Skip to main content
Log in

The Current State of Chromatin Immunoprecipitation

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The biological significance of interactions of nuclear proteins with DNA in the context of gene expression, cell differentiation, or disease has immensely been enhanced by the advent of chromatin immunoprecipitation (ChIP). ChIP is a technique whereby a protein of interest is selectively immunoprecipitated from a chromatin preparation to determine the DNA sequences associated with it. ChIP has been widely used to map the localization of post-translationally modified histones, histone variants, transcription factors, or chromatin modifying enzymes on the genome or on a given locus. In spite of its power, ChIP has for a long time remained a cumbersome procedure requiring large numbers of cells. These limitations have sparked the development of modifications to shorten the procedure, simplify sample handling and make ChIP amenable to small numbers of cells. In addition, the combination of ChIP with DNA microarray and high-throughput sequencing technologies has in recent years enabled the profiling of histone modification, histone variants, and transcription factor occupancy on a genome-wide scale. This review highlights the variations on the theme of the ChIP assay, the various detection methods applied downstream of ChIP, and examples of their application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Antequera, F. (2003). Structure, function and evolution of CpG island promoters. Cellular and Molecular Life Sciences, 60, 1647–1658.

    CAS  Google Scholar 

  2. Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128, 693–705.

    CAS  Google Scholar 

  3. Mito, Y., Henikoff, J. G., & Henikoff, S. (2007). Histone replacement marks the boundaries of cis-regulatory domains. Science, 315, 1408–1411.

    CAS  Google Scholar 

  4. Mito, Y., Henikoff, J. G., & Henikoff, S. (2005). Genome-scale profiling of histone H3.3 replacement patterns. Nature Genetics, 37, 1090–1097.

    CAS  Google Scholar 

  5. Viens, A., Mechold, U., Brouillard, F., Gilbert, C., Leclerc, P., & Ogryzko, V. (2006). Analysis of human histone H2AZ deposition in vivo argues against its direct role in epigenetic templating mechanisms. Molecular and Cellular Biology, 26, 5325–5335.

    CAS  Google Scholar 

  6. Li, B., Pattenden, S. G., Lee, D., Gutierrez, J., Chen, J., Seidel, C., et al. (2005). Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proceedings of the National Academy of Sciences of the United States of America, 102, 18385–18390.

    CAS  Google Scholar 

  7. Li, A., Eirin-Lopez, J. M., & Ausio, J. (2005). H2AX: Tailoring histone H2A for chromatin-dependent genomic integrity. Biochemistry and Cell Biology, 83, 505–515.

    CAS  Google Scholar 

  8. Hoffman, A. R., & Hu, J. F. (2006). Directing DNA methylation to inhibit gene expression. Cellular and Molecular Neurobiology, 26, 425–438.

    CAS  Google Scholar 

  9. Klose, R. J., & Bird, A. P. (2006). Genomic DNA methylation: The mark and its mediators. Trends in Biochemical Sciences, 31, 89–97.

    CAS  Google Scholar 

  10. Morgan, H. D., Santos, F., Green, K., Dean, W., & Reik, W. (2005). Epigenetic reprogramming in mammals. Human Molecular Genetics, 14, R47–R58.

    CAS  Google Scholar 

  11. Young, L. E., & Beaujean, N. (2004). DNA methylation in the preimplantation embryo: The differing stories of the mouse and sheep. Animal Reproduction Science, 82, 61–78.

    Google Scholar 

  12. Razin, A., & Shemer, R. (1995). DNA methylation in early development. Human Molecular Genetics, 4, 1751–1755.

    CAS  Google Scholar 

  13. Hellman, A., & Chess, A. (2007). Gene body-specific methylation on the active X chromosome. Science, 315, 1141–1143.

    CAS  Google Scholar 

  14. Tremblay, K. D., Saam, J. R., Ingram, R. S., Tilghman, S. M., & Bartolomei, M. S. (1995). A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nature Genetics, 9, 407–413.

    CAS  Google Scholar 

  15. Reik, W., Collick, A., Norris, M. L., Barton, S. C., & Surani, M. A. (1987). Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature, 328, 248–251.

    CAS  Google Scholar 

  16. Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Paabo, S., Rebhan, M., et al. (2007). Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genetics, 39, 457–466.

    CAS  Google Scholar 

  17. Fouse, S. D., Shen, Y., Pellegrini, M., Cole, S., Meissner, A., Van, N. L., et al. (2008). Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell, 2, 160–169.

    CAS  Google Scholar 

  18. Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293, 1074–1080.

    CAS  Google Scholar 

  19. Mellor, J. (2006). It takes a PHD to read the histone code. Cell, 126, 22–24.

    CAS  Google Scholar 

  20. Cosgrove, M. S., & Wolberger, C. (2005). How does the histone code work? Biochemistry and Cell Biology, 83, 468–476.

    CAS  Google Scholar 

  21. Lachner, M., O’Carroll, D., Rea, S., Mechtler, K., & Jenuwein, T. (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature, 410, 116–120.

    CAS  Google Scholar 

  22. Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., et al. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science, 298, 1039–1043.

    CAS  Google Scholar 

  23. Cao, R., & Zhang, Y. (2004). The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Current Opinion in Genetics and Development, 14, 155–164.

    CAS  Google Scholar 

  24. Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini, D. E., & Helin, K. (2004). Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO Journal, 23, 4061–4071.

    CAS  Google Scholar 

  25. Lachner, M., & Jenuwein, T. (2002). The many faces of histone lysine methylation. Current Opinion in Cell Biology, 14, 286–298.

    CAS  Google Scholar 

  26. Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jorgensen, H. F., John, R. M., et al. (2006). Chromatin signatures of pluripotent cell lines. Nature Cell Biology, 8, 532–538.

    CAS  Google Scholar 

  27. Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125, 315–326.

    CAS  Google Scholar 

  28. Kingston, R. E., & Narlikar, G. J. (1999). ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes and Development, 13, 2339–2352.

    CAS  Google Scholar 

  29. Pray-Grant, M. G., Daniel, J. A., Schieltz, D., Yates, J. R., I. I. I., & Grant, P. A. (2005). Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature, 433, 434–438.

    CAS  Google Scholar 

  30. Struhl, K. (1998). Histone acetylation and transcriptional regulatory mechanisms. Genes and Development, 12, 599–606.

    CAS  Google Scholar 

  31. Santos-Rosa, H., Schneider, R., Bannister, A. J., Sherriff, J., Bernstein, B. E., Emre, N. C., et al. (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419, 407–411.

    CAS  Google Scholar 

  32. Schubeler, D., MacAlpine, D. M., Scalzo, D., Wirbelauer, C., Kooperberg, C., van, L. F., et al. (2004). The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes and Development, 18, 1263–1271.

    Google Scholar 

  33. Zhao, X. D., Han, X., Chew, J. L., Liu, J., Chiu, K. P., Choo, A., et al. (2007). Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell, 1, 286–298.

    CAS  Google Scholar 

  34. Ruthenburg, A. J., Allis, C. D., & Wysocka, J. (2007). Methylation of lysine 4 on histone H3: Intricacy of writing and reading a single epigenetic mark. Molecular Cell, 25, 15–30.

    CAS  Google Scholar 

  35. Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., et al. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448, 553–560.

    CAS  Google Scholar 

  36. O’Neill, L. P., & Turner, B. M. (1995). Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO Journal, 14, 3946–3957.

    Google Scholar 

  37. O’Neill, L. P., & Turner, B. M. (1996). Immunoprecipitation of chromatin. Methods in Enzymology, 274, 189–197.

    Google Scholar 

  38. Zeng, P. Y., Vakoc, C. R., Chen, Z. C., Blobel, G. A., & Berger, S. L. (2006). In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques, 41, 694, 696, 698.

    Google Scholar 

  39. O’Neill, L. P., Vermilyea, M. D., & Turner, B. M. (2006). Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nature Genetics, 38, 835–841.

    Google Scholar 

  40. Hanlon, S. E., & Lieb, J. D. (2004). Progress and challenges in profiling the dynamics of chromatin and transcription factor binding with DNA microarrays. Current Opinion in Genetics and Development, 14, 697–705.

    CAS  Google Scholar 

  41. Sikder, D., & Kodadek, T. (2005). Genomic studies of transcription factor-DNA interactions. Current Opinion in Chemical Biology, 9, 38–45.

    CAS  Google Scholar 

  42. Lee, T. I., Johnstone, S. E., & Young, R. A. (2006). Chromatin immunoprecipitation and microarray-based analysis of protein location. Nature Protocols, 1, 729–748.

    CAS  Google Scholar 

  43. Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38, 431–440.

    CAS  Google Scholar 

  44. Wei, C. L., Wu, Q., Vega, V. B., Chiu, K. P., Ng, P., Zhang, T., et al. (2006). A global map of p53 transcription-factor binding sites in the human genome. Cell, 124, 207–219.

    CAS  Google Scholar 

  45. Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., et al. (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129, 823–837.

    CAS  Google Scholar 

  46. Kuo, M. H., & Allis, C. D. (1999). In vivo cross-linking and immunoprecipitation for studying dynamic protein: DNA associations in a chromatin environment. Methods, 19, 425–433.

    CAS  Google Scholar 

  47. Solomon, M. J., Larsen, P. L., & Varshavsky, A. (1988). Mapping protein-DNA interactions in vivo with formaldehyde: Evidence that histone H4 is retained on a highly transcribed gene. Cell, 53, 937–947.

    CAS  Google Scholar 

  48. Dedon, P. C., Soults, J. A., Allis, C. D., & Gorovsky, M. A. (1991). Formaldehyde cross-linking and immunoprecipitation demonstrate developmental changes in H1 association with transcriptionally active genes. Molecular and Cellular Biology, 11, 1729–1733.

    CAS  Google Scholar 

  49. Madisen, L., Krumm, A., Hebbes, T. R., & Groudine, M. (1998). The immunoglobulin heavy chain locus control region increases histone acetylation along linked c-myc genes. Molecular and Cellular Biology, 18, 6281–6292.

    CAS  Google Scholar 

  50. Hebbes, T. R., Clayton, A. L., Thorne, A. W., & Crane-Robinson, C. (1994). Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken β-globin chromosomal domain. EMBO Journal, 13, 1823–1830.

    CAS  Google Scholar 

  51. Hebbes, T. R., Thorne, A. W., Clayton, A. L., & Crane-Robinson, C. (1992). Histone acetylation and globin gene switching. Nucleic Acids Research, 20, 1017–1022.

    CAS  Google Scholar 

  52. Hebbes, T. R., Thorne, A. W., & Crane-Robinson, C. (1988). A direct link between core histone acetylation and transcriptionally active chromatin. EMBO Journal, 7, 1395–1402.

    CAS  Google Scholar 

  53. Spencer, V. A., Sun, J. M., Li, L., & Davie, J. R. (2003). Chromatin immunoprecipitation: A tool for studying histone acetylation and transcription factor binding. Methods, 31, 67–75.

    CAS  Google Scholar 

  54. Acevedo, L. G., Iniguez, A. L., Holster, H. L., Zhang, X., Green, R., & Farnham, P. J. (2007). Genome-scale ChIP-chip analysis using 10,000 human cells. Biotechniques, 43, 791–797.

    CAS  Google Scholar 

  55. Attema, J. L., Papathanasiou, P., Forsberg, E. C., Xu, J., Smale, S. T., & Weissman, I. L. (2007). Epigenetic characterization of hematopoietic stem cell differentiation using miniChIP and bisulfite sequencing analysis. Proceedings of the National Academy of Sciences of the United States of America, 104, 12371–12376.

    CAS  Google Scholar 

  56. Dahl, J. A., & Collas, P. (2007). Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells, 25, 1037–1046.

    CAS  Google Scholar 

  57. Dahl, J. A., & Collas, P. (2008). MicroChIP—a rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies. Nucleic Acids Research, 36, e15.

    Google Scholar 

  58. Dahl, J. A., & Collas, P. (2008). A rapid micro chromatin immunoprecipitation assay (μChIP). Nature Protocols, 3, 1032–1045.

    CAS  Google Scholar 

  59. Dahl, J. A., Reiner, A. H., & Collas, P. (2009). Fast genomic ChIP-chip from 1,000 cells. Genome Biology, 10, R13.

    Google Scholar 

  60. Goren, A., Ozsolak, F., Shoresh, N., Ku, M., Adli, M., Hart, C., Gymrek, M., Zuk, O., Regev, A., Milos, P. M., & Bernstein, B. E. (2010). Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nature Methods, 7, 47–49.

    CAS  Google Scholar 

  61. Nelson, J. D., Denisenko, O., & Bomsztyk, K. (2006). Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nature Protocols, 1, 179–185.

    CAS  Google Scholar 

  62. Nelson, J. D., Denisenko, O., Sova, P., & Bomsztyk, K. (2006). Fast chromatin immunoprecipitation assay. Nucleic Acids Research, 34, e2.

    Google Scholar 

  63. Kohzaki, H., & Murakami, Y. (2007). Faster and easier chromatin immunoprecipitation assay with high sensitivity. Proteomics, 7, 10–14.

    CAS  Google Scholar 

  64. Flanagin, S., Nelson, J. D., Castner, D. G., Denisenko, O., & Bomsztyk, K. (2008). Microplate-based chromatin immunoprecipitation method, Matrix ChIP: A platform to study signaling of complex genomic events. Nucleic Acids Research, 36, e17.

    Google Scholar 

  65. Peluso, P., Wilson, D. S., Do, D., Tran, H., Venkatasubbaiah, M., Quincy, D., et al. (2003). Optimizing antibody immobilization strategies for the construction of protein microarrays. Analytical Biochemistry, 312, 113–124.

    CAS  Google Scholar 

  66. Brand, M., Rampalli, S., Chaturvedi, C. P., & Dilworth, F. J. (2008). Analysis of epigenetic modifications of chromatin at specific gene loci by native chromatin immunoprecipitation of nucleosomes isolated using hydroxyapatite chromatography. Nature Protocols, 3, 398–409.

    CAS  Google Scholar 

  67. Das, P. M., Ramachandran, K., vanWert, J., & Singal, R. (2004). Chromatin immunoprecipitation assay. Biotechniques, 37, 961–969.

    CAS  Google Scholar 

  68. Szekvolgyi, L., Balint, B. L., Imre, L., Goda, K., Szabo, M., Nagy, L., et al. (2006). Chip-on-beads: Flow-cytometric evaluation of chromatin immunoprecipitation. Cytometry, 69, 1086–1091.

    Google Scholar 

  69. Roh, T. Y., Cuddapah, S., Cui, K., & Zhao, K. (2006). The genomic landscape of histone modifications in human T cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 15782–15787.

    CAS  Google Scholar 

  70. Chaya, D., Hayamizu, T., Bustin, M., & Zaret, K. S. (2001). Transcription factor FoxA (HNF3) on a nucleosome at an enhancer complex in liver chromatin. Journal of Biological Chemistry, 276, 44385–44389.

    CAS  Google Scholar 

  71. Metivier, R., Penot, G., Hubner, M. R., Reid, G., Brand, H., Kos, M., et al. (2003). Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell, 115, 751–763.

    CAS  Google Scholar 

  72. Wilkinson, D. S., Tsai, W. W., Schumacher, M. A., & Barton, M. C. (2008). Chromatin-bound p53 anchors activated Smads and the mSin3A corepressor to confer transforming-growth-factor-beta-mediated transcription repression. Molecular and Cellular Biology, 28, 1988–1998.

    CAS  Google Scholar 

  73. Jalvy, S., Renault, M. A., Lam Shang, L. L., Belloc, I., Reynaud, A., Gadeau, A. P., et al. (2007). CREB mediates UTP-directed arterial smooth muscle cell migration and expression of the chemotactic protein osteopontin via its interaction with activator protein-1 sites. Circulation Research, 100, 1292–1299.

    CAS  Google Scholar 

  74. Brunelli, L., Cieslik, K. A., Alcorn, J. L., Vatta, M., & Baldini, A. (2007). Peroxisome proliferator-activated receptor-delta upregulates 14-3-3 epsilon in human endothelial cells via CCAAT/enhancer binding protein-beta. Circulation Research, 100, e59–e71.

    CAS  Google Scholar 

  75. Kobrossy, L., Rastegar, M., & Featherstone, M. (2006). Interplay between chromatin and trans-acting factors regulating the Hoxd4 promoter during neural differentiation. Journal of Biological Chemistry, 281, 25926–25939.

    CAS  Google Scholar 

  76. Cui, R., Nguyen, T. T., Taube, J. H., Stratton, S. A., Feuerman, M. H., & Barton, M. C. (2005). Family members p53 and p73 act together in chromatin modification and direct repression of alpha-fetoprotein transcription. Journal of Biological Chemistry, 280, 39152–39160.

    CAS  Google Scholar 

  77. Geisberg, J. V., & Struhl, K. (2004). Quantitative sequential chromatin immunoprecipitation, a method for analyzing co-occupancy of proteins at genomic regions in vivo. Nucleic Acids Research, 32, e151.

    Google Scholar 

  78. Chaya, D., & Zaret, K. S. (2004). Sequential chromatin immunoprecipitation from animal tissues. Methods in Enzymology, 376, 361–372.

    CAS  Google Scholar 

  79. Jin, C., Zang, C., Wei, G., Cui, K., Peng, W., Zhao, K., et al. (2009). H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions. Nature Genetics, 41, 941–945.

    CAS  Google Scholar 

  80. Iyer, V. R., Horak, C. E., Scafe, C. S., Botstein, D., Snyder, M., & Brown, P. O. (2001). Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature, 409, 533–538.

    CAS  Google Scholar 

  81. Ren, B., Robert, F., Wyrick, J. J., Aparicio, O., Jennings, E. G., Simon, I., et al. (2000). Genome-wide location and function of DNA binding proteins. Science, 290, 2306–2309.

    CAS  Google Scholar 

  82. Clark, D. J., & Shen, C. H. (2006). Mapping histone modifications by nucleosome immunoprecipitation. Methods in Enzymology, 410, 416–430.

    CAS  Google Scholar 

  83. Loden, M., & van, S. B. (2005). Whole-genome views of chromatin structure. Chromosome Research, 13, 289–298.

    CAS  Google Scholar 

  84. Dang, C. V., O’Donnell, K. A., Zeller, K. I., Nguyen, T., Osthus, R. C., & Li, F. (2006). The c-Myc target gene network. Seminars in Cancer Biology, 16, 253–264.

    CAS  Google Scholar 

  85. Lee, L. A., & Dang, C. V. (2006). Myc target transcriptomes. Current Topics in Microbiology and Immunology, 302, 145–167.

    CAS  Google Scholar 

  86. Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122, 947–956.

    CAS  Google Scholar 

  87. Boyer, L. A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L. A., Lee, T. I., et al. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 441, 349–353.

    CAS  Google Scholar 

  88. Lee, T. I., Jenner, R. G., Boyer, L. A., Guenther, M. G., Levine, S. S., Kumar, R. M., et al. (2006). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell, 125, 301–313.

    CAS  Google Scholar 

  89. Bulyk, M. L. (2006). DNA microarray technologies for measuring protein-DNA interactions. Current Opinion in Biotechnology, 17, 422–430.

    CAS  Google Scholar 

  90. Hudson, M. E., & Snyder, M. (2006). High-throughput methods of regulatory element discovery. Biotechniques, 41, 673, 675, 677.

    Google Scholar 

  91. Elnitski, L., Jin, V. X., Farnham, P. J., & Jones, S. J. (2006). Locating mammalian transcription factor binding sites: A survey of computational and experimental techniques. Genome Research, 16, 1455–1464.

    CAS  Google Scholar 

  92. Weinmann, A. S., Bartley, S. M., Zhang, T., Zhang, M. Q., & Farnham, P. J. (2001). Use of chromatin immunoprecipitation to clone novel E2F target promoters. Molecular and Cellular Biology, 21, 6820–6832.

    CAS  Google Scholar 

  93. Hug, B. A., Ahmed, N., Robbins, J. A., & Lazar, M. A. (2004). A chromatin immunoprecipitation screen reveals protein kinase Cbeta as a direct RUNX1 target gene. Journal of Biological Chemistry, 279, 825–830.

    CAS  Google Scholar 

  94. Barski, A., & Frenkel, B. (2004). ChIP Display: Novel method for identification of genomic targets of transcription factors. Nucleic Acids Research, 32, e104.

    Google Scholar 

  95. Ng, P., Wei, C. L., Sung, W. K., Chiu, K. P., Lipovich, L., Ang, C. C., et al. (2005). Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nature Methods, 2, 105–111.

    CAS  Google Scholar 

  96. Ng, P., Tan, J. J., Ooi, H. S., Lee, Y. L., Chiu, K. P., Fullwood, M. J., et al. (2006). Multiplex sequencing of paired-end ditags (MS-PET): A strategy for the ultra-high-throughput analysis of transcriptomes and genomes. Nucleic Acids Research, 34, e84.

    Google Scholar 

  97. Kwon, Y. S., Garcia-Bassets, I., Hutt, K. R., Cheng, C. S., Jin, M., Liu, D., et al. (2007). Sensitive ChIP-DSL technology reveals an extensive estrogen receptor alpha-binding program on human gene promoters. Proceedings of the National Academy of Sciences of the United States of America, 104, 4852–4857.

    CAS  Google Scholar 

  98. Garcia-Bassets, I., Kwon, Y. S., Telese, F., Prefontaine, G. G., Hutt, K. R., Cheng, C. S., et al. (2007). Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell, 128, 505–518.

    CAS  Google Scholar 

  99. Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., et al. (2007). Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods, 4, 651–657.

    CAS  Google Scholar 

  100. Bock, C., & Lengauer, T. (2008). Computational epigenetics. Bioinformatics, 24, 1–10.

    CAS  Google Scholar 

  101. Ji, H., Vokes, S. A., & Wong, W. H. (2006). A comparative analysis of genome-wide chromatin immunoprecipitation data for mammalian transcription factors. Nucleic Acids Research, 34, e146.

    Google Scholar 

  102. Matarazzo, M. R., Lembo, F., Angrisano, T., Ballestar, E., Ferraro, M., Pero, R., et al. (2004). In vivo analysis of DNA methylation patterns recognized by specific proteins: Coupling CHIP and bisulfite analysis. Biotechniques, 37, 666–669.

    CAS  Google Scholar 

  103. Orian, A. (2006). Chromatin profiling, DamID and the emerging landscape of gene expression. Current Opinion in Genetics and Development, 16, 157–164.

    CAS  Google Scholar 

  104. van Steensel, B., Delrow, J., & Henikoff, S. (2001). Chromatin profiling using targeted DNA adenine methyltransferase. Nature Genetics, 27, 304–308.

    Google Scholar 

  105. Orian, A., van, S. B., Delrow, J., Bussemaker, H. J., Li, L., Sawado, T., et al. (2003). Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes and Development, 17, 1101–1114.

    CAS  Google Scholar 

  106. Tompa, R., McCallum, C. M., Delrow, J., Henikoff, J. G., van, S. B., & Henikoff, S. (2002). Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE3. Current Biology, 12, 65–68.

    CAS  Google Scholar 

  107. de Wit, E., Greil, F., & van Steensel, B. (2005). Genome-wide HP1 binding in Drosophila: Developmental plasticity and genomic targeting signals. Genome Research, 15, 1265–1273.

    Google Scholar 

  108. van Steensel, B. (2005). Mapping of genetic and epigenetic regulatory networks using microarrays. Nature Genetics, 37, S18–S24.

    Google Scholar 

  109. Vogel, M. J., Guelen, L., de Wit, E., Peric-Hupkes, D., Loden, M., Talhout, W., et al. (2006). Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Research, 16, 1493–1504.

    CAS  Google Scholar 

  110. Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M. B., Talhout, W., et al. (2008). Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature, 453, 948–951.

    CAS  Google Scholar 

  111. Keshet, I., Schlesinger, Y., Farkash, S., Rand, E., Hecht, M., Segal, E., et al. (2006). Evidence for an instructive mechanism of de novo methylation in cancer cells. Nature Genetics, 38, 149–153.

    CAS  Google Scholar 

  112. Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L., et al. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics, 37, 853–862.

    CAS  Google Scholar 

  113. Wilson, I. M., Davies, J. J., Weber, M., Brown, C. J., Alvarez, C. E., Macaulay, C., et al. (2006). Epigenomics: Mapping the methylome. Cell Cycle, 5, 155–158.

    CAS  Google Scholar 

  114. Taylor, K. H., Kramer, R. S., Davis, J. W., Guo, J., Duff, D. J., Xu, D., et al. (2007). Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Research, 67, 8511–8518.

    CAS  Google Scholar 

  115. Yazaki, J., Gregory, B. D., & Ecker, J. R. (2007). Mapping the genome landscape using tiling array technology. Current Opinion in Plant Biology, 10, 534–542.

    CAS  Google Scholar 

  116. Zilberman, D., & Henikoff, S. (2007). Genome-wide analysis of DNA methylation patterns. Development, 134, 3959–3965.

    CAS  Google Scholar 

  117. Jacinto, F. V., Ballestar, E., & Esteller, M. (2008). Methyl-DNA immunoprecipitation (MeDIP): Hunting down the DNA methylome. Biotechniques, 44, 35, 37, 39.

    Google Scholar 

  118. Sørensen, A. L., & Collas, P. (2009). Immunoprecipitation of methylated DNA. Methods in Molecular Biology, 567, 249–261.

    Google Scholar 

  119. Wu, A. R., Hiatt, J. B., Lu, R., Attema, J. L., Lobo, N. A., Weissman, I. L., et al. (2009). Automated microfluidic chromatin immunoprecipitation from 2, 00 cells. Lab Chip, 9, 1365–1370.

    CAS  Google Scholar 

Download references

Acknowledgments

Our work is supported by grants from the Research Council of Norway, the Norwegian Cancer Society and the University of Oslo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Collas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collas, P. The Current State of Chromatin Immunoprecipitation. Mol Biotechnol 45, 87–100 (2010). https://doi.org/10.1007/s12033-009-9239-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9239-8

Keywords

Navigation