by a
rise in the C9orf72 protein isoform A levels. The reason for
the increased mRNA levels in this one C9-HRE carrier re-
mains thus far unknown. As the sample size in our study is
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shown as the mean of three biological replicates + SEM. Two-way
ANOVA followed by Tukey’s multiple comparison test was performed
for all data sets (d—i). Data in panels (e) and (g) were transformed prior to
two-way ANOVA. Only p values that were significant in the post hoc test
are indicated in the graph. n =9 control, n = 9 FTLD with C9-HRE, and n
= 9 FTLD without C9-HRE. *p < 0.05, **p<0.01; ***p < 0.001,
ik <0.0001

quite small and the observed difference could reflect natural
variation between the individuals, a larger sample set may be
needed to further validate the present finding. Intermediate
repeat carriers have been reported to show increased
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Fig. 5 Proteasomal activity is a
unaffected, and levels of TDP-43
and p-TDP-43 are unchanged by
proteasomal inhibition. a
Proteasomal activity. Data are
shown as mean + SEM. One-way
ANOVA followed by Tukey’s
multiple comparison test was
performed. Only p values that
were significant in the post hoc
test are indicated in the graphs.
Data were obtained from two
independent experiments.
Datapoints represent the average
of two or three biological
replicates. b Representative
Western blot images from poly-
ubiquitinated proteins, p-TDP-43,
TDP-43, and (3-actin from
fibroblast cell lysates. Cells were c
treated with 10 pM lactacystin

overnight to block protein

degradation through the UPS.

DMSO was used as a vehicle. ¢
Quantification of poly-

ubiquitinated proteins. d

Quantification of p-TDP-43. e
Quantification of TDP-43. f Ratio

of p-TDP-43/TDP-43. Two-way
ANOVA followed by Tukey’s

multiple comparison test was

performed. Only p values that

were significant in the post hoc

test are indicated in the graphs.
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C90rf72 expression in the brain tissue [79] and a recent report
[80] showed that C90rf72 levels in blood were increased in a
subset of patients even though the repeat size was larger than
the intermediate repeat size of 30 repeats. Therefore, our re-
sults together with those by others [79, 80] highlight the com-
plex relationship between C90rf72 expression and the length
of the C9-HRE.

Examination of the fibroblasts from the C9-HRE carriers
revealed the presence of nuclear RNA foci, one of the gain-of-
toxic-function hallmarks of the C9-HRE. However, the C9-
HRE carrier fibroblasts did not display DPR proteins, which
are another typical C9-HRE-associated gain-of-toxic-function
pathological hallmark. DPR proteins have previously been
detected mostly in the neurons of the patients and to a much
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lesser extent in other brain cells, such as glia. They have not
been reported to be present in peripheral tissues, such as blood
cells or fibroblasts [65]. Our finding is in line with these stud-
ies. In contrast, however, a recent study indicated that specific
DPR proteins (poly-GA and poly-GP) could be detected in
skeletal muscle samples of a subset of C9-HRE-carrying
ALS patients. In addition, in particular poly-GP DPR proteins
have been detected in the patient cerebrospinal fluid and there-
fore suggested to show potential as a biomarker for C9-HRE
carriers [81].

Several studies, including ours, have suggested that the
C90f72 protein isoform A regulates autophagy, even though
it remains controversial based on studies in different cell types
if the reduction of C9orf72 protein levels leads to increased or
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Fig. 6 Subcellular localization of a
TDP-43 and p-TDP-43 are not
affected in FTLD patient—derived
fibroblasts compared to healthy
controls. a Representative
fluorescence microscopy images
of staining with anti-TDP-43
antibody (green) and Phalloidin
(red) in fibroblasts of control (left
column), FTLD patient without
(C9-; middle column), and FTLD
patient with the C9-HRE (C9+;
right column). b Representative
fluorescence microscopy images
of staining with anti-p-TDP-43
antibody (green) and Phalloidin
(red) in fibroblasts of control (left
column), FTLD patient without
(middle column), and FTLD
patient with the C9-HRE (right
column). ¢ Ratio of cytoplasmic b
to nuclear localization of TDP-43.
d Ratio of cytoplasmic to nuclear
localization of p-TDP-43. Data
are shown as mean + SEM, and
one-way ANOVA followed by
Sidak’s multiple comparison test
was performed. Number of
images analyzed: n = 15 for
control and » = 15 FTLD with
C9-HRE and n = 15 FTLD
without C9-HRE from one
experiment. *p <0.05

TDP-43

p-TDP-43
Phalloidin

decreased autophagy [16, 27-31, 39-42]. Here, we did not
observe any changes in the basal or induced autophagy in
the fibroblasts of the C9-HRE carriers as compared to those
from non-carrying FTLD patients or healthy controls. This is
in accordance with the finding that there were no significant
changes in C9orf72 protein levels in the C9-HRE carrier fi-
broblasts. Moreover, unaltered proteasomal activity and the
similar levels of poly-ubiquitinated proteins upon proteasomal
inhibition using lactacystin in FTLD patient-derived
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fibroblasts as compared to healthy control fibroblasts or be-
tween the C9-HRE-carrying and non-carrying fibroblasts in-
dicated no changes in the UPS function. In the C9-HRE-
carrying fibroblasts, these findings agree well with the fact
that they were found to lack the DPR proteins, which in some
other studies have been shown to interfere with the function of
autophagy and the UPS [44, 45]. On the other hand, in a
previous study in sporadic and C9-HRE-associated ALS/
FTLD and ALS fibroblasts, proteasomal inhibition with
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Fig. 7 The mitochondrial
metabolism of FTLD patient—
derived fibroblasts is impaired.
Using the Cell Mito Stress Test,
several parameters of
mitochondrial function were
assessed. a Example of Cell Mito
Stress Test with one control, one
C9+, and one C9— fibroblast line.
Using the Mito Stress Test assay,
several parameters of
mitochondrial function were
assessed. b Quantification of
basal respiration. ¢ Quantification
of maximal respiration. d
Quantification of spare capacity. e
Quantification of ATP

-
»
)

14

Basal
respiration

OCR (pmol/min/cells)

Oligomycin

ATP production

Non-mitochondrial respiration

Mitochondrial Respiration

Control
C9-

FCCP co+

}

Rotenone+Antimycin A

}

Maximal
respiration

Proton leak

[ N
O N B OO OO ON

production. f Quantification of
proton leak. g Quantification of
non-mitochondrial respiration.
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shown as mean = SEM, and one-
way ANOVA followed by
Sidak’s multiple comparison test
was performed (d). Only p values
that were significant in the post
hoc test are indicated in the
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MG132 led to increased levels of poly-ubiquitinated proteins
in healthy control but not patient-derived fibroblasts, suggest-
ing impaired proteasomal function in the patient-derived fi-
broblasts [21]. However, the discrepant findings between
these two studies could be due to the use of different pharma-
cological compounds and treatment conditions to inhibit the
proteasomal activity. An increase in p62 levels in the FTLD
patient—derived fibroblasts was observed in the present study
and this was accompanied by increased number, size, and
intensity of p62-positive puncta in the fibroblasts of both
C9-HRE carriers and non-carriers. p62 accumulates in

@ Springer

C

OCR (pmol/min/cells)

OCR (pmol/min/cells)

40 100

Time (min)

60 80

d

Spare capacity
220
200

Maximal respiration

180
160-
140

%maximal / basal respiration

o
(K¢
<

A
‘O
\\9 O
&8

OO

«Q

Proton leak Non-mitochondrial
3- 6 respiration
0
o
o
24 £ 4+
E
.o ©°
. £
14 £ 2
['4
o
o
0- 0-
S O of
o o°°(\ \90 s°
&K

different brain regions of ALS and FTLD patients [18] and
increased levels of p62 have been observed in fibroblasts from
C9-HRE carriers [30]. p62 accumulation can be caused by
impaired autophagy or proteasomal activity, but its levels
can also change independent of these due to increased tran-
scriptional activation [82—84]. Moreover, in iPSC-derived
motor neurons from patients with ALS and FTLD, an increase
of p62 was observed without evident changes in LC3-II/LC3-1
turnover, further suggesting alternative mechanisms regulat-
ing p62 levels [85]. Changes in TDP-43 subcellular localiza-
tion have been previously described in ALS patient—derived
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Fig. 8 FTLD patient—derived a C
fibroblasts show a trend of & Y oX
increased fission/fusion ratio, but © 00: 003 000 oq' &x
no changes in phosphorylation of 80- : Mfn1+2 40- p-elF2a
elF2a. a Representative Western v - IEI
blot images from Fis1 and Mfn1+ 15- I:I Fis1 40- total elF2a
2 from fibroblast cell lysates. b
Ratio of Fisl/ Mfn1+2. ¢ 40- IEI GAPDH 40- l;] GAPDH
Representative Western blot
images from p-elF2« and total b d
elF2x from fibroblast cell lysates.
d Ratio of p-eIF2/total elF2cx. Control
Data are shown as the mean of Fis1 / Mfn1+2 p-elF2a / total elF2a
three biological replicates + SEM 200- C9-
with ratio in controls set to 100. . A
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fibroblasts with different mutations, including the C9orf72
and TARDBP mutations [86]. In that study, cytoplasmic local-
ization of TDP-43 and presence of p-TDP-43 could only be
observed in patient-derived but not in healthy control fibro-
blasts. In sporadic and C9orf72 ALS/FTLD and ALS fibro-
blasts [21], significant differences in p-TDP-43 levels and
formation of large p-TDP-43 positive inclusions between
healthy control and patient-derived fibroblasts were observed
only after proteasomal inhibition. In another study on patient-
derived fibroblasts carrying TARDBP or UBQLNZ2 mutations
[87], differences in the localization of TDP-43 were also only
observed after inhibition of UPS function or induction of ox-
idative stress. Therefore, marked differences in TDP-43 and/
or p-TDP-43 localization or aggregate formation may only
become apparent under proteostatic stress conditions. In the
present study, a slight increase in levels of TDP-43 could be
observed in fibroblasts from FTLD patients, but we did not
observe drastic differences in the subcellular localization of
TDP-43 or p-TDP-43 between the fibroblasts from FTLD
patients in comparison to control fibroblasts under normal
conditions. Furthermore, we did not detect signs of TDP-43
or p-TDP-43 aggregation nor intracellular inclusions under
proteasomal inhibition. We used lactacystin to inhibit the pro-
teasome, whereas MG132 was used in both previous studies.
Thus, it is possible that the different outcomes in these studies
are due to the use of different inhibitors to block the
proteasomal activity.

Mitochondrial dysfunction has previously been observed
in fibroblasts of sporadic ALS cases as well as fibroblasts
from patients carrying different mutations, such as VCP,
SOD1, TARDBP, or the C9-HRE [59-62]. A study using

fibroblasts from three ALS patients carrying a TARDBP mu-
tation and three ALS and one FTLD patient carrying the C9-
HRE showed changes in mitochondrial function and mito-
chondrial morphology accompanied by a fragmented mito-
chondria network in the TARDBP mutation-carrying fibro-
blasts under conditions where glucose in the media was re-
placed by galactose to switch the mitochondrial metabolism
from glycolysis to oxidative metabolism [62]. In the present
study, we detected significantly altered mitochondrial func-
tion in both C9-HRE-carrying and non-carrying FTLD fibro-
blasts as compared to healthy control cells, as indicated by the
reduced basal respiration and reduced respiration linked to
ATP production under standard conditions in glucose-
containing medium. These studies altogether suggest that mi-
tochondrial dysfunction is a common characteristic of ALS
and FTLD patient fibroblasts.

Morphologically abnormal and fragmented mitochondria
were one of the first changes observed in motor neurons of
ALS patients [88, 89] and can also be found in animal models
of ALS [90]. Subtle fragmentation of the mitochondrial net-
work has also been observed in the fibroblasts of ALS and
FTLD patients carrying mutations in TARDBP (p.A382T) or
the C9-HRE [62]. The functional changes in the mitochondri-
al respiration in our study were accompanied by a trend to-
ward increased fission-to-fusion ratio, indicating enhanced
fragmentation of mitochondria. This finding deserves further
examination using alternative methods (e.g., cellular imaging)
and different conditions, such as switch of the mitochondrial
metabolism route similarly to the previous study [62] or some
other form of cellular stress. Fragmentation of mitochondria
can impair their function, as shown in a study on ALS patient—
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derived fibroblasts carrying the SODI mutation. The fibro-
blasts showed mitochondrial fragmentation and dysfunction
as well as inhibition of the Drpl1/Fis] interaction. Reducing
mitochondrial fission led to a significant decrease in ROS
levels and improved mitochondrial function and structure
[91]. Interestingly, several genes linked to mitochondria were
deregulated and the enzymatic activity of mitochondrial com-
plexes I, IV, and V were significantly reduced in the frontal
cortex of patients with sporadic FTLD [74], further indicating
that FTLD pathogenesis may essentially involve dysregulated
mitochondrial function.

Mitochondrial dysfunction can also cause ER stress due to
ATP depletion or upon disruption of the mitochondrial respi-
ratory chain by nitric oxide, rotenone, or antimycin A [92-95].
A study on fibroblasts from patients with a mitochondrial
complex I deficiency, leading to reduced basal respiration
and ATP production, showed impaired ER—mitochondria
communication [76] and mitochondrial energy dysfunction.
Subsequent disruption of inter-organelle communication has
been previously shown to induce ER stress [77]. Conversely,
ER stress can induce mitochondrial dysfunction [96].
Increased ER stress has been observed in iPSC-derived motor
neurons from C9-HRE-carrying ALS/FTLD patients [85].
Here, no change in the phosphorylation of elF2«, which is
phosphorylated by PKR-like ER-localized elF2x kinase
(PERK), one of the kinases activated during the ER stress
response, in FTLD patient—derived fibroblasts was detected,
suggesting that the observed mitochondrial dysfunction did
not induce ER stress in FTLD patient—derived fibroblasts.

Conclusions

The present data altogether show that the FTLD patient—
derived fibroblasts from C9-HRE carriers contain nuclear
RNA foci but do not display haploinsufficiency nor express
the DPR proteins. Moreover, the C9-HRE-carrying and non-
carrying FTLD patient fibroblasts display unaltered UPS
function and basal autophagy and can respond to an
autophagy-inducing stimulus in a similar manner to the
healthy control fibroblasts. Despite unaltered functions of
the protein degradation pathways, an accumulation of p62,
possibly due to increased transcriptional activation, was evi-
dent in both C9-HRE-carrying and non-carrying FTLD
patient—derived fibroblasts, suggesting that it represents a
common pathological feature in FTLD fibroblasts. However,
elucidation of the underlying mechanism of p62 accumulation
and its potential, e.g., as a possible biomarker, needs further
study. The main pathological finding in this study, which was
common to both FTLD patient—derived fibroblasts with and
without the C9-HRE, was the marked mitochondrial dysfunc-
tion associated with potentially increased mitochondrial frag-
mentation. Evidence for mitochondrial fragmentation in ALS
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patient—derived motoneurons as well as deregulated expres-
sion of mitochondrial genes in the frontal cortex of FTLD
patients have previously been observed. Therefore, balancing
mitochondrial function might be an interesting therapeutic
target for future studies. The present findings also sug-
gest that patient-derived fibroblasts might represent suit-
able platforms for biomarker discovery and screening of
specific drug effects, such as those affecting mitochon-
dria, in FTLD and ALS research.
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