Skip to main content
Log in

Effect of Titania Doping on Structural and Mechanical Properties of NiO/YSZ Anode Materials Sintered by Using Microwave Energy

  • Solid Oxide Fuel Cells: Recent Scientific and Technological Advancements
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The current article presents first-hand work on the synthesis of nickel oxide–titania-doped yttria-stabilized zirconia (NiO-YZT) composites of composition 0.40NiO-0.60{[(ZrO2)0.92(Y2O3)0.08]1−x(TiO2)x} with x = 0.00, 0.03, 0.06, 0.09, 0.12 and 0.15 using microwave processing. The composites are prepared by mixed oxide method by taking yttria (Y2O3), titania (TiO2) and monoclinic zirconia (ZrO2) in their stoichiometric ratio and sintered by using conventional and microwave processing techniques. The investigation of prepared composites has been carried out by x-ray diffractometer, scanning electron microscope and Vickers hardness technique to probe the crystal structure, microstructure and mechanical properties. Also, the results obtained are compared for both the conventionally and microwave-sintering routes. It was inferred that the microwave-sintered NiO-YZT showed better results than the conventional samples in terms of greater density, uniform microstructure and better microhardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, Prog. Mater Sci. 72, 141 (2015).

    Article  Google Scholar 

  2. X. Mantzouris, N. Zouvelou, D. Skarmoutsos, P. Nikolopoulos, and F. Tietz, J. Mater. Sci. 40, 2471 (2005).

    Article  Google Scholar 

  3. M. Mori, Y. Hiei, H. Itoh, G.A. Tompsett, and N.M. Sammes, Solid State Ionics 160, 1 (2003).

    Article  Google Scholar 

  4. P. Holtappels, M. Verbraeken, U. Vogt, D.H.A. Blank, and B.A. Boukamp, Solid State Ionics 177, 2029 (2006).

    Article  Google Scholar 

  5. A. Tsoga, P. Nikolopoulos, and A. Naoumidis, Ionics (Kiel) 2, 427 (1996).

    Article  Google Scholar 

  6. F. Yakuphanoglu, M. Okutan, and K. Korkmaz, J. Alloys Compd. 450, 39 (2008).

    Article  Google Scholar 

  7. M.T. Colomer, L.S.M. Traqueia, J.R. Jurado, and F.M.B. Marques, Mater. Res. Bull. 30, 515 (1995).

    Article  Google Scholar 

  8. D. Skarmoutsos, Solid State Ionics 135, 439 (2000).

    Article  Google Scholar 

  9. S. Mago, C. Sharma, P. Sharma, K. Lata Singh, and A. Pratap Singh, Orient. J. Chem. 34, 2539 (2018).

    Article  Google Scholar 

  10. C. Sharma, K.L. Singh, A.P. Singh, V. Naithani, P. Sharma, S. Mago, and R.K. Chadha, Mater. Chem. Phys. 218, 204 (2018).

    Article  Google Scholar 

  11. M.T. Colomer, S. Díaz-Moreno, R. Boada, M. Maczka, and J. Chaboy, Phys. Rev. B - Condens. Matter Mater. Phys. 89, 094101 (2014).

    Article  Google Scholar 

  12. D. Skarmoutsos, F. Tietz, and P. Nikolopoulos, Fuel cells 1, 243 (2001).

    Article  Google Scholar 

  13. M. Verbraeken, M.S. Thesis, The university of Twente (2005).

  14. D. Skarmoutsos, P. Nikolopoulos, F. Tietz, and I.C. Vinke, Solid State Ionics 170, 153 (2004).

    Article  Google Scholar 

  15. J. Rossmeisl and W.G. Bessler, Solid State Ionics 178, 1694 (2008).

    Article  Google Scholar 

  16. H.A. Taroco, J.A.F. Santos, and R.Z.T. Matencio, Advances in Ceramics-Synthesis and Characterization, ed. by C. Sikalidis. Processing and Specific Applications (InTech Publisher, Croatia, 2011), p. 423.

    Google Scholar 

  17. P. Tiwari and S. Basu, J. Solid State Electrochem. 18, 805 (2014).

    Article  Google Scholar 

  18. D. Agrawal, Mater. Res. Innov. 14, 3 (2010).

    Article  Google Scholar 

  19. A.P. Singh, N. Kaur, A. Kumar, and K.L. Singh, J. Am. Ceram. Soc. 90, 789 (2007).

    Article  Google Scholar 

  20. S. Mago, K.L. Singh, and A.P. Singh, STM J. JoNSNEA 3, 7 (2013).

    Google Scholar 

  21. S. Mago, C. Sharma, P. Sharma, K.L. Singh, and A.P. Singh, RRJoPHY 7, 51 (2018).

    Google Scholar 

  22. K.L. Singh, A. Kumar, A.P. Singh, and S.S. Sekhon, Bull. Mater. Sci. 31, 655 (2008).

    Article  Google Scholar 

  23. S. Mago, C. Sharma, R. Mehra, O.P. Pandey, K.L. Singh, and A.P. Singh, Mater. Chem. Phys. 216, 372 (2018).

    Article  Google Scholar 

  24. A. Azim Jais, S.A. Muhammed Ali, M. Anwar, M. Rao Somalu, A. Muchtar, W.N.R. WanIsahak, C. Yong Tan, R. Singh, and N.P. Brandon, Ceram. Int. 43, 8119 (2017).

    Article  Google Scholar 

  25. S. Chen, P. Shen, and D. Gan, Mater. Sci. Eng., A 158, 251 (1992).

    Article  Google Scholar 

  26. S. Ramesh, K.C.J. Raju, and C.V. Reddy, Trans. Indian Ceram. Soc. 70, 143 (2011).

    Article  Google Scholar 

  27. C. Verdon, Ph. D Thesis, The University of British Columbia (2015).

  28. M.A. Janney and H.D. Kimrey, Materials Research Society Symposium Proceedings, p. 189 (1991).

  29. M.T. Colomer and J.R. Jurado, J. Solid State Chem. 165, 79 (2002).

    Article  Google Scholar 

  30. D. Agrawal, J. Cheng, H. Peng, L. Hurt, and K. Cherian, Am. Ceram. Soc. Bull. 87, 39 (2008).

    Google Scholar 

  31. D. Agrawal, Trans. Indian Ceram. Soc. 65, 129 (2006).

    Article  Google Scholar 

  32. C.Y. Fang, C. Wang, A.V. Polotai, D.K. Agrawal, and M.T. Lanagan, Mater. Lett. 62, 2551 (2008).

    Article  Google Scholar 

  33. H.N. Kuo, J.H. Chou, and T.K. Liu, Appl. Bionics Biomech. 2016, 1 (2016).

    Article  Google Scholar 

  34. G.D. Quinn, Ceramic Engineering and Science Proceedings, Cocoa Beach, 45 (2006).

  35. Y.M. Park and G.M. Choi, Solid State Ionics 120, 265 (1999).

    Article  Google Scholar 

  36. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon, Acta Mater. 44, 4619 (1996).

    Article  Google Scholar 

  37. M. Kibsey, J. Romualdez, X. Huang, R. Kearsey, and Q. Yang, J. Eng. Gas Turbines Power 133, 122101 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Inder Kumar Gujral Punjab Technical University, Kapurthala, for facilitating the experimental work. We also acknowledge NIIT, Jalandhar, and Thapar University, Patiala, for providing assistance in the characterization of processed samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanchan L. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 460 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mago, S., Singh, K.L., Singh, A.P. et al. Effect of Titania Doping on Structural and Mechanical Properties of NiO/YSZ Anode Materials Sintered by Using Microwave Energy. JOM 71, 3796–3805 (2019). https://doi.org/10.1007/s11837-019-03742-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03742-y

Navigation