Skip to main content

Advertisement

Log in

The time-dependent expression of FPR2 and ANXA1 in murine deep vein thrombosis model and its relation to thrombus age

  • Original Article
  • Published:
Forensic Science, Medicine and Pathology Aims and scope Submit manuscript

Abstract

Thrombus age determination in fatal venous thromboembolism cases is an important task for forensic pathologists. In this study, we investigated the time-dependent expressions of formyl peptide receptor 2 (FPR2) and Annexin A1 (ANXA1) in a stasis-induced deep vein thrombosis (DVT) murine model, with the aim of obtaining useful information for thrombus age timing. A total of 75 ICR mice were randomly classified into thrombosis group and control group. In thrombosis group, a DVT model was established by ligating the inferior vena cava (IVC) of mice, and thrombosed IVCs were harvested at 1, 3, 5, 7, 10, 14, and 21 days after modeling. In control group, IVCs without thrombosis were taken as control samples. The expressions of FPR2 and ANXA1 during thrombosis were detected using immunohistochemistry and double immunofluorescence staining. Their protein and mRNA levels in the samples were determined by Western blotting and quantitative real-time PCR. The results reveal that FPR2 was predominantly expressed by intrathrombotic neutrophils and macrophages. ANXA1 expression in the thrombi was mainly distributed in neutrophils, endothelial cells of neovessels, and fibroblastic cells. After thrombosis, the expressions of FPR2 and ANXA1 were time-dependently up-regulated. The percentage of FPR2-positive cells and the level of FPR2 protein significantly elevated at 1, 3, 5 and 7 days after IVC ligation as compared to those at 10, 14 and 21 days after ligation (p < 0.05). Moreover, the mRNA level of FPR2 were significantly higher at 5 days than that at the other post-ligation intervals (p < 0.05). Besides, the levels of ANXA1 mRNA and protein peaked at 10 and 14 days after ligation, respectively. A significant increase in the mRNA level of ANXA1 was found at 10 and 14 days as compared with that at the other post-ligation intervals (p < 0.01). Our findings suggest that FPR2 and ANXA1 are promising as useful markers for age estimation of venous thrombi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Khan F, Tritschler T, Kahn SR, Rodger MA. Venous thromboembolism. Lancet. 2021;398:64–77. https://doi.org/10.1016/S0140-6736(20)32658-1.

    Article  CAS  PubMed  Google Scholar 

  2. Heit JA, Spencer FA, White RH. The epidemiology of venous thromboembolism. J Thromb Thrombolysis. 2016;41:3–14. https://doi.org/10.1007/s11239-015-1311-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ruskin KJ. Deep vein thrombosis and venous thromboembolism in trauma. Curr Opin Anaesthesiol. 2018;31:215–8. https://doi.org/10.1097/ACO.0000000000000567.

    Article  PubMed  Google Scholar 

  4. Fanola CL, Norby FL, Shah AM, Chang PP, Lutsey PL, Rosamond WD, Cushman M, Folsom AR. Incident heart failure and long-term risk for venous thromboembolism. J Am Coll Cardiol. 2020;75:148–58. https://doi.org/10.1016/j.jacc.2019.10.058.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Byard RW. Deep venous thrombosis, pulmonary embolism and long-distance flights. Forensic Sci Med Pathol. 2019;15:122–4. https://doi.org/10.1007/s12024-018-9991-9.

    Article  CAS  PubMed  Google Scholar 

  6. Cecchi R, Lazzaro A, Catanese M, Mandarelli G, Ferracuti S. Fatal thromboembolism following physical restraint in a patient with schizophrenia. Int J Legal Med. 2012;126:477–82. https://doi.org/10.1007/s00414-012-0670-1.

    Article  PubMed  Google Scholar 

  7. Irniger W. Histologische altersbestimmung von thrombosen und embolien. Virchows Arch Pathol Anat. 1963;336:220.

    Article  Google Scholar 

  8. Fineschi V, Turillazzi E, Neri M, Pomara C, Riezzo I. Histological age determination of venous thrombosis: a neglected forensic task in fatal pulmonary thrombo-embolism. Forensic Sci Int. 2009;186:22–8. https://doi.org/10.1016/j.forsciint.2009.01.006.

    Article  PubMed  Google Scholar 

  9. Maffeis V, Nicolè L, Rago C, Fassina A. Histological criteria for age determination of fatal venous thromboembolism. Int J Legal Med. 2018;132:775–80. https://doi.org/10.1007/s00414-017-1705-4.

    Article  PubMed  Google Scholar 

  10. Bonasoni MP, Muciaccia B, Pelligra CB, Goldoni M, Cecchi R. Third trimester intrauterine fetal death: proposal for the assessment of the chronology of umbilical cord and placental thrombosis. Int J Legal Med. 2022;136:705–11. https://doi.org/10.1007/s00414-022-02784-3.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nosaka M, Ishida Y, Kimura A, Kondo T. Time-dependent appearance of intrathrombus neutrophils and macrophages in a stasis-induced deep vein thrombosis model and its application to thrombus age determination. Int J Legal Med. 2009;123:235–40. https://doi.org/10.1007/s00414-009-0324-0.

    Article  PubMed  Google Scholar 

  12. Nosaka M, Ishida Y, Kimura A, Kondo T. Time-dependent organic changes of intravenous thrombi in stasis-induced deep vein thrombosis model and its application to thrombus age determination. Forensic Sci Int. 2010;195:143–7. https://doi.org/10.1016/j.forsciint.2009.12.008.

    Article  CAS  PubMed  Google Scholar 

  13. Nicklas JM, Gordon AE, Henke PK. Resolution of deep venous thrombosis: proposed immune paradigms. Int J Mol Sci. 2020;21:2080. https://doi.org/10.3390/ijms21062080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kondo T, Ishida Y. Molecular pathology of wound healing. Forensic Sci Int. 2010;203:93–8. https://doi.org/10.1016/j.forsciint.2010.07.004.

    Article  CAS  PubMed  Google Scholar 

  15. Nosaka M, Ishida Y, Kimura A, Kondo T. Immunohistochemical detection of MMP-2 and MMP-9 in a stasis-induced deep vein thrombosis model and its application to thrombus age estimation. Int J Legal Med. 2010;124:439–44. https://doi.org/10.1007/s00414-010-0484-y.

    Article  PubMed  Google Scholar 

  16. Nosaka M, Ishida Y, Kimura A, Hama M, Kawaguchi T, Yamamoto H, Kuninaka Y, Shimada E, Kondo T. Immunohistochemical detection of intrathrombotic IL-6 and its application to thrombus age estimation. Int J Legal Med. 2015;129:1021–5. https://doi.org/10.1007/s00414-015-1147-9.

    Article  PubMed  Google Scholar 

  17. Prevete N, Liotti F, Marone G, Melillo RM, de Paulis A. Formyl peptide receptors at the interface of inflammation, angiogenesis and tumor growth. Pharmacol Res. 2015;102:184–91. https://doi.org/10.1016/j.phrs.2015.09.017.

    Article  CAS  PubMed  Google Scholar 

  18. Lee HY, Lee M, Bae YS. Formyl peptide receptors in cellular differentiation and inflammatory diseases. J Cell Biochem. 2017;118:1300–7. https://doi.org/10.1002/jcb.25877.

    Article  CAS  PubMed  Google Scholar 

  19. Weiß E, Kretschmer D. Formyl-peptide receptors in infection, inflammation, and cancer. Trends Immunol. 2018;39:815–29. https://doi.org/10.1016/j.it.2018.08.005.

    Article  CAS  PubMed  Google Scholar 

  20. Qin CX, Norling LV, Vecchio EA, Brennan EP, May LT, Wootten D, Godson C, Perretti M, Ritchie RH. Formylpeptide receptor 2: nomenclature, structure, signalling and translational perspectives: IUPHAR review 35. Br J Pharmacol. 2022;179:4617–39. https://doi.org/10.1111/bph.15919.

    Article  CAS  PubMed  Google Scholar 

  21. Lämmermann T, Afonso PV, Angermann BR, Wang JM, Kastenmüller W, Parent CA, Germain RN. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature. 2013;498:371–5. https://doi.org/10.1038/nature12175.

    Article  CAS  PubMed  Google Scholar 

  22. Liu M, Chen K, Yoshimura T, Liu Y, Gong W, Le Y, Gao JL, Zhao J, Wang JM, Wang A. Formylpeptide receptors mediate rapid neutrophil mobilization to accelerate wound healing. PLoS One. 2014;9: e90613. https://doi.org/10.1371/journal.pone.0090613.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kwon YW, Heo SC, Jang IH, Jeong GO, Yoon JW, Mun JH, Kim JH. Stimulation of cutaneous wound healing by an FPR2-specific peptide agonist WKYMVm. Wound Repair Regen. 2015;23:575–82. https://doi.org/10.1111/wrr.12315.

    Article  PubMed  Google Scholar 

  24. de Arriba MDC, Fernández G, Chacón-Solano E, Mataix M, Martínez-Santamaría L, Illera N, Carrión-Marchante R, Martín ME, Larcher F, González VM, Del Río M, Carretero M. FPR2 DNA aptamers for targeted therapy of wound repair. J Invest Dermatol. 2022;142:2238-48.e8. https://doi.org/10.1016/j.jid.2021.12.026.

    Article  CAS  PubMed  Google Scholar 

  25. Cattaneo F, Parisi M, Ammendola R. Distinct signaling cascades elicited by different formyl peptide receptor 2 (FPR2) agonists. Int J Mol Sci. 2013;14:7193–230. https://doi.org/10.3390/ijms14047193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang JJ, Xia CJ, Wei Y, Yao Y, Dong MW, Lin KZ, Yu LS, Gao Y, Fan YY. Annexin A1-derived peptide Ac2-26 facilitates wound healing in diabetic mice. Wound Repair Regen. 2020;28:772–9. https://doi.org/10.1111/wrr.12860.

    Article  PubMed  Google Scholar 

  27. Senchenkova EY, Ansari J, Becker F, Vital SA, Al-Yafeai Z, Sparkenbaugh EM, Pawlinski R, Stokes KY, Carroll JL, Dragoi AM, Qin CX, Ritchie RH, Sun H, Cuellar-Saenz HH, Rubinstein MR, Han YW, Orr AW, Perretti M, Granger DN, Gavins FNE. Novel Role for the AnxA1-Fpr2/ALX Signaling Axis as a Key Regulator of Platelet Function to Promote Resolution of Inflammation. Circulation. 2019;140:319–35. https://doi.org/10.1161/CIRCULATIONAHA.118.039345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vital SA, Senchenkova EY, Ansari J, Gavins FNE. Targeting AnxA1/Formyl Peptide Receptor 2 Pathway Affords Protection against Pathological Thrombo-Inflammation. Cells. 2020;9:2473. https://doi.org/10.3390/cells9112473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ansari J, Senchenkova EY, Vital SA, Al-Yafeai Z, Kaur G, Sparkenbaugh EM, Orr AW, Pawlinski R, Hebbel RP, Granger DN, Kubes P, Gavins FNE. Targeting the AnxA1/Fpr2/ALX pathway regulates neutrophil function, promoting thromboinflammation resolution in sickle cell disease. Blood. 2021;137:1538–49. https://doi.org/10.1182/blood.2020009166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jablonski KA, Amici SA, Webb LM, Ruiz-Rosado Jde D, Popovich PG, Partida-Sanchez S, Guerau-de-Arellano M. Novel Markers to Delineate Murine M1 and M2 Macrophages. PLoS ONE. 2015;10: e0145342. https://doi.org/10.1371/journal.pone.0145342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Najem MY, Couturaud F, Lemarié CA. Cytokine and chemokine regulation of venous thromboembolism. J Thromb Haemost. 2020;18:1009–19. https://doi.org/10.1111/jth.14759.

    Article  CAS  PubMed  Google Scholar 

  32. Mukhopadhyay S, Johnson TA, Duru N, Buzza MS, Pawar NR, Sarkar R, Antalis TM. Fibrinolysis and Inflammation in Venous Thrombus Resolution. Front Immunol. 2019;10:1348. https://doi.org/10.3389/fimmu.2019.01348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Humphries J, McGuinness CL, Smith A, Waltham M, Poston R, Burnand KG. Monocyte chemotactic protein-1 (MCP-1) accelerates the organization and resolution of venous thrombi. J Vasc Surg. 1999;30:894–9. https://doi.org/10.1016/s0741-5214(99)70014-5.

    Article  CAS  PubMed  Google Scholar 

  34. Gobbetti T, Cooray SN. Annexin A1 and resolution of inflammation: tissue repairing properties and signalling signature. Biol Chem. 2016;397:981–93. https://doi.org/10.1515/hsz-2016-0200.

    Article  CAS  PubMed  Google Scholar 

  35. Leoni G, Nusrat A. Annexin A1: shifting the balance towards resolution and repair. Biol Chem. 2016;397:971–9. https://doi.org/10.1515/hsz-2016-0180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McArthur S, Gobbetti T, Kusters DH, Reutelingsperger CP, Flower RJ, Perretti M. Definition of a Novel Pathway Centered on Lysophosphatidic Acid To Recruit Monocytes during the Resolution Phase of Tissue Inflammation. J Immunol. 2015;195:1139–51. https://doi.org/10.4049/jimmunol.1500733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maderna P, Cottell DC, Toivonen T, Dufton N, Dalli J, Perretti M, Godson C. FPR2/ALX receptor expression and internalization are critical for lipoxin A4 and annexin-derived peptide-stimulated phagocytosis. FASEB J. 2010;24:4240–9. https://doi.org/10.1096/fj.10-159913.

    Article  CAS  PubMed  Google Scholar 

  38. Sugimoto MA, Vago JP, Teixeira MM, Sousa LP. Annexin A1 and the Resolution of Inflammation: Modulation of Neutrophil Recruitment, Apoptosis, and Clearance. J Immunol Res. 2016;2016:8239258. https://doi.org/10.1155/2016/8239258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Scannell M, Flanagan MB, deStefani A, Wynne KJ, Cagney G, Godson C, Maderna P. Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophils by macrophages. J Immunol. 2007;178:4595–605. https://doi.org/10.4049/jimmunol.178.7.4595.

    Article  CAS  PubMed  Google Scholar 

  40. Yi M, Schnitzer JE. Impaired tumor growth, metastasis, angiogenesis and wound healing in annexin A1-null mice. Proc Natl Acad Sci U S A. 2009;106:17886–91. https://doi.org/10.1073/pnas.0901324106.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lacerda JZ, Drewes CC, Mimura KKO, Zanon CF, Ansari T, Gil CD, Greco KV, Farsky SHP, Oliani SM. Annexin A12–26 Treatment Improves Skin Heterologous Transplantation by Modulating Inflammation and Angiogenesis Processes. Front Pharmacol. 2018;9:1015. https://doi.org/10.3389/fphar.2018.01015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bizzarro V, Fontanella B, Carratù A, Belvedere R, Marfella R, Parente L, Petrella A. Annexin A1 N-terminal derived peptide Ac2-26 stimulates fibroblast migration in high glucose conditions. PLoS ONE. 2012;7: e45639. https://doi.org/10.1371/journal.pone.0045639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cecchi R. Estimating wound age: looking into the future. Int J Legal Med. 2010;124:523–36. https://doi.org/10.1007/s00414-010-0505-x.

    Article  PubMed  Google Scholar 

  44. Fan YY, Zhang ST, Yu LS, Ye GH, Lin KZ, Wu SZ, Dong MW, Han JG, Feng XP, Li XB. The time-dependent expression of α7nAChR during skeletal muscle wound healing in rats. Int J Legal Med. 2014;128:779–86. https://doi.org/10.1007/s00414-014-1001-5.

    Article  PubMed  Google Scholar 

  45. Tian ZL, Jiang SK, Zhang M, Wang M, Li JY, Zhao R, Wang LL, Li SS, Liu M, Zhang MZ, Guan DW. Detection of satellite cells during skeletal muscle wound healing in rats: time-dependent expressions of Pax7 and MyoD in relation to wound age. Int J Legal Med. 2016;130:163–72. https://doi.org/10.1007/s00414-015-1251-x.

    Article  PubMed  Google Scholar 

  46. Ji XY, Chen Y, Ye GH, Dong MW, Lin KZ, Han JG, Feng XP, Li XB, Yu LS, Fan YY. Detection of RAGE expression and its application to diabetic wound age estimation. Int J Legal Med. 2017;131:691–8. https://doi.org/10.1007/s00414-016-1529-7.

    Article  PubMed  Google Scholar 

  47. Murase T, Yamamoto T, Koide A, Yagi Y, Kagawa S, Tsuruya S, Abe Y, Umehara T, Ikematsu K. Temporal expression of chitinase-like 3 in wounded murine skin. Int J Legal Med. 2017;131:1623–31. https://doi.org/10.1007/s00414-017-1658-7.

    Article  PubMed  Google Scholar 

  48. Barington K, Jensen HE, Skovgaard K. Forensic aspects of gene expression signatures for age determination in bruises as evaluated in an experimental porcine model. Forensic Sci Med Pathol. 2017;13:151–60. https://doi.org/10.1007/s12024-017-9869-2.

    Article  CAS  PubMed  Google Scholar 

  49. Abd-Elhakim YM, Omran BHF, Ezzeldein SA, Ahmed AI, El-Sharkawy NI, Mohamed AA. Time-dependent expression of high-mobility group box-1 and toll-like receptors proteins as potential determinants of skin wound age in rats: Forensic implication. Int J Legal Med. 2022;136:1781–9. https://doi.org/10.1007/s00414-022-02788-z.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kimura A, Ishida Y, NosakaM SM, Hama M, Kawaguchi T, Kuninaka Y, Shimada E, Yamamoto H, Takayasu T, Kondo T. Autophagy in skin wounds: a novel marker for vital reactions. Int J Legal Med. 2015;129:537–41. https://doi.org/10.1007/s00414-015-1168-4.

    Article  PubMed  Google Scholar 

  51. Pennisi G, Torrisi M, Cocimano G, Esposito M, Salerno M, Sessa F. Vitality markers in forensic investigations: a literature review. Forensic Sci Med Pathol. 2023;19:103–16. https://doi.org/10.1007/s12024-022-00551-9.

    Article  CAS  PubMed  Google Scholar 

  52. Xie DG, Wang XM, Li JH, Tan ZY, Zhang ZQ, Li ST. Short-term postmortem interval estimation by detection of apoptosis-related protein in skin. Forensic Sci Med Pathol. 2024. https://doi.org/10.1007/s12024-023-00757-5.

    Article  PubMed  Google Scholar 

  53. Nosaka M, Ishida Y, Kuninaka Y, Kimura A, Kondo T. Immunohistochemical detection of uPA, tPA, and PAI-1 in a stasis-induced deep vein thrombosis model and its application to thrombus age estimation. Int J Legal Med. 2012;126:421–5. https://doi.org/10.1007/s00414-012-0680-z.

    Article  PubMed  Google Scholar 

  54. Nosaka M, Ishida Y, Kuninaka Y, Taruya A, Kimura A, Shimada E, Yamamoto H, Michiue T, Furukawa F, Kondo T. The application of autophagy to thrombus age estimation in murine deep vein thrombosis model. Int J Legal Med. 2020;134:1061–6. https://doi.org/10.1007/s00414-019-02168-0.

    Article  PubMed  Google Scholar 

  55. Di Nisio M, van Es N, Büller HR. Deep vein thrombosis and pulmonary embolism. Lancet. 2016;388:3060–73. https://doi.org/10.1016/S0140-6736(16)30514-1.

    Article  PubMed  Google Scholar 

  56. Engbers MJ, van Hylckama VA, Rosendaal FR. Venous thrombosis in the elderly: incidence, risk factors and risk groups. J Thromb Haemos. 2010;8:2105–12. https://doi.org/10.1111/j.1538-7836.2010.03986.x.

    Article  CAS  Google Scholar 

  57. Wang H, Rosendaal FR, Cushman M, van Hylckama VA. Procoagulant factor levels and risk of venous thrombosis in the elderly. J Thromb Haemost. 2021;19:186–93. https://doi.org/10.1111/jth.15127.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Natural Science Foundation of Zhejiang Province in China (LY20H150006) and National Natural Science Foundation of China (81301640).

Author information

Authors and Affiliations

Authors

Contributions

Yan-Yan Fan and Peng-Fei Jiang designed the research and wrote the manuscript. Jun-Jie Huang and Jia-ying Zhuo conducted the animal experiments, sample collection, Western blot and Real time PCR. Measurement of thrombus size was conducted by Qian Wang, Yue Sun, and Jia-Xin Qi. Immunohistochemistry, morphometrical analysis, and double immunofluorescence staining were performed by Juan-Juan Wu, Qian Wang, Yue Sun, Jia-Xin Qi, and Yu Zhang. Experimental data were analyzed by Gang Chen. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Peng-Fei Jiang or Yan-Yan Fan.

Ethics declarations

Ethics approval

All animal work in this study was approved by the Laboratory Animal Ethics Committee of Wenzhou Medical University.

Informed consent

No informed consent was required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 144 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, JJ., Zhuo, Jy., Wang, Q. et al. The time-dependent expression of FPR2 and ANXA1 in murine deep vein thrombosis model and its relation to thrombus age. Forensic Sci Med Pathol (2024). https://doi.org/10.1007/s12024-024-00818-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12024-024-00818-3

Keywords

Navigation