Skip to main content

Advertisement

Log in

Cardioprotective Effects of Hesperetin against Doxorubicin-Induced Oxidative Stress and DNA Damage in Rat

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Doxorubicin is a widely used chemotherapeutic agent; however, its clinical uses are limited due to its cardiotoxicity associated with an induction of oxidative stress. This study was aimed to investigate the protective effect of hesperetin against doxorubicin-induced cardiotoxicity in rats. Doxorubicin was administered at the dosage of 4 mg/kg bw/week, ip for a period of 5 consecutive weeks. Hesperetin was administered at the dosages of 25, 50 and 100 mg/kg bw, po by gavage for 5 consecutive days in a week for 5 weeks. The animals were killed 1 week after the last injection of doxorubicin. Hesperetin at the doses of 50 and 100 mg/kg bw significantly reduced MDA and increased GSH levels in the doxorubicin-treated animals. Further, hesperetin significantly reduced doxorubicin-induced DNA damage as well as apoptosis at 25, 50, and 100 mg/kg bw as evident from the comet and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assays, respectively. Thus, hesperetin ameliorated doxorubicin-induced cardiotoxicity by reducing oxidative stress, abnormal cellular morphology and DNA damage in rat. Moreover, nuclear factor-kappa B, p38, and caspase-3 play a role in the hesperetin-mediated protection against doxorubicin-induced cardiotoxicity. This study indicates the protective effect of hesperetin against doxorubicin-induced cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DOX:

Doxorubicin

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling

NFκB:

Nuclear factor-kappa B

SD:

Sprague–Dawley

CMC:

Carboxy methyl cellulose

H&E:

Hematoxylin and eosin

EtBr:

Ethidium bromide

DMSO:

Dimethylsulfoxide

NMPA:

Normal melting point agarose

LMPA:

Low melting point agarose

EDTA:

Ethylenediamine tetraacetic acid

HBSS:

Hank’s balanced salt solution

ip:

Intraperitoneal

TL:

Tail length

TM:

Tail moment

OTM:

Olive tail moment

% DNA:

% DNA in comet tail

MDA:

Malondialdehyde

GSH:

Reduced glutathione

References

  1. Kim, J. C., Kim, K. H., & Chung, M. K. (1999). Testicular cytotoxicity of DA-125, a new anthracycline anticancer agent, in rats. Reproductive Toxicology, 13, 391–397.

    Article  PubMed  CAS  Google Scholar 

  2. Alkreathy, H., Damanhouri, Z. A., Ahmed, N., Slevin, M., Ali, S. S., & Osman, A. M. (2010). Aged garlic extract protects against doxorubicin-induced cardiotoxicity in rats. Food and Chemical Toxicology, 48, 951–956.

    Article  PubMed  CAS  Google Scholar 

  3. Ludke, A. R., Al-Shudiefat, A. A., Dhingra, S., Jassal, D. S., & Singal, P. K. (2009). A concise description of cardioprotective strategies in doxorubicin-induced cardiotoxicity. Canadian Journal of Physiology and Pharmacology, 87, 756–763.

    Article  PubMed  Google Scholar 

  4. Fan, G. C., Zhou, X., Wang, X., Song, G., Qian, J., Nicolaou, P., et al. (2008). Heat shock protein 20 interacting with phosphorylated Akt reduces doxorubicin-triggered oxidative stress and cardiotoxicity. Circulation Research, 103, 1270–1279.

    Article  PubMed  CAS  Google Scholar 

  5. Simoncikova, P., Ravingerova, T., & Barancik, M. (2008). The effect of chronic doxorubicin treatment on mitogen-activated protein kinases and heat stress proteins in rat hearts. Physiological Research, 57(Suppl 2), S97–S102.

    PubMed  CAS  Google Scholar 

  6. Liu, Z., Song, X. D., Xin, Y., Wang, X. J., Yu, H., Bai, Y. Y., et al. (2009). Protective effect of chrysoeriol against doxorubicin-induced cardiotoxicity in vitro. Chinese Medical Journal, 122, 2652–2656.

    PubMed  CAS  Google Scholar 

  7. Chandran, K., Aggarwal, D., Migrino, R. Q., Joseph, J., McAllister, D., Konorev, E. A., et al. (2009). Doxorubicin inactivates myocardial cytochrome c oxidase in rats: Cardioprotection by Mito-Q. Biophysical Journal, 96, 1388–1398.

    Article  PubMed  CAS  Google Scholar 

  8. Li, L., Pan, Q., Han, W., Liu, Z., Li, L., & Hu, X. (2007). Schisandrin B prevents doxorubicin-induced cardiotoxicity via enhancing glutathione redox cycling. Clinical Cancer Research, 13, 6753–6760.

    Article  PubMed  CAS  Google Scholar 

  9. Van Dalen, E. C., van der Pal, H. J., Caron, H. N., & Kremer, L. C. (2009). Different dosage schedules for reducing cardiotoxicity in cancer patients receiving anthracycline chemotherapy. Cochrane Database of Systematic Reviews, 4, CD005008.

    Google Scholar 

  10. Aiken, M. J., Suhag, V., Garcia, C. A., Acio, E., Moreau, S., Priebat, D. A., et al. (2009). Doxorubicin-induced cardiac toxicity and cardiac rest gated blood pool imaging. Clinical Nuclear Medicine, 34, 762–767.

    Article  PubMed  Google Scholar 

  11. Gil-Izquierdo, A., Gil, M. I., Ferreres, F., & Tomas-Barberan, F. A. (2001). In vitro availability of flavonoids and other phenolics in orange juice. Journal of Agricultural and Food Chemistry, 49, 1035–1041.

    Article  PubMed  CAS  Google Scholar 

  12. Ameer, B., Weintraub, R. A., Johnson, J. V., Yost, R. A., & Rouseff, R. L. (1996). Flavanone absorption after naringin, hesperidin, and citrus administration. Clinical Pharmacology and Therapeutics, 60, 34–40.

    Article  PubMed  CAS  Google Scholar 

  13. Lee, N. K., Choi, S. H., Park, S. H., Park, E. K., & Kim, D. H. (2004). Antiallergic activity of hesperidin is activated by intestinal microflora. Pharmacology, 71, 174–180.

    Article  PubMed  CAS  Google Scholar 

  14. Manach, C., Morand, C., Gil-Izquierdo, A., Bouteloup-Demange, C., & Remesy, C. (2003). Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two doses of orange juice. European Journal of Clinical Nutrition, 57, 235–242.

    Article  PubMed  CAS  Google Scholar 

  15. Galati, E. M., Trovato, A., Kirjavainen, S., Forestieri, A. M., Rossitto, A., & Monforte, M. T. (1996). Biological effects of hesperidin, a Citrus flavonoid. (Note III): Antihypertensive and diuretic activity in rat. Farmaco, 51, 219–221.

    PubMed  CAS  Google Scholar 

  16. Garg, A., Garg, S., Zaneveld, L. J., & Singla, A. K. (2001). Chemistry and pharmacology of the Citrus bioflavonoid hesperidin. Phytotherapy Research, 15, 655–669.

    Article  PubMed  CAS  Google Scholar 

  17. Aranganathan, S., Selvam, J. P., & Nalini, N. (2008). Effect of hesperetin, a citrus flavonoid, on bacterial enzymes and carcinogen-induced aberrant crypt foci in colon cancer rats: A dose-dependent study. Journal of Pharmacy and Pharmacology, 60, 1385–1392.

    Article  PubMed  CAS  Google Scholar 

  18. Choi, E. J., & Ahn, W. S. (2008). Neuroprotective effects of chronic hesperetin administration in mice. Archives of Pharmacal Research, 31, 1457–1462.

    Article  PubMed  CAS  Google Scholar 

  19. Dimpfel, W. (2006). Different anticonvulsive effects of hesperidin and its aglycone hesperetin on electrical activity in the rat hippocampus in vitro. Journal of Pharmacy and Pharmacology, 58, 375–379.

    Article  PubMed  CAS  Google Scholar 

  20. Guthrie, N., & Carroll, K. K. (1998). Inhibition of mammary cancer by citrus flavonoids. Advances in Experimental Medicine and Biology, 439, 227–236.

    Article  PubMed  CAS  Google Scholar 

  21. Miyake, Y., Yamamoto, K., Tsujihara, N., & Osawa, T. (1998). Protective effects of lemon flavonoids on oxidative stress in diabetic Rats. Lipids, 33, 689–695.

    Article  PubMed  CAS  Google Scholar 

  22. Saija, A., Scalese, M., Lanza, M., Marzullo, D., Bonina, F., & Castelli, F. (1995). Flavonoids as antioxidant agents: Importance of their interaction with biomembranes. Free Radical Biology and Medicine, 19, 481–486.

    Article  PubMed  CAS  Google Scholar 

  23. Nagi, M. N., & Mansour, M. A. (2000). Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: A possible mechanism of protection. Pharmacological Research, 41, 283–289.

    Article  PubMed  CAS  Google Scholar 

  24. Aranganathan, S., Selvam, J. P., & Nalini, N. (2009). Hesperetin exerts dose dependent chemopreventive effect against 1, 2-dimethyl hydrazine induced rat colon carcinogenesis. Investigational New Drugs, 27, 203–213.

    Article  PubMed  CAS  Google Scholar 

  25. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.

    Article  PubMed  CAS  Google Scholar 

  26. Moron, M. S., Depierre, J. W., & Mannervik, B. (1979). Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta, 582, 67–78.

    PubMed  CAS  Google Scholar 

  27. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    PubMed  CAS  Google Scholar 

  28. Vikram, A., Tripathi, D. N., Ramarao, P., & Jena, G. B. (2008). Intervention of d-glucose ameliorates the toxicity of streptozotocin in accessory sex organs of rat. Toxicology and Applied Pharmacology, 226, 84–93.

    Article  PubMed  CAS  Google Scholar 

  29. Kasamatsu, T., Kohda, K., & Kawazoe, Y. (1996). Comparison of chemically induced DNA breakage in cellular and subcellular systems using the comet assay. Mutation Research, 369, 1–6.

    Article  PubMed  CAS  Google Scholar 

  30. Speit, G., & Hartmann, A. (1999). The comet assay (single-cell gel test). A sensitive genotoxicity test for the detection of DNA damage and repair. Methods in Molecular Biology, 113, 203–212.

    PubMed  CAS  Google Scholar 

  31. Singh, N. P. (2000). A simple method for accurate estimation of apoptotic cells. Experimental Cell Research, 256, 328–337.

    Article  PubMed  CAS  Google Scholar 

  32. Lebrecht, D., Geist, A., Ketelsen, U. P., Haberstroh, J., Setzer, B., & Walker, U. A. (2007). Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic and functional lesions in rats. British Journal of Psychiatry, 151, 771–778.

    CAS  Google Scholar 

  33. Simunek, T., Sterba, M., Popelova, O., Adamcova, M., Hrdina, R., & Gersl, V. (2009). Anthracycline-induced cardiotoxicity: Overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacological Reports, 61, 154–171.

    PubMed  CAS  Google Scholar 

  34. Su, Y. W., Liang, C., Jin, H. F., Tang, X. Y., Han, W., Chai, L. J., et al. (2009). Hydrogen sulfide regulates cardiac function and structure in adriamycin-induced cardiomyopathy. Circulation Journal, 73, 741–749.

    Article  PubMed  CAS  Google Scholar 

  35. Iqbal, M., Dubey, K., Anwer, T., Ashish, A., & Pillai, K. K. (2008). Protective effects of telmisartan against acute doxorubicin-induced cardiotoxicity in rats. Pharmacological Reports, 60, 382–390.

    PubMed  CAS  Google Scholar 

  36. L’Ecuyer, T., Sanjeev, S., Thomas, R., Novak, R., Das, L., Campbell, W., et al. (2006). DNA damage is an early event in doxorubicin-induced cardiac myocyte death. American Journal of Physiology, 291, H1273–H1280.

    PubMed  Google Scholar 

  37. Chao, H. H., Liu, J. C., Hong, H. J., Lin, J. W., Chen, C. H., & Cheng, T. H. (2011). L-carnitine reduces doxorubicin-induced apoptosis through a prostacyclin-mediated pathway in neonatal rat cardiomyocytes. International Journal of Cardiology, 146, 145–152.

    Article  PubMed  Google Scholar 

  38. Li, N., & Karin, M. (1999). Is NF-kappaB the sensor of oxidative stress? The Faseb Journal, 13, 1137–1143.

    PubMed  CAS  Google Scholar 

  39. Wang, S., Kotamraju, S., Konorev, E., Kalivendi, S., Joseph, J., & Kalyanaraman, B. (2002). Activation of nuclear factor-kappaB during doxorubicin-induced apoptosis in endothelial cells and myocytes is pro-apoptotic: The role of hydrogen peroxide. Biochemical Journal, 367, 729–740.

    Article  PubMed  CAS  Google Scholar 

  40. Liu, J., Mao, W., Ding, B., & Liang, C. S. (2008). ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. American Journal of Physiology, 295, H1956–H1965.

    PubMed  CAS  Google Scholar 

  41. Lou, H., Danelisen, I., & Singal, P. K. (2005). Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy. American Journal of Physiology, 288, H1925–H1930.

    PubMed  CAS  Google Scholar 

  42. Kim, J. Y., Jung, K. J., Choi, J. S., & Chung, H. Y. (2006). Modulation of the age-related nuclear factor-kappaB (NF-kappaB) pathway by hesperetin. Aging Cell, 5, 401–411.

    Article  PubMed  CAS  Google Scholar 

  43. Sardao, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2009). Morphological alterations induced by doxorubicin on H9c2 myoblasts: Nuclear, mitochondrial, and cytoskeletal targets. Cell Biology and Toxicology, 25, 227–243.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang, S. H., Wang, W. Q., & Wang, J. L. (2009). Protective effect of tetrahydroxystilbene glucoside on cardiotoxicity induced by doxorubicin in vitro and in vivo. Acta Pharmacologica Sinica, 30, 1479–1487.

    Article  PubMed  CAS  Google Scholar 

  45. Hwang, S. L., & Yen, G. C. (2008). Neuroprotective effects of the citrus flavanones against H2O2-induced cytotoxicity in PC12 cells. Journal of Agricultural and Food Chemistry, 56, 859–864.

    Article  PubMed  CAS  Google Scholar 

  46. Choi, E. J., & Kim, G. H. (2011). Anti-/pro-apoptotic effects of hesperetin against 7, 12-dimetylbenz(a)anthracene-induced alteration in animals. Oncology Reports, 25, 545–550.

    Article  PubMed  CAS  Google Scholar 

  47. Ali, M. M., Agha, F. G., El-Sammad, N. M., & Hassan, S. K. (2009). Modulation of anticancer drug-induced P-glycoprotein expression by naringin. Zeitschrift für Naturforschung Section C, 64, 109–116.

    CAS  Google Scholar 

  48. Hsiao, Y. C., Hsieh, Y. S., Kuo, W. H., Chiou, H. L., Yang, S. F., Chiang, W. L., et al. (2007). The tumor-growth inhibitory activity of flavanone and 2′-OH flavanone in vitro and in vivo through induction of cell cycle arrest and suppression of cyclins and CDKs. Journal of Biomedical Science, 14, 107–119.

    Article  PubMed  CAS  Google Scholar 

  49. Choi, E. J. (2007). Hesperetin induced G1-phase cell cycle arrest in human breast cancer MCF-7 cells: Involvement of CDK4 and p21. Nutrition and Cancer, 59, 115–119.

    Article  PubMed  CAS  Google Scholar 

  50. Masoodi, T. A., & Alhamdanz, A. H. (2010). Inhibitory effect of flavonoids on mutant H-Rasp protein. Bioinformation, 5, 11–15.

    PubMed  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the financial assistance received from National Institute of Pharmaceutical Education and Research (NIPER), Mohali, to undertake this study. The authors would also like to acknowledge Intas Pharmaceuticals Ltd., Ahmedabad, Gujarat, for benevolently granting the gift sample of doxorubicin.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Jena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trivedi, P.P., Kushwaha, S., Tripathi, D.N. et al. Cardioprotective Effects of Hesperetin against Doxorubicin-Induced Oxidative Stress and DNA Damage in Rat. Cardiovasc Toxicol 11, 215–225 (2011). https://doi.org/10.1007/s12012-011-9114-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-011-9114-2

Keywords

Navigation