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RANDOM CUTOUT SETS WITH SPATIALLY

INHOMOGENEOUS INTENSITIES

TUOMO OJALA, VILLE SUOMALA, AND MENG WU

Abstract. We study the Hausdorff dimension of Poissonian cutout sets defined
via inhomogeneous intensity measures on Q-regular metric spaces. Our main re-
sults explain the dependence of the dimension of the cutout sets on the multifractal
structure of the average densities of the Q-regular measure. As a corollary, we
obtain formulas for the Hausdorff dimension of such cutout sets in self-similar and
self-conformal spaces using the multifractal decomposition of the average densities
for the natural measures.

1. Introduction

Given a metric space X and a sequence of open balls B(xn, rn) ⊂ X , we define
the cutout set corresponding to the sequence (xn, rn) ∈ X × (0, 1), n ∈ N, as

E = X \
⋃

n

B(xn, rn) .

That is, E is the set left uncovered by the union of the balls B(xn, rn). If the
cutout balls B(xn, rn) are randomly distributed, or if their centers are dynamically
defined (e.g. if xn+1 = T (xn) for a given dynamics T : X → X), it is of interest to
investigate whether E 6= ∅ and to determine its structure and size such as Hausdorff
dimension.

For random cutouts, this problem originates from different versions of the Dvoret-
zky covering problem as well as in the study of renewal sets (see e.g. [5, 17, 23, 31]).
Kahane’s book [18] as well as his survey [21] on random coverings provide a detailed
account of the history of the problem. In turn, the dynamical version of the problem
arises from dynamical Diophantine approximation [10, 11, 22]. See also [16] for a
variant dealing with time-dependent dynamics.

In this paper, we consider only the case in which (xn, rn)n∈N are random variables.
We shall next describe our model in detail. Let X = (X,H, d) be a bounded metric
space endowed with a measure H, which is (Ahlfors-David) Q-regular for some
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0 < Q < ∞: there are constants 0 < c0 < C0 < ∞ such that

c0r
Q ≤ H (B(x, r)) ≤ C0r

Q , (1.1)

for all x ∈ X , 0 < r < diam(X). Throughout the paper, a measure will refer to a
locally finite Borel regular outer measure.

For each 0 < γ < +∞, let Y be a Poisson point process on X × (0, 1) with
intensity γH × ρ, where ρ is the measure defined by ρ(dr) = dr

rQ+1 on (0, 1). Thus,
Y is a random collection of pairs (x, r) ∈ X × (0, 1) such that

(1) For each Borel set A ⊂ X × (0, 1), the random variable ♯(A∩ Y) is Poisson
distributed with mean γH× ρ(A).

(2) For disjoint Ai, the random variables ♯(Ai ∩ Y) are independent.

In particular, Y is almost surely countably infinite. We consider the random cutout
set:

E = X \
⋃

(x,r)∈Y

B(x, r) . (1.2)

Note that the intensity of Y and the induced probability P crucially depend on γ.
Let

γ0 := sup{γ > 0 : P(E 6= ∅) > 0} . (1.3)

A central problem is to determine the exact value of γ0 (0 < γ0 < ∞ always holds,
see Remark 2.5). Further, when 0 < γ < γ0, we would like to determine the almost
sure Hausdorff dimension of E. Since for any γ > 0, there is a positive probability
for extinction (E = ∅), we will consider the following quantity:

Definition. Given a Poisson point process Y as above, the associated cutout dimen-
sion is the unique value s ≥ 0 such that dimH(E) ≤ s almost surely and for all
t < s, there is a positive probability that dimH(E) > t.

We note that Zähle [36] uses the term essential dimension of E for the cutout
dimension.

The case when X is a bounded subdomain of some Euclidean space R
d and

H = Ld is the d-dimensional Lebesgue measure is well understood. In particular,
γ0 = γ0(d) = d/α(d), where α(d) = Ld(B(0, 1)) and for 0 < γ ≤ d/α(d), the cutout
dimension (and this holds also if Hausdorff dimension is replaced by box-dimension
in the definition) equals d − γα(d), see [6, 36, 33, 24, 32]. In this case, the point
process Y is translation invariant in an obvious way, but it possesses also strong
scale invariance: If I, λI ⊂ (0, 1) for some λ > 0, then it is equally likely that a
point x ∈ X is covered by a ball B(xn, rn) ∈ Y for rn ∈ I as it is for rn ∈ λI. There
are many works (e.g. [23, 13, 36, 29, 4]) in which this scale invariance condition has
been relaxed by replacing the measure ρ(dr) by a more general measure of the form
dr
h(r)

. For such generalizations, it is still possible to get results on the size of E and
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the range of γ, for which E 6= ∅ with positive probability. However, it turns out
that the model is much more sensitive for the changes in the spatial component H
and in essentially all the works we are aware of, only the case in which H = Ld has
been considered. The papers [14] and [36] are notable exceptions. In these papers,
various estimates for the dimension of the cutout sets are obtained in the context
of a general metric space. However, when it comes to determining the exact value
of the cutout dimension, it is assumed that H = Ld in [36]. Also in [14], a strong

homogeneity assumption on H (implying in particular that supx,y∈X
H(B(x,r))
H(B(y,r))

−→ 1

as r ↓ 0) is assumed.
We note that in many of the references given above, the model is actually one

where rn is a deterministic sequence and xn are independent and uniformly dis-

tributed according to Ld|X
Ld(X)

(and often X is the torus Td). However, in the case of

translation invariant intensity the methods in the case of deterministic radii and iid
centres are essentially the same as in the Poissonian case described above (e.g. in
[20, Section 10] it is explained how to reduce the case of deterministic radii to a
Poissonian case).

Furthermore, in many of the cited works, a significant part of attention has been
given to the study of the random covering set

F =
⋂

k∈N

⋃

n≥k

B(xn, rn) ,

consisting of the points covered infinitely often by the balls B(xn, rn). However,
under the present assumptions and for any choice of γ, it follows from Fubini’s the-
orem that almost surely H(X \ F ) = 0 so that F has the same dimension as X .
Furthermore, for the case of deterministic radii, as well as for more general Poisso-
nian intensities H(dx) × dr

h(r)
, the dimensional properties of the associated random

covering set in the setting of Q-regular spaces are analogous to the Euclidean situa-
tion (where H is the Lebesgue measure). For instance, the proof of [15, Proposition
4.7] adapts easily to the case of Q-regular metric spaces. These observations indi-
cate that changing the spatial component of the intensity measure does not affect
the determination of the dimensions of the random covering sets, as opposed to the
same problem for the cutout set E.

Before going further, let us provide a simple example to get an idea why the lack
of homogeneity inH is a subtle issue for the cutouts. Here, by homogeneity we mean
that H(B(x, r)) = H(B(y, r)) for any x, y ∈ X and small enough r > 0. Suppose
X = X1 ∪ X2 where, say, X1 and X2 are disjoint open subintervals of [0, 1]. Let
µ = aL|X1

+ bL|X2
and suppose 0 < a < b < 1

2
. Now, conditional on E ∩X1 = ∅,

we know from the above discussion that almost surely dimH(E) ≤ 1− 2b while on
E ∩ X1 6= ∅, there is a positive probability that dimH(E) = 1 − 2a. This shows
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that one cannot expect any a.s. constancy result for the Hausdorff dimension of E.
Of course, it still holds that the cutout dimension is 1− 2a (see also Remark 3.4).

For each 0 < t < 1, let

Et = X \
⋃

(x,r)∈Y ,r>t

B(x, r)

and for x ∈ X denote p(x, t) = P(x ∈ Et). Notice that x ∈ Et if and only if
At(x)

⋂
Y = ∅ for

At(x) = {(y, r) : r > t, y ∈ B(x, r)} ,

so that

p(x, t) = P(At(x) ∩ Y = ∅) = exp (−γH× ρ(At(x)))

= exp

(
−γ

∫ 1

r=t

H(B(x, r))r−Q−1 dr

)
.

(1.4)

We may rewrite the identity (1.4) as

p(x, t) = tγA(H,x,t) (1.5)

where

A(H, x, t) =

∫ 1

r=t
H(B(x, r))r−Q−1 dr

− log t
. (1.6)

In particular, the expected measure of Et equals

E(H(Et)) =

∫

x∈X

p(x, t) dH(x) =

∫

x∈X

tγA(H,x,t) dH(x) . (1.7)

These formulas suggest an intimate connection to the lower and upper (Q-)average
densities of H defined at x ∈ X as

A(H, x) = lim inf
t→0

A(H, x, t) , (1.8)

A(H, x) = lim sup
t→0

A(H, x, t) . (1.9)

If A(H, x) and A(H, x) coincide, we denote the common value by A(H, x). It is well

known that for a Q-regular measure H, the density limr↓0
H(B(x,r))

rQ
fails to exist at

H-almost all points, unless Q is an integer and X is rectifiable (see [28]). However,
for many important Q-regular measures (see e.g. [3, 7, 8, 34, 35]), the average
density A(H, x) is known to exist and take a constant value α at H-almost all
points of X = supp(H). Recalling (1.7), a first naive guess would be to predict that
in such a case the cutout dimension would equal Q−γα. However, it turns out that
in most cases of interest, the dimension of E is affected by the zero measure set,
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where A(H, x) 6= α and a finer analysis of the multifractal properties of the average
densities is needed in order to catch the correct dimension of the cutout set E.

In the following, we present our main results. For this, we need some more
notations and definitions. For 0 ≤ α < β ≤ ∞ and 0 < r < 1, we define

∆H
r (α, β) = {x ∈ X | α < A(H, x, r) < β} (1.10)

and
∆H(α) = {x ∈ X | A(H, x) = α}. (1.11)

In what follows, the measure H will always be clear from the context, and thus
we may ignore it in the notation and write ∆r(α, β) and ∆(α) instead of the more
rigorous ∆H

r (α, β) and ∆H(α). Let αmin = inf{α : ∆(α) 6= ∅}, αmax = sup{α :
∆(α) 6= ∅} and α0 = esssupH A(H, x). Finally, let

f(α) = dimH(∆(α)) (1.12)

and
m(γ) = sup

α≥0
f(α)− γα . (1.13)

The following theorem is our main general result which says that if f(α) is contin-
uous on ]αmin, αmax[ and the quantity A(H, x, r) satisfies a large deviation principle
then the cutout dimension is given bym(γ). Recall that 0 < γ < ∞ is the parameter
used to adjust the intensity of Y .

Theorem 1.1. Suppose that f(α) is continuous on ]αmin, αmax[ and for all 0 < β ≤
α0 and all ε > 0, there is 0 < C < ∞ such that

H(∆r(0, β)) ≤ CrQ−f(β)−ε , (1.14)

whenever r > 0. If m(γ) ≥ 0, then almost surely dimH(E) ≤ m(γ) and dimH(E) =
m(γ) with positive probability. If m(γ) < 0, then E = ∅ almost surely.

In Section 3, Theorem 1.1 is applied in the case when X is a C1+ε self-conformal
set satisfying the strong separation condition and the spatial component H for the
Poisson intensity is the natural self-conformal measure on X . We show that in this
case, (X,H) satisfies the hypothesis of Theorem 1.1, thus the cutout dimension
equals m(γ).

The structure of the paper is as follows. In Section 2, using the familiar first
and second moment methods, we present some tools to estimate the dimension of
the intersections of E with certain sub- and superlevel sets of the average densities
A(H, ·), A(H, ·). This part applies to any Q-regular measure and can be used
directly to obtain some (coarse) estimates on the value of γ0 (recall (1.3)) and on
the dimension of E. Combining these tools and the assumption on the multifractal
spectrum f(α) allows us to give a proof for Theorem 1.1, this is provided in the end
of the Section.
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In Section 3, we present our second main result, Theorem 3.2, which is an applica-
tion of Theorem 1.1; We consider the case when X is a self-conformal set satisfying
the strong separation condition and H is the natural self-conformal measure, which
is well known to be Q-regular with Q = dimH(X). Using tools from thermodynam-
ical formalism and expressing the average densities of H as ergodic averages, we
examine the multifractal spectrum f(α) for H. Theorem 1.1 then enables us to ob-
tain a formula for γ0 and for the cutout dimension when 0 < γ < γ0. The condition
(1.14) for self-conformal spaces is verified in the Appendix following Section 3.

2. Auxiliary dimension estimates

In this section, we provide some useful upper and lower estimates for the Hausdorff
dimension of E ∩{α < A(H, x) < β} when α and β vary. Our standing assumption
is that H is a Q-regular measure on the metric space X . Further, the parameter
γ > 0 that determines (together with H) the intensity of Y is fixed throughout the
section. For Y ⊂ X and t > 0, we denote by Y (t) = {y ∈ X : d(y, Y ) ≤ t}, the
(closed) t-neighbourhood of Y .

2.1. Dimension upper bound. Recall that for each 0 ≤ α < β ≤ ∞ and 0 < r <
1, we denote ∆r(α, β) = {x ∈ X | α < A(H, x, r) < β}, where A(H, x, r) is as in
(1.6).

Lemma 2.1. (i) There exists C < ∞, independent of x and t, such that

P(x ∈ E(t)) ≤ CP(x ∈ Et).

(ii) If 0 ≤ α′ < α < β < β ′ < ∞, there exists r0 > 0 such that

∆r(α, β)(r) ⊂ ∆r(α
′, β ′)

for all 0 < r < r0.

Proof. (i) Observe that by definition of E(t) and elementary geometry, we have

E(t) ⊂ X \
⋃

(x,r)∈Y ,r>t

B(x, r − t) =: E ′
t .

So P(x ∈ E(t)) ≤ P(x ∈ E ′
t). Thus, we only need to show that P(x ∈ E ′

t) ≤ CP(x ∈
Et) for some C < ∞ independent of x and t. Since x ∈ E ′

t if and only if A∩Y = ∅

for

A = {(y, r) : r > t, y ∈ B(x, r − t)} ,

we deduce that

P(x ∈ E ′
t)= P(A ∩ Y = ∅) = exp

(
−γ

∫ 1

t

H(B(x, r − t))
dr

rQ+1

)
. (2.1)
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Now, we have
∫ 1

t

H(B(x, r − t))
dr

rQ+1
≥

∫ 1

2t

H(B(x, r − t))
dr

rQ+1

=

∫ 1

t

H(B(x, r))
dr

rQ+1(1 + t/r)Q+1
.

(2.2)

An elementary calculation shows that

1

(1 + y)Q+1
≥ 1− (Q + 1)y for all y ∈ [0, 1].

Applying this to y = t/r in (2.2), we get
∫ 1

t

H(B(x, r − t))
dr

rQ+1
≥

∫ 1

t

H(B(x, r))
dr

rQ+1
− (Q+ 1)t

∫ 1

t

H(B(x, r))
dr

rQ+2

Since C ′ = supx∈X,0<t≤1(Q + 1)t
∫ 1

t
H(B(x, r)) dr

rQ+2 < +∞, substituting the above
inequality in (2.1) yields

P(x ∈ E ′
t) ≤ P(x ∈ Et) exp(γC

′).

Letting C = exp(γC ′) ends the proof of (i).
(ii) We have seen in the proof of (i) that there exists C < +∞, such that

∫ 1

t

H(B(x, r) \B(x, r − t))
dr

rQ+1
≤ C.

By the same argument, it follows that
∫ 1

t

H(B(x, r + t) \B(x, r − t))
dr

rQ+1
≤ C ′

for some C ′ < +∞ independent of x and t. Thus for every ε > 0 there exists r0 > 0
such that ∫ 1

t
H(B(x, r + t) \B(x, r − t))r−Q−1 dr

− log t
≤ ε

for every x ∈ X , 0 < t < r0. Since for every x ∈ ∆t(α, β)(t), there exists y ∈
∆t(α, β) such that d(x, y) < t, we deduce that

A(H, x, t) ≤ A(H, y, t) +

∫ 1

t
H(B(x, r + t) \B(x, r − t))r−Q−1 dr

− log t
< β ′ ,

when ε < β ′ − β. The lower bound follows by a similar calculation. �
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Lemma 2.2. Let 0 < α′ < α < β < β ′ ≤ ∞ and C, η ≥ 0. Suppose that
H(∆r(α

′, β ′)) ≤ Crη for all 0 < r < 1. Then almost surely,

dimH

(
E ∩ lim sup

r↓0
∆r(α, β)

)
≤ Q− γα′ − η ,

if Q− γα′ − η ≥ 0 while E ∩ lim supr↓0∆r(α, β) = ∅ if Q− γα′ − η < 0.

Proof. Observe that by (1.5), P(x ∈ Er) ≤ rγα
′

, for x ∈ ∆r(α
′, β ′). Pick α′ < α̃ < α,

β < β̃ < β ′. Using Lemma 2.1, we have for each θ < γα′ + η that

E

(
∑

n∈N

2θnH
((

∆2−n(α̃, β̃) ∩ E
)
(2−n)

))

≤C1

∑

n

2θn
∫

∆
2−n (α′,β′)

P (x ∈ E2−n) dH(x)

≤C1

∑

n

2nθH(∆2−n(α′, β ′))2−nγα′

≤C2

∑

n

2n(θ−γα′−η) < ∞ .

In particular, we see that almost surely,

lim
n→∞

2θnH
((

∆2−n(α̃, β̃) ∩ E
)
(2−n)

)
= 0 .

Since H is Q-regular this implies almost surely the existence of N0 ∈ N such that

for all n ≥ N0, the set (∆2−n(α̃, β̃) ∩ E) is covered by a union of balls

B
(
xn,1, 2

−n
)
, . . . , B

(
xn,mn

, 2−n
)

with mn ≤ 2n(Q−θ). Since

lim sup
r↓0

∆r(α, β) ⊂
∞⋃

n=N

mn⋃

i=1

B
(
xn,i, 2

−n
)
,

for all N ≥ N0, and
∑

n≥N

mn2
−n(Q−θ+ε) ≤

∑

n≥N

2−nε −→ 0 ,

for any ε > 0, this implies the claim. Note that if Q− γα′ − η < 0, we have mn = 0

and thus (∆2−n(α̃, β̃) ∩ E)(2−n) = ∅ for all n ≥ N0. �
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2.2. A lower estimate. Let µ be a measure on X . For each t > 0, we define a
measure νt by

dνt(x) = p(x, t)−11Et
(x) dµ(x) . (2.3)

Recall that p(x, t) = P(x ∈ Et). Then (νt)t>0 is a T -martingale in the sense of
Kahane [19] and it is easy to check that almost surely, νt is weakly convergent to a
random limit measure ν.

Let 0 < s < ∞ be such that

∫

X

∫

X

d(x, y)−s dµ(x) dµ(y) < ∞ , (2.4)

and define a Kernel K : X ×X → [0,∞[ by

K(x, y) = d(x, y)−sp (x, d(x, y)) . (2.5)

Lemma 2.3.

E

(∫ ∫
K(x, y) dν(x) dν(y)

)
< ∞ .

Proof. It suffices to show that for all 0 < t < 1,

E

(∫ ∫
K(x, y) dνt(x) dνt(y)

)
< C < ∞ , (2.6)

where C is independent of t. Indeed, using that x 7→ A(H, x, r) is continuous (this
follows e.g. from the calculation in the proof of Lemma 2.1) and recalling (1.5)
allows to express K(x, y) as a limit of increasing continuous functions, so that (2.6)
yields the claim.

We first claim that for all 0 < δ < 1,

P(x, y ∈ Eδ) ≤ Cp(x, δ)p(y, δ)/p (x, d(x, y)) , (2.7)

where C is independent of δ and d(x, y). Indeed, this is a result of direct calculation
(we assume that δ < d(x, y)/2 as otherwise (2.7) follows directly from (1.5)): Letting
A = {(z, r) : r > δ, {x, y} ∩ B(z, r) 6= ∅}, it follows that x, y ∈ Eδ precisely when
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A ∩ Y = ∅. Moreover

H× ρ(A) =

∫ 1

δ

H(B(x, s) ∪ B(y, s))s−Q−1ds

≥

∫ 1

δ

H(B(y, s))s−Q−1ds+

∫ d(x,y)/2

δ

H(B(x, s))s−Q−1ds

≥

∫ 1

δ

H(B(y, s))s−Q−1ds+

∫ 1

δ

H(B(x, s))s−Q−1ds

−

∫ 1

d(x,y)

H(B(x, s))s−Q−1ds− C1 ,

where C1 is a constant such that
∫ d(x,y)

d(x,y)/2
H(B(x, s))s−Q−1ds ≤ C1 and thus only

depends on the Q-regularity data of the measure H. The claim (2.7) now follows
by multiplying the inequality by −γ and taking the exponential (recall (1.4)).

Combining (2.7), Fubini’s theorem, and (2.4) we calculate

E

(∫ ∫
K(x, y) dνt(x) dνt(y)

)

=

∫

X

∫

X

P(x, y ∈ Et)p(x, d(x, y)))d(x, y)
−s

p(x, t)p(y, t)
dµ(x) dµ(y)

≤ C

∫ ∫
d(x, y)−sdµ(x)dµ(y) < ∞ .

Since this upper bound is independent of t, we are done. �

The following lemma employs the standard connection between capacity and di-
mension in the situation at hand. Recall that the lower local dimension of a measure
ν at x ∈ X is defined as

dimloc(ν, x) = lim inf
r↓0

log ν(B(x, r))

log r
.

Lemma 2.4. Let νt and ν be defined via (2.3) and suppose that (2.4) holds with
s − γα > 0. If for µ-almost all x ∈ X, A(H, x) < α, then ν(X) > 0 with positive
probability and almost surely,

dimloc(ν, x) ≥ s− γα ,

for ν-almost all x ∈ X.

Proof. We first observe that if N ⊂ X is µ-null, then it is almost surely ν-null.
Indeed, for each ε > 0, there is an open set Uε ⊃ N , such that µ(Uε) < ε. Thus
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Fatou’s lemma gives

E(ν(N)) ≤ E(ν(Uε)) ≤ E(lim inf
t↓0

νt(Uε)) ≤ lim inf
t↓0

Eνt(Uε) = µ(Uε) < ε .

Whence E(ν(N)) = 0, or in other words, ν(N) = 0 almost surely.
Let

FM = {x ∈ X | A(H, x) < α and

∫

y∈X

K(x, y) dν < M} .

Then, by the above and Lemma 2.3, it follows that almost surely

ν(X \ FM) −→ 0 as M −→ ∞ .

On the other hand, for all x ∈ FM , and all small enough 0 < r < 1, (2.5) and (1.5)
give K(x, y) ≥ d(x, y)γα−s ≥ rγα−s for y ∈ B(x, r) and whence

rγα−sν(B(x, r)) ≤

∫

y∈B(x,r)

K(x, y) dν < M ,

implying ν(B(x, r)) ≤ Mrs−γα. The second claim of the Lemma now follows by
taking logarithms, letting r ↓ 0 and finally letting M −→ ∞.

To prove that ν(X) > 0 is an event of positive probability, we first pick so small
r0 > 0 that µ(F ) > 0, where F = {x ∈ X | A(H, x, r) < α for all 0 < r < r0}.
Calculating as in the proof of Lemma 2.3 yields

E
(
νt(F )2

)
≤ C

∫

x∈F

∫

y∈F

d(x, y)−γA(H,x,d(x,y)) dµ(x) dµ(y)

≤ C

∫ ∫
d(x, y)−sdµ(x)dµ(y) < ∞ .

In other words, νt(F ) is an L2-bounded martingale with nonzero expectation (since
µ(F ) > 0). Whence, ν(X) ≥ ν(F ) > 0 with positive probability. �

Remarks 2.5. (i) Lemmas 2.2 and 2.4 can be used directly to obtain upper and
lower estimates on γ0 and on the dimension of E. Let d0 = infx∈X A(H, x), D0 =
µ − esssupx∈X A(H, x) (note that c0 ≤ d0 ≤ D0 ≤ C0,where c0, C0 are as in (1.1)).
Applying Lemma 2.2 with η = 0, implies γ0 ≤ Q/d0 and dimH(E) ≤ Q − γd0
a.s, if 0 < γ ≤ γ0. In turn, Lemma 2.4 applied for µ = H and s = Q, gives the
estimate γ0 ≥ Q/D0 and provided 0 < γ < Q/D0, implies that dimH(E) ≥ Q−γD0

with positive probability. Although we will not deal with packing dimension later in
this paper, we mention that if d1 = infx∈X A(H, x), then a modification of Lemma
2.2, where lim sup∆r(α, β) is replaced by lim inf ∆r(α, β) implies that the packing
dimension of E is at most Q− γd1 (0 < γ ≤ γ0).

(ii) As indicated by Theorem 1.1, even if A(H, x) = A(H, x) = α for H-almost
every x, such direct estimates are usually far from being sharp. Actually, as will
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be seen in the Section 3, the dimension of E depends intimately on the multifractal
properties of the average density of H.

(iii) As of curiosity, we mention that if X = T
d is the d-dimensional torus (or

any open subset of Rd) and Q = d, then γ0 = d/d0 and for γ ≤ γ0, the cutout
dimension is d − γd0. Indeed, for each c > d0, there is a point x ∈ X and r > 0
such that H(B(x, r)) ≤ crd. An application of the Lebesgue density theorem yields a
Borel set B ⊂ B(x, r) such that H(B) > 0 and A(H, x) < c for all x ∈ B. Lemma
2.4 applied to µ = H|B then implies that dimH(E) ≥ Q− γc is an event of positive
probability.

2.3. Proof of Theorem 1.1. Now, we are ready for the proof of Theorem 1.1.
Recall the definitions of ∆(α), αmin, αmax, α0, f(α) and m(γ) from the Introduction,
see (1.11)-(1.13).

Proof of Theorem 1.1. Suppose that m(γ) ≥ 0. We first consider the upper bound.
Since trivially E(H(∆r(α0,+∞)) ≤ H(X) = C < ∞, using that {x | A(H, x) ≥
α0} ⊂ lim supr↓0∆r(α0 − ε,+∞) for all ε > 0, Lemma 2.2 implies that almost
surely,

dimH

(
E ∩ {x | A(H, x) ≥ α0}

)
≤ max{0, Q−γα0} = max{0, f(α0)−γα0} ≤ m(γ) .

(2.8)
Note that (1.14) implies in particular, that f(α0) = Q.

To deal with the points where A(H, x) < α0, we first remark that Lemma 2.2
together with (1.14) imply A(H, x) ≥ αmin for all x ∈ X . Indeed, if α < αmin, then
for ε > 0 small enough, (1.14) gives H(∆r(α − ε, α + ε)) = O(rQ−ε), and applying
Lemma 2.2 with η = Q− ε implies {x ∈ E | A(H, x) = α} ⊂ E ∩ lim supr↓0∆r(α−
ε, α+ ε) = ∅.

Next, let αmin ≤ α < β < α0 < αmax (the case α0 = αmax reduces to the estimate
(2.8)). Combining Lemma 2.2 and (1.14) and using that {α ≤ A(H, x) ≤ β} ⊂
lim supr↓0∆r(α− ε, β + ε), gives for all small ε > 0 that

dimH

(
E ∩ {x | α ≤ A(H, x)) ≤ β}

)
≤ max{0, f(β + ε)− γ(α− ε) + ε} .

Letting ε ↓ 0 and using the continuity of f on ]αmin, αmax[ then implies

dimH

(
E ∩ {x | A(H, x)) < α0}

)

≤ max
0≤k≤n−1

{0, f (αn,k+1)− γαn,k+1}+
γ(α0 − αmin)

n
,

where for each n ∈ N, αmin = αn,0 < αn,1 ≤ . . . < αn,n = α0 are equally spaced
points on [αmin, α0]. Letting n → ∞ and using the continuity of f on ]αmin, αmax[
once more, finally yields the almost sure upper bound

dimH

(
E ∩ {x | A(H, x)) < α0}

)
≤ m(γ) .
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Combining with (2.8) we have that almost surely dimH(E) ≤ m(γ), as required.
If m(γ) < 0, a straightforward modification of the argument using the latter claim

of Lemma 2.2 implies E = ∅ almost surely.
To prove the lower bound, let ε > 0 and pick α such that

m(γ) + ε > sup
α≥0

f(α)− γα > 0

By Frostman’s lemma, there exists a probability measure µα supported on X such
that µα(∆(α)) = 1 and further

∫ ∫
d(x, y)ε−f(α)dµα(x)dµα(y) < C < ∞ .

Consider νt as in (2.3) and ν such that νt ⇀ ν. Lemma 2.4 implies that with
positive probability ν(X) > 0 and further (applying the lemma with f(α) + ε and
letting ε ↓ 0) almost surely

dimloc(ν, x) ≥ m(γ) ,

for ν-almost all x ∈ X . Since supp(ν) ⊂ E, this shows in particular that dimH(E) ≥
m(γ) with positive probability. �

Remark 2.6. The method presented in this section works for more general gauge
functions h : (0, 1) → (0,+∞) and measures H so that C−1 < H(B(x, r))/h(r) < C
for some C < ∞. In this case the Poissonian intensity is γH(dx) × dr

rh(r)
and the

h-average densities are defined via

Ah(H, x, r) =

∫ 1

r=t
H(B(x, r))(rh(r))−1 dr

− log t
.

In the above, we have considered the case h(r) = rQ, for simplicity of notation
and because our main applications, the self-conformal measures in Section 3, are
Q-regular.

3. Application to self-conformal spaces

Let M be a d-dimensional Riemann manifold and G = {gi}
ℓ
i=1 a conformal iter-

ated function system (IFS) of class C1+ε on M , i.e., gi are conformal contractions
with tangent maps satisfying a Hölder condition of exponent ε. Let X ⊂ M be
the self-conformal set corresponding to G, that is, X is the unique compact set
satisfying X =

⋃ℓ
i=1 gi(X). We suppose that the IFS G satisfies the strong sepa-

ration condition (SSC), i.e., gi(X) ∩ gj(X) = ∅ for i 6= j. Let S : X → X be the
inverse map of G on X , that is, the restriction of S on gi(X) is g−1

i . Then (X,S)
becomes a dynamical system. It is well known that (see e.g. [8, Chapter 5]) there
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exists a unique probability measure H on X , called the natural measure, which is
S-invariant, ergodic and Q-regular, Q being the Hausdorff dimension of X .

We consider the Poisson cutout set E in X as defined in the Introduction (see
(1.2)). Recall that the intensity of the Poisson process Y is γH× ρ where H is the
natural measure on X and ρ(dr) = r−Q−1dr.

We will apply our main result (Theorem 1.1) to determine the cutout dimension
in the situation at hand.

Instead of considering the continuous sequence {A(H, x, r), r > 0}, we will use
the discrete one {A(H, x, |DSn(x)|−1), n ∈ N}, where DSn is the tangent map of Sn.
Since |DSn+1(x)|/|DSn(x)| = |DS(Sn(x))| ∈ (1,maxy |DS(y)|) for all n ≥ 1, the
limit behavior of A(H, x, r) when r → 0 is the same as that of A(H, x, |DSn(x)|−1)
when n → ∞.

We write

A(H, x, |DSn(x)|−1) =
1

log |DSn(x)|

n−1∑

k=0

fk(x),

where

fk(x) =

∫ |DSk(x)|−1

|DSk+1(x)|−1

H(B(x, t))t−Q−1 dt .

In our context, it is known that (see e.g. [7, Proposition 4.1], [8, Chapter 6.2]) there
exists a sequence (εn)n of positive reals with εn → 0 such that

|fn(S
kx)− fn+k(x)| < εn (3.1)

for all x ∈ X and all k ≥ 0.
Recall that ∆(α) = ∆H(α) = {x ∈ X : A(H, x) = α} and that f(α) =

dimH(∆(α)).
To effectively apply Theorem 1.1 to the set E, we need to verify that the functions

A(H, x, r) and f(α) satisfy the hypothesis of Theorem 1.1. We will make use of the
multifractal properties of ∆(α) that we present now. First, we introduce some
notions and results. For simplicity of presentation, we express these results in
the context of self-conformal sets/measures, although they are valid in much more
general settings.

Notations. Let Λ = {1, · · · , ℓ}. Recall that gi, for i ∈ Λ, are conformal contrac-
tions. For u = u1 · · ·uk ∈ Λk we write gu = gu1

◦ · · · ◦ guk
. Let Xu = gu(X). Denote

Λ∗ =
⋃

n≥1Λ
n and for u ∈ Λ∗, let [u] = {(vn)n≥1 ∈ Λ∞ : v1 = u1, . . . , vn = un}.

For any x ∈ X , there exists (un)n≥1 ∈ Λ∞ such that {x} = limn gun
1
(X) =: gu∞

1
(X)

where we write un
1 = u1 · · ·un. The transformation S can be defined as {S(x)} =

gu∞

2
(X).
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A sequence Φ = {ϕn} of functions ϕn : X → R is called asymptotically additive
if for each ε > 0 there exists a continuous function ϕ : X → R such that

lim sup
n→∞

1

n
sup
x∈X

|ϕn(x)− Anϕ(x)| < ε (3.2)

where Anϕ =
∑n−1

k=0 ϕ ◦ Sk. If ϕn = Anϕ for all n, then Φ is called additive.

As a consequence of (3.1), the sequence {
∑n−1

k=0 fk}n is asymptotically additive.
Indeed, for any ε > 0, there exists N ≥ 1 such that when εN < ε, then by (3.1) we
have

lim sup
n→∞

1

n
sup
x∈X

|
n−1∑

k=0

fk(x)− AnfN(x)| < εN .

Now, we introduce the notion of pressure function. Let Φ = {ϕn}n be a sequence
of continuous function ϕn : X → R. The pressure function associated to Φ is defined
by

P (Φ) = lim sup
n→∞

1

n
log

∑

u∈Λn

sup
x∈Xu

exp(ϕn(x)). (3.3)

Actually, when Φ is asymptotically additive, we can replace limsup by lim in the
definition of P (Φ). In fact, from the asymptotically additivity of ϕn, we deduce
that for any ε > 0 there exists ϕ : X → R such that

sup
x∈X

|ϕn(x)−Anϕ(x)| ≤ nε, for n ≫ 1. (3.4)

So, Bn :=
∑

v∈Λn supx∈Xv
exp(ϕn(x)) = (Cenε)±

∑
v∈Λn supx∈Xv

exp(Anϕ(x)) for
some constant C > 0, where the notation A = C±B means that C−1B ≤ A ≤ CB.
Since the sequence B̃n :=

∑
v∈Λn supx∈Xv

exp(Anϕ(x)) is sub-multiplicative, the

limit limn
1
n
log B̃n exists. So we have

| lim inf
n

1

n
logBn − lim sup

n

1

n
logBn| ≤ ε.

Since ε is arbitrary, the limit limn
1
n
logBn exists.

Let M(X,S) be the set of all S-invariant probability measures on X . For µ ∈
M(X,S) and an asymptotically additive sequence Φ = {ϕn}, define

Φ∗(µ) := lim
n→∞

∫

X

ϕn(x)

n
dµ(x).

By (3.2), the limit in the above definition exists. Note that since µ is S-invariant,

we have
∫
X

Anϕ(x)
n

dµ(x) =
∫
X
ϕdµ for all n. (If µ is ergodic, then by Birkhoff’s

ergodic theorem we deduce that Φ∗(µ) is the µ-almost sure limit of ϕn(x)
n

as n →
∞). Further, it is known (see [12, Lemma A.4.], [2, Proposition 4]) that the map
µ 7→ Φ∗(µ) is continuous in the weak-star topology.
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Let us return to the set ∆(α). Denote F = {
∑n−1

k=0 fk}n and logDS = {log |DSn|}n.
Then F is asymptotically additive and DS is additive. Let

Ω =

{
F∗(µ)

logDS∗(µ)
: µ ∈ M(X, T )

}
.

We will use the following multifractal properties (Proposition 3.1) of ∆(α), most
of them are from [2, Theorem 1] (see also [12]). Before presenting those properties,
we need to introduce the notion of u-dimension. We will present this notion in our
setting of self-conformal sets/measures.

Let u : X → R
+ be a continuous function. For each word v ∈ Λn, we write

u(v) = sup

{
n−1∑

k=0

u(Skx) : x ∈ Xv

}
.

Given a set F ⊂ X and α ∈ R, we define

N(F, α, u) = lim
n→∞

inf
Γ

∑

v∈Γ

exp(−αu(v))

where the infimum is taken over all countable collections Γ ∈ ∪k≥nΛ
k such that

F ⊂ ∪v∈ΓXv. The u-dimension of F with respect to S is defined by

dimu(F ) = inf {α ∈ R : N(F, α, u) = 0} .

Note that if u = log |DS|, then the u-dimension dimu(F ) coincides with the Haus-
dorff dimension dimH(F ). This follows immediately from the existence of constants
c1, c2 > 0 such that c1(diamXv)

α ≤ exp(−αu(v)) ≤ c2(diamXv)
α.

Proposition 3.1. The following statements hold:

(1) The set Ω is a closed interval.
(2) We have ∆(α) 6= ∅ if and only if α ∈ Ω and if α ∈ Ω, then

dimu(∆(α)) = max

{
hµ(S)∫
X
u dµ

: µ ∈ M(X, T ) and
F∗(µ)

logDS∗(µ)
= α

}
.

In particular,

f(α) = max

{
hµ(S)∫

X
log |DS| dµ

: µ ∈ M(X, T ) and
F∗(µ)

logDS∗(µ)
= α

}
.

Here, hµ(S) denotes the measure-theoretic entropy of µ with respect to S.
(3) The function f attains its maximum at some αmin < α0 < αmax and f(α0) =

Q.
(4) A(H, x) = α0 for H-almost all x ∈ X.
(5) The function f : int(Ω) → R is continuous.
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(6) If α ∈ Ω, then

inf
q∈R

P (q(F − α logDS)− f(α) logDS) = 0.

(7) For all 0 < β ≤ α0 and all ε > 0, we have H(∆r(0, β)) ≤ CrQ−f(β)−ε for all
r > 0.

Proof. The statements (2), (5) and (6) can be found in [2, Theorem 1]. Note that
the definition of pressure function given in [2] is different from ours, but these two
definitions actually give the same pressure function (see [1, Sections 2.2 and 4.2.2],
[26, Proposition 3]).

The statements (3) and (4) can be deduced from [7]: in Proposition 4.1 of [7] it
is proved that there exists a constant α0 > 0 such that A(H, x) = α0 for H-almost
every x, so f(α0) = dim(H) = dimH(X) = Q which is the maximum of f .

For the statement (1), since the map µ 7→ F∗(µ)
logDS∗(µ)

is continuous and M(X, T ) is

a compact and convex set, we only need to notice that a subset of R, which is the
image of a compact convex set under a continuous map, must be a closed interval.

The proof of (7) will be given in Appendix A, see Lemma A.1. �

Now, we can show the main application of this paper: we determine the cutout
dimension of the Poisson cutout set E in the context of the self-conformal set X .

Theorem 3.2. Suppose that E is the Poissonian cutout set on X, where the inten-
sity is γH× ρ, and H is the natural self-conformal measure on X. If m = m(γ) =
maxαmin≤α≤α0

f(α)− γα ≥ 0, then almost surely dimH(E) ≤ m and dimH(E) ≥ m
with positive probability. If m < 0, then E = ∅ almost surely.

Proof. This is a consequence of (5) and (7) of Proposition 3.1 and Theorem 1.1. �

Example 3.3. Let X ⊂ R
d be a self-similar set satisfying the strong separation con-

dition. Suppose that the maps {gi}
ℓ
i=1 have equal contraction ratios (For instance,

X could be the classical ternary Cantor set), that is, there is constant 0 < a < 1
such that |g′i| = a for all i, j ∈ Λ. Then, in this case, |DS| is constant on X and F is
an additive sequence (see [8, Chapter 6.2]). Moreover F is Hölder continuous. It is
well known that (see e.g. [9, 30, 27] ) the multifractal spectrum f(α) is analytical,
strictly convex on Ω and for any α ∈ Ω we have

f(α) = inf
q∈R

(
P̃ (q)− αq

)
(3.5)

where P̃ (q) = P (qF )
− log a

. We make two remarks:
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(1) Observe that since f ′(α0) = 0, we have m(γ) > Q− γα0. Thus, the almost
sure dimension of E is not due to the H-almost sure value of A(H, x) but is
affected by the multifractal behaviour of the average densities.

(2) From (3.5), one can show that m(γ) = P̃ (−γ) = P (−γF )
− log a

. This means that

the critical value (regarding the parameter γ) for the emptiness (or for the
positivity of the Hausdorff dimension) of E is the unique zero of the pressure
function (the pressure function in our case is strictly monotone).

Remark 3.4. It seems plausible that in Theorem 3.2, dimH(E) is equal to the
cutout dimension almost surely conditioned on E 6= ∅. In other words, P(E 6=
∅ and dimH(E) < m) = 0. However, the proof only implies dimH(E) = m almost
surely on ν(X) > 0, where ν is the random measure as in Lemma 2.4 corresponding
to the value of α so that m = f(α) − γα. We expect that P(ν(X) = 0 and E 6=
∅) = 0, but haven’t been able to prove this. As pointed out in [32], this problem is
open also in the case of X = [0, 1], H = L.

Appendix A.

In this Appendix, we give the proof of the following lemma which is the statement
(7) of Proposition 3.1.

Lemma A.1. Under the setting of Proposition 3.1, we have

H(∆r(0, β)) ≤ CrQ−f(β)−ε

for all r > 0 whenever 0 < β ≤ α0 and all ε > 0. Here C is a finite constant that
is allowed to depend on β and ε (but not on r!).

Notations and classical estimates. For u ∈ Λ∗, let ũ be the word obtained
by erasing the last letter. For 0 < τ < 1, consider the “cut-set”

Wτ = {u ∈ Λ∗ : diam(gu(X)) ≤ τ and diam(gũ(X)) > τ}.

It is clear that for any 0 < τ < 1, Λ∞ =
⊔

u∈Wτ
[u] and the IFS {gu}u∈Wτ

generates
the same attractor X , moreover H is the natural measure associated to {gu}u∈Wτ

.
For any x ∈ X , there exists (vn)n≥1 ∈ W∞

τ such that {x} = limn gvn
1
(X) =: gv∞

1
(X).

We denote the inverse map corresponding to the IFS {gu}u∈Wτ
by Sτ , so that we

have {Sτ (x)} = gv∞
2
(X) and more generally {Sn

τ (x)} = gv∞n+1
(X).

A well known calculation (see e.g. [25]) shows that a C1+ε conformal iterated
function system satisfies the bounded distortion principle: there exists L > 1 such
that

L−1 ≤
‖g′u(x)‖

‖g′u(y)‖
≤ L for all u ∈ Λ∗, x, y ∈ X.
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Let λ0 = min{||g′i(x)|| : i ≤ ℓ, x ∈ X} > 0. Recall that ℓ is the number of maps in
the IFS G = {gi}

ℓ
i=1. Then for any u = u1 · · ·un ∈ Λ∗ and y ∈ X ,

‖g′u(y)‖ = ‖g′ũ(gun
(y))‖‖g′un

(y)‖ ≥ L−1λ0max
z∈X

‖g′ũ(z)‖.

Now let u ∈ Wτ . Then

τ ≤ diam(gũ(X)) ≤ max
z∈X

‖g′ũ(z)‖diam(X) ≤ Lλ−1
0 diam(X)min

z∈X
‖g′u(z)‖.

On the other hand, X = g−1
u (gu(X)) so we have

diam(X) ≤ max
z∈X

‖(g′u)
−1(z)‖diam(gu(X)) ≤ max

z∈X
‖(g′u)

−1(z)‖ · τ

and

max
z∈X

‖g′u(z)‖ =

(
min
z∈X

‖(g′u)
−1(z)‖

)−1

≤ Lτdiam(X)−1.

So there exists a constant C > 1 such that for any 0 < τ < 1 and any u ∈ Wτ , we
have

τC−1 ≤ min
z∈X

‖g′u(z)‖, max
y∈X

‖g′u(y)‖ ≤ τC. (A.1)

From (A.1), we deduce that

τ−nC−n ≤ min
z∈X

‖DSn
τ (z)‖, max

y∈X
‖DSn

τ (y)‖ ≤ τ−nCn. (A.2)

Now we can give the proof of Lemma A.1.

Proof of Lemma A.1. We first give the proof for the case αmin ≤ β ≤ α0. Fix x ∈ X
and a small 0 < r < 1. Let n = n(x, r) ∈ N be such that

|DSn+1
τ (x)|−1 ≤ r ≤ |DSn

τ (x)|
−1.

From (A.2), we know that log r
log τ−logC

≤ n ≤ log r
log τ+logC

. Here and in the rest of the

proof, we always take a τ < C−1 so that log τ + logC < 0. Then we have
∫ 1

r
H(B(x, t))t−Q−1 dt

− log r
≥

∫ 1

|DSn
τ (x)|

−1 H(B(x, t))t−Q−1 dr

log |DSn+1
τ (x)|

.

So we get

{x ∈ X : A(H, x, r) ≤ β} ⊂

{
x ∈ X :

∫ 1

|DSn
τ (x)|

−1 H(B(x, t))t−Q−1 dr

log |DSn+1
τ (x)|

≤ β

}
=: Aτ,n.

Thus we have

logH(∆r(0, β))

− log r
≤

logH(Aτ,n)

− log r
≤

logH(Aτ,n)

log |DSn+1
τ (x)|

≤
logH(Aτ,n)

(n + 1)(− log τ + logC)
.
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For proving the claim of the lemma we only need to show that

lim sup
τ→0+

lim sup
n→∞

logH(Aτ,n)

−n log τ
≤ Q− f(β).

Recall that we can rewrite Aτ,n as

Aτ,n =

{
x ∈ X :

∑n−1
k=0 f

τ
k (x)

log |DSn+1
τ (x)|

≤ β

}

where f τ
k (x) =

∫ |DSk
τ (x)|

−1

|DSk+1
τ (x)|−1

H(B(x, t))t−Q−1 dr which is asymptotically additive for

the system (X,Sτ ). By Chebyshev’s inequality, for any λ ≥ 0

H(Aτ,n) ≤

∫

X

exp

(
λ

(
β log |DSn+1

τ (x)| −
n−1∑

k=0

f τ
k (x)

))
dH(x)

≤
∑

vn
1
∈Wn

τ

H(gvn
1
(X)) sup

x∈gvn
1
(X)

exp

(
λ

(
β log |DSn+1

τ (x)| −
n−1∑

k=0

f τ
k (x)

))
.

Since H is the natural measure of the IFS (gu)u∈Wτ
, we have that H(gvn

1
(X)) ≍

exp(−Q log |DSn
τ (x)|) for any x ∈ gvn

1
(X). Whence

H(Aτ,n) .

∑

vn
1
∈Wn

τ

sup
x∈gvn

1
(X)

exp

(
λ

(
β log |DSn+1

τ (x)| −
n−1∑

k=0

f τ
k (x)

)
−Q log |DSn

τ (x)|

)
,
(A.3)

whenever λ ≥ 0. Note that | log |DSn+1
τ (x)| − log |DSn

τ (x)|| ≤ maxz∈X log |DSτ (z)|.
Here the notation A ≍ B means that C−1A ≤ B ≤ CA and A . B stands for
A ≤ CB for a constant C < ∞ independent of n, τ and vn1 . Taking logarithms and
dividing both sides of (A.3) by n and then taking limsup we get

lim sup
n

logH(Aτ,n)

n
≤ Pτ (λ(β logDSτ − Fτ )−Q logDSτ ), λ ≥ 0. (A.4)

where Pτ (λ(β logDSτ − Fτ ) − Q logDSτ) is the pressure function (of the system
(X,Sτ )) associated to the sequence of functions

{
λ

(
β log |DSn

τ (x)| −
n−1∑

k=0

f τ
k (x)

)
−Q log |DSn

τ (x)|

}
.

We now show that the inequality (A.4) holds also when λ < 0. For this, we only
need to show that Pτ (λ(β logDSτ − Fτ ) − Q logDSτ ) ≥ 0 for λ < 0. Fix λ < 0.

Denote Bn =
∫
X
exp

(
λ
(
β log |DSn

τ (x)| −
∑n−1

k=0 f
τ
k (x)

))
dH(x). We are going to



RANDOM CUTOUT SETS WITH SPATIALLY INHOMOGENEOUS INTENSITIES 21

prove that lim supn
logBn

n
≥ 0, which will imply Pτ (λ(β logDSτ−Fτ )−Q logDSτ ) ≥

0.
By Jensen’s inequality we have

Bn ≥ exp

(∫

X

λ

(
β log |DSn

τ (x)| −
n−1∑

k=0

f τ
k (x)

)
dH(x)

)
.

So

logBn

n
≥

∫

X

λ

(
β
log |DSn

τ (x)|

n
−

1

n

n−1∑

k=0

f τ
k (x)

)
dH(x). (A.5)

We know that

lim
n→∞

∑n−1
k=0 f

τ
k (x)

log |DSn
τ (x)|

= α0, for H-a.e. x

Since α0 ≥ β and λ < 0, in view of (A.5), we get

lim sup
n

logBn

n
≥ 0.

So we have proved that

lim sup
n

logH(Aτ,n)

n
≤ inf

λ∈R
Pτ (λ(β logDSτ − Fτ )−Q logDSτ).

For completing the proof, we only need to show that for β ∈ [αmin, α0],

lim sup
τ→0+

infλ∈R Pτ (λ(β logDSτ − Fτ )−Q logDSτ)

− log τ
≤ Q− f(β). (A.6)

From the definition of the pressure function Pτ and the fact n(− log τ − logC) ≤
log |DSn

τ (x)| ≤ n(− log τ + logC), we deduce that

|Pτ (λ(β logDSτ − Fτ )−Q logDSτ )

− Pτ (λ(β logDSτ − Fτ )− f(β) logDSτ )− (Q− f(β)) log τ | ≤ 2 logC .

So for proving (A.6), it is sufficient to show that for β ∈ [αmin, α0],

inf
λ∈R

Pτ (λ(β logDSτ − Fτ )− f(β) logDSτ ) = 0,

but this is exactly the statement (6) of Proposition 3.1 for the system (X,Sτ ).
Now, we assume that β < αmin. We will show that ∆r(0, β) = ∅ when r is small

enough, this clearly implies the desired result. To this end, we only need to prove
that

α := lim
n→∞

inf
x∈X

∑n−1
k=0 fk(x)

logDSn(x)
= αmin. (A.7)
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By Proposition 3.1, ∆(αmin) 6= ∅, i.e., there exists x ∈ X such that A(H, x) = αmin,
so α ≤ αmin. It remains to show the reverse inequality. Pick ni → ∞ and xi ∈ X

such that limi→∞

∑ni−1

k=0
fk(xi)

logDSni (xi)
= α. Let µni

= 1
ni

∑ni−1
j=0 δSjxi

for i ∈ N. Up to taking a

subsequence of (ni)i, we can suppose that µni
converges weakly to some probability

measure µ. By [12, Lemma A.4. (ii)], we know that µ ∈ M(X,S), and moreover

lim
i→∞

1

ni

∫

X

ni−1∑

k=0

fk(x)dδxi
= F∗(µ) and lim

i→∞

1

ni

∫

X

logDSni(x)dδxi
= logDS∗(µ).

Thus we have

α =
F∗(µ)

logDS∗(µ)
≥ αmin.

This ends the proof of the lemma. �
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[4] Hermine Biermé and Anne Estrade. Covering the whole space with Poisson random balls.
ALEA Lat. Am. J. Probab. Math. Stat., 9:213–229, 2012.

[5] Aryeh Dvoretzky. On covering a circle by randomly placed arcs. Proc. Nat. Acad. Sci. U.S.A.,
42:199–203, 1956.

[6] Youssef El Helou. Recouvrement du tore T
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