Skip to main content

Advertisement

Log in

Biologic agents for severe asthma patients: clinical perspectives and implications

  • IM - REVIEW
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Asthma is a chronic inflammatory multifactorial disorder of the airways characterized by the involvement of immune cells and mediators in its onset and maintenance. Traditional therapeutic strategies have been unsatisfactory in controlling the underlying pathology, especially in the more severe states. Hence in the last couple of decades, new biological approaches targeting molecular mediators have been developed. In this narrative review we examine biological agents currently available for the management of severe asthma, focusing our attention on their clinical application, pros and cons, and in particular on gaps regarding the use of these agents. The most well-known and used biologic agent in clinical practice is omalizumab, though there is emerging evidence for mepolizumab too. The future of these biological therapies is to broaden our knowledge of their practical use and ascertain predictive biomarkers, or define an algorithm, useful in the optimal application of these ‘biological weapons’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AQLQ:

Asthma Quality of Life Questionnaire

ACQ:

Asthma Control Questionnaire

BHR:

Bronchial hyper-responsiveness

DBPC:

Double blind placebo controlled

EMA:

European Medicine Agency

FDA:

Food and Drug Administration

FEV1 :

Forced expiratory volume in the 1ts second

GETE:

Global evaluation of treatment effectiveness

ICS:

Inhaled corticosteroids

LABA:

Long-acting b2-adrenoceptor agonists

mAb:

Monoclonal antibody

OCS:

Oral corticosteroids

QoL:

Quality of life

RCTs:

Randomized controlled trials

SGRQ:

St. George’s Respiratory Questionnaire

References

  1. Caruso M, Varani K, Tringali G, Polosa R (2009) Adenosine and adenosine receptors: their contribution to airway inflammation and therapeutic potential in asthma. Curr Med Chem 16:3875–3885

    Article  CAS  PubMed  Google Scholar 

  2. Montuschi P, Barnes PJ (2011) New perspectives in pharmacological treatment of mild persistent asthma. Drug Discov Today 16:1084–1091. https://doi.org/10.1016/j.drudis.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  3. Fahy JV (2015) Type 2 inflammation in asthma–present in most, absent in many. Nat Rev Immunol 15:57–65. https://doi.org/10.1038/nri3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Palikhe NS, Laratta C, Nahirney D et al (2016) Elevated levels of circulating CD4(+) CRTh2(+) T cells characterize severe asthma. Clin Exp Allergy 46:825–836. https://doi.org/10.1111/cea.12741

    Article  CAS  PubMed  Google Scholar 

  5. Manise M, Bakayoko B, Schleich F et al (2016) IgE mediated sensitisation to aeroallergens in an asthmatic cohort: relationship with inflammatory phenotypes and disease severity. Int J Clin Pract 70:596–605. https://doi.org/10.1111/ijcp.12837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang H, Wu X, Zhu H et al (2015) FOXP3(+)Treg/Th17 cell imbalance in lung tissues of mice with asthma. Int J Clin Exp Med 8:4158–4163

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Vroman H, van den Blink B, Kool M (2015) Mode of dendritic cell activation: the decisive hand in Th2/Th17 cell differentiation. Implications in asthma severity? Immunobiology 220:254–261. https://doi.org/10.1016/j.imbio.2014.09.016

    Article  CAS  PubMed  Google Scholar 

  8. Murdaca G, Colombo BM, Puppo F (2011) The role of Th17 lymphocytes in the autoimmune and chronic inflammatory diseases. Intern Emerg Med 6:487–495. https://doi.org/10.1007/s11739-011-0517-7

    Article  PubMed  Google Scholar 

  9. Thorburn AN, Hansbro PM (2010) Harnessing regulatory T cells to suppress asthma: from potential to therapy. Am J Respir Cell Mol Biol 43:511–519. https://doi.org/10.1165/rcmb.2009-0342TR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zissler UM, Esser-von Bieren J, Jakwerth CA et al (2016) Current and future biomarkers in allergic asthma. Allergy 71:475–494. https://doi.org/10.1111/all.12828

    Article  CAS  PubMed  Google Scholar 

  11. Mannucci PM, Harari S, Martinelli I, Franchini M (2015) Effects on health of air pollution: a narrative review. Intern Emerg Med 10:657–662. https://doi.org/10.1007/s11739-015-1276-7

    Article  PubMed  Google Scholar 

  12. Lötvall J, Akdis CA, Bacharier LB et al (2011) Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol 127:355–360. https://doi.org/10.1016/j.jaci.2010.11.037

    Article  PubMed  Google Scholar 

  13. Shaw DE, Sousa AR, Fowler SJ et al (2015) Clinical and inflammatory characteristics of the European U-BIOPRED adult severe asthma cohort. Eur Respir J. https://doi.org/10.1183/13993003.00779-2015

    Google Scholar 

  14. Montuschi P (2008) Leukotrienes, antileukotrienes and asthma. Mini Rev Med Chem 8:647–656

    Article  CAS  PubMed  Google Scholar 

  15. Page PM, Broek JL, Bousquet J et al (2017) Global strategy for asthma management and prevention. Glob Initiat Asthma. https://doi.org/10.1183/09031936.00138707

  16. Santini G, Mores N, Malerba M et al (2016) Investigational prostaglandin D2 receptor antagonists for airway inflammation. Expert Opin Investig Drugs 25:639–652. https://doi.org/10.1080/13543784.2016.1175434

    Article  CAS  PubMed  Google Scholar 

  17. Molimard M, Mala L, Bourdeix I, Le Gros V (2014) Observational study in severe asthmatic patients after discontinuation of omalizumab for good asthma control. Respir Med 108:571–576. https://doi.org/10.1016/j.rmed.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  18. Arm JP, Bottoli I, Skerjanec A et al (2014) Pharmacokinetics, pharmacodynamics and safety of QGE031 (ligelizumab), a novel high-affinity anti-IgE antibody, in atopic subjects. Clin Exp Allergy 44:1371–1385. https://doi.org/10.1111/cea.12400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cohen ES, Dobson CL, Käck H et al (2014) A novel IgE-neutralizing antibody for the treatment of severe uncontrolled asthma. MAbs 6:756–764. https://doi.org/10.4161/mabs.28394

    Article  PubMed  Google Scholar 

  20. Chan MA, Gigliotti NM, Dotson AL, Rosenwasser LJ (2013) Omalizumab may decrease IgE synthesis by targeting membrane IgE + human B cells. Clin Transl Allergy 3:29. https://doi.org/10.1186/2045-7022-3-29

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yalcin AD (2014) An overview of the effects of anti-IgE therapies. Med Sci Monit 20:1691–1699. https://doi.org/10.12659/MSM.890137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Humbert M, Beasley R, Ayres J et al (2005) Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy 60:309–316. https://doi.org/10.1111/j.1398-9995.2004.00772.x

    Article  CAS  PubMed  Google Scholar 

  23. Hanania NA, Alpan O, Hamilos DL et al (2011) Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a randomized trial. Ann Intern Med 154:573–582. https://doi.org/10.7326/0003-4819-154-9-201105030-00002

    Article  PubMed  Google Scholar 

  24. Gevaert P, Calus L, Van Zele T et al (2013) Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J Allergy Clin Immunol 131(110–6):e1. https://doi.org/10.1016/j.jaci.2012.07.047

    Google Scholar 

  25. Garcia G, Magnan A, Chiron R et al (2013) A proof-of-concept, randomized, controlled trial of omalizumab in patients with severe, difficult-to-control, nonatopic asthma. Chest 144:411–419. https://doi.org/10.1378/chest.12-1961

    Article  CAS  PubMed  Google Scholar 

  26. Pasha MA, Jourd’heuil D, Jourd’heuil F et al (2014) The effect of omalizumab on small airway inflammation as measured by exhaled nitric oxide in moderate-to-severe asthmatic patients. Allergy asthma Proc 35:241–249. https://doi.org/10.2500/aap.2014.35.3741

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Kang J, Wang C et al (2016) Omalizumab improves quality of life and asthma control in chinese patients with moderate to severe asthma: a randomized phase III study. Allergy Asthma Immunol Res 8:319–328. https://doi.org/10.4168/aair.2016.8.4.319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ledford D, Busse W, Trzaskoma B et al (2017) A randomized multicenter study evaluating Xolair persistence of response after long-term therapy. J Allergy Clin Immunol 140(162–169):e2. https://doi.org/10.1016/j.jaci.2016.08.054

    Google Scholar 

  29. Lai T, Wang S, Xu Z et al (2015) Long-term efficacy and safety of omalizumab in patients with persistent uncontrolled allergic asthma: a systematic review and meta-analysis. Sci Rep 5:8191. https://doi.org/10.1038/srep08191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hanania NA, Wenzel S, Rosén K et al (2013) Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. Am J Respir Crit Care Med 187:804–811. https://doi.org/10.1164/rccm.201208-1414OC

    Article  CAS  PubMed  Google Scholar 

  31. Odajima H, Ebisawa M, Nagakura T et al (2017) Long-term safety, efficacy, pharmacokinetics and pharmacodynamics of omalizumab in children with severe uncontrolled asthma. Allergol Int 66:106–115. https://doi.org/10.1016/j.alit.2016.06.004

    Article  PubMed  Google Scholar 

  32. Tajiri T, Niimi A, Matsumoto H et al (2014) Comprehensive efficacy of omalizumab for severe refractory asthma: a time-series observational study. Ann Allergy Asthma Immunol 113(470–5):e2. https://doi.org/10.1016/j.anai.2014.06.004

    Google Scholar 

  33. Nopp A, Johansson SGO, Adédoyin J et al (2010) After 6 years with Xolair; a 3-year withdrawal follow-up. Allergy 65:56–60. https://doi.org/10.1111/j.1398-9995.2009.02144.x

    Article  CAS  PubMed  Google Scholar 

  34. Zazzali JL, Raimundo KP, Trzaskoma B et al (2015) Changes in asthma control, work productivity, and impairment with omalizumab: 5-year EXCELS study results. Allergy Asthma Proc 36:283–292. https://doi.org/10.2500/aap.2015.36.3849

    Article  CAS  PubMed  Google Scholar 

  35. Nopp A, Johansson SGO, Ankerst J et al (2007) CD-sens and clinical changes during withdrawal of Xolair after 6 years of treatment. Allergy 62:1175–1181. https://doi.org/10.1111/j.1398-9995.2007.01476.x

    Article  CAS  PubMed  Google Scholar 

  36. Skiepko R, Ziętkowski Z, Lukaszyk M et al (2014) Changes in blood eosinophilia during omalizumab therapy as a predictor of asthma exacerbation. Postȩpy dermatologii i Alergol 31:305–309. https://doi.org/10.5114/pdia.2014.40973

    Article  Google Scholar 

  37. Zietkowski Z, Skiepko R, Tomasiak-Lozowska MM et al (2011) RANTES in exhaled breath condensate of patients with severe persistent allergic asthma during omalizumab therapy. Int Arch Allergy Immunol 154:25–32. https://doi.org/10.1159/000319205

    Article  CAS  PubMed  Google Scholar 

  38. Zietkowski Z, Skiepko R, Tomasiak-Lozowska MM, Bodzenta-Lukaszyk A (2011) Airway inflammation and eotaxin in exhaled breath condensate of patients with severe persistent allergic asthma during omalizumab therapy. Adv Med Sci 56:318–322. https://doi.org/10.2478/v10039-011-0024-0

    Article  CAS  PubMed  Google Scholar 

  39. Nopp A, Johansson SGO, Ankerst J et al (2006) Basophil allergen threshold sensitivity: a useful approach to anti-IgE treatment efficacy evaluation. Allergy 61:298–302. https://doi.org/10.1111/j.1398-9995.2006.00987.x

    Article  CAS  PubMed  Google Scholar 

  40. Travers J, Marsh S, Williams M et al (2007) External validity of randomised controlled trials in asthma: to whom do the results of the trials apply? Thorax 62:219–223. https://doi.org/10.1136/thx.2006.066837

    Article  PubMed  Google Scholar 

  41. Gibson PG, Reddel H, McDonald VM et al (2016) Effectiveness and response predictors of omalizumab in a severe allergic asthma population with a high prevalence of comorbidities: the Australian Xolair Registry. Intern Med J 46:1054–1062. https://doi.org/10.1111/imj.13166

    Article  CAS  PubMed  Google Scholar 

  42. Molimard M, de Blay F, Didier A, Le Gros V (2008) Effectiveness of omalizumab (Xolair) in the first patients treated in real-life practice in France. Respir Med 102:71–76. https://doi.org/10.1016/j.rmed.2007.08.006

    Article  PubMed  Google Scholar 

  43. Cazzola M, Camiciottoli G, Bonavia M et al (2010) Italian real-life experience of omalizumab. Respir Med 104:1410–1416. https://doi.org/10.1016/j.rmed.2010.04.013

    Article  CAS  PubMed  Google Scholar 

  44. Niven RM, Saralaya D, Chaudhuri R et al (2016) Impact of omalizumab on treatment of severe allergic asthma in UK clinical practice: a UK multicentre observational study (the APEX II study). BMJ Open 6:e011857. https://doi.org/10.1136/bmjopen-2016-011857

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen H-C, Huang C-D, Chang E, Kuo H-P (2016) Efficacy of omalizumab (Xolair®) in patients with moderate to severe predominately chronic oral steroid dependent asthma in Taiwan: a retrospective, population-based database cohort study. BMC Pulm Med 16:3. https://doi.org/10.1186/s12890-015-0156-2

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sposato B, Scalese M, Latorre M et al (2016) Effects of omalizumab in severe asthmatics across ages: a real life Italian experience. Respir Med 119:141–149. https://doi.org/10.1016/j.rmed.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  47. Abraham I, Alhossan A, Lee CS et al (2016) “Real-life” effectiveness studies of omalizumab in adult patients with severe allergic asthma: systematic review. Allergy 71:593–610. https://doi.org/10.1111/all.12815

    Article  CAS  PubMed  Google Scholar 

  48. Caminati M, Senna G, Guerriero M et al (2015) Omalizumab for severe allergic asthma in clinical trials and real-life studies: what we know and what we should address. Pulm Pharmacol Ther 31:28–35. https://doi.org/10.1016/j.pupt.2015.01.006

    Article  CAS  PubMed  Google Scholar 

  49. Mansur AH, Srivastava S, Mitchell V et al (2017) Longterm clinical outcomes of omalizumab therapy in severe allergic asthma: study of efficacy and safety. Respir Med 124:36–43. https://doi.org/10.1016/j.rmed.2017.01.008

    Article  PubMed  Google Scholar 

  50. Hew M, Gillman A, Sutherland M et al (2016) Real-life effectiveness of omalizumab in severe allergic asthma above the recommended dosing range criteria. Clin Exp Allergy 46:1407–1415. https://doi.org/10.1111/cea.12774

    Article  CAS  PubMed  Google Scholar 

  51. Gauvreau GM, Arm JP, Boulet LP et al (2016) Efficacy and safety of multiple doses of QGE031 (ligelizumab) versus omalizumab and placebo in inhibiting allergen-induced early asthmatic responses. J Allergy Clin Immunol 138:1051–1059. https://doi.org/10.1016/j.jaci.2016.02.027

    Article  CAS  PubMed  Google Scholar 

  52. Nyborg AC, Zacco A, Ettinger R et al (2016) Development of an antibody that neutralizes soluble IgE and eliminates IgE expressing B cells. Cell Mol Immunol 13(3):391–400. https://doi.org/10.1038/cmi.2015.19

    Article  CAS  PubMed  Google Scholar 

  53. Sheldon E, Schwickart M, Li J et al (2016) Pharmacokinetics, pharmacodynamics, and safety of MEDI4212, an anti-IgE monoclonal antibody, in subjects with atopy: a phase I study. Adv Ther 33:225–251. https://doi.org/10.1007/s12325-016-0287-8

    Article  CAS  PubMed  Google Scholar 

  54. Caruso M, Crisafulli E, Demma S et al (2013) Disabling inflammatory pathways with biologics and resulting clinical outcomes in severe asthma. Expert Opin Biol Ther 13:393–402. https://doi.org/10.1517/14712598.2013.743989

    Article  CAS  PubMed  Google Scholar 

  55. Desai D, Brightling C (2009) Cytokine and anti-cytokine therapy in asthma: ready for the clinic? Clin Exp Immunol 158:10–19. https://doi.org/10.1111/j.1365-2249.2009.03998.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Haldar P, Brightling CE, Hargadon B et al (2009) Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med 360:973–984. https://doi.org/10.1056/NEJMoa0808991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nair P, Pizzichini MMM, Kjarsgaard M et al (2009) Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med 360:985–993. https://doi.org/10.1056/NEJMoa0805435

    Article  CAS  PubMed  Google Scholar 

  58. U.S. Food and Drug Administration. FDA News Release: FDA approves Nucala to treat severe asthma (2015) https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm471031.htm. Accessed 30 Oct 2016

  59. Flood-Page P, Swenson C, Faiferman I et al (2007) A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am J Respir Crit Care Med 176:1062–1071. https://doi.org/10.1164/rccm.200701-085OC

    Article  CAS  PubMed  Google Scholar 

  60. Leckie MJ, ten Brinke A, Khan J et al (2000) Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet (London, England) 356:2144–8

  61. Pavord ID, Korn S, Howarth P et al (2012) Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet (London, England) 380:651–9. https://doi.org/10.1016/S0140-6736(12)60988-X

  62. Bel EH, Wenzel SE, Thompson PJ et al (2014) Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N Engl J Med 371:1189–1197. https://doi.org/10.1056/NEJMoa1403291

    Article  PubMed  Google Scholar 

  63. Ortega HG, Liu MC, Pavord ID et al (2014) Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med 371:1198–1207. https://doi.org/10.1056/NEJMoa1403290

    Article  PubMed  Google Scholar 

  64. Ortega HG, Yancey SW, Mayer B et al (2016) Severe eosinophilic asthma treated with mepolizumab stratified by baseline eosinophil thresholds: a secondary analysis of the DREAM and MENSA studies. Lancet Respir Med 4:549–556. https://doi.org/10.1016/S2213-2600(16)30031-5

    Article  CAS  PubMed  Google Scholar 

  65. Magnan A, Bourdin A, Prazma CM et al (2016) Treatment response with mepolizumab in severe eosinophilic asthma patients with previous omalizumab treatment. Allergy 71:1335–1344. https://doi.org/10.1111/all.12914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lugogo N, Domingo C, Chanez P et al (2016) Long-term efficacy and safety of mepolizumab in patients with severe eosinophilic asthma: a multi-center, open-label. Phase IIIb Study. Clin Ther 38(2058–2070):e1. https://doi.org/10.1016/j.clinthera.2016.07.010

    Google Scholar 

  67. Haldar P, Brightling CE, Singapuri A et al (2014) Outcomes after cessation of mepolizumab therapy in severe eosinophilic asthma: a 12-month follow-up analysis. J Allergy Clin Immunol 133:921–923. https://doi.org/10.1016/j.jaci.2013.11.026

    Article  CAS  PubMed  Google Scholar 

  68. Zhang J, Kuvelkar R, Murgolo NJ et al (1999) Mapping and characterization of the epitope(s) of Sch 55700, a humanized mAb, that inhibits human IL-5. Int Immunol 11:1935–1944

    Article  CAS  PubMed  Google Scholar 

  69. Máspero J (2017) Reslizumab in the treatment of inadequately controlled asthma in adults and adolescents with elevated blood eosinophils: clinical trial evidence and future prospects. Ther Adv Respir Dis 11:311–325. https://doi.org/10.1177/1753465817717134

    Article  PubMed  Google Scholar 

  70. Kips JC, O’Connor BJ, Langley SJ et al (2003) Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: a pilot study. Am J Respir Crit Care Med 167:1655–1659. https://doi.org/10.1164/rccm.200206-525OC

    Article  PubMed  Google Scholar 

  71. Castro M, Mathur S, Hargreave F et al (2011) Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med 184:1125–1132. https://doi.org/10.1164/rccm.201103-0396OC

    Article  CAS  PubMed  Google Scholar 

  72. Castro M, Zangrilli J, Wechsler ME et al (2015) Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir Med 3:355–366. https://doi.org/10.1016/S2213-2600(15)00042-9

    Article  CAS  PubMed  Google Scholar 

  73. Corren J, Weinstein S, Janka L et al (2016) Phase 3 study of reslizumab in patients with poorly controlled asthma. Chest 150:799–810. https://doi.org/10.1016/j.chest.2016.03.018

    Article  PubMed  Google Scholar 

  74. Bjermer L, Lemiere C, Maspero J et al (2016) Reslizumab for inadequately controlled asthma with elevated blood eosinophil levels. Chest 150:789–798. https://doi.org/10.1016/j.chest.2016.03.032

    Article  PubMed  Google Scholar 

  75. Brusselle G, Canvin J, Weiss S et al (2017) Stratification of eosinophilic asthma patients treated with reslizumab and GINA Step 4 or 5 therapy. ERJ Open Res 3:00004–02017. https://doi.org/10.1183/23120541.00004-2017

    Article  PubMed  PubMed Central  Google Scholar 

  76. Weinstein SF, Germinaro M, Bardin P et al (2016) Efficacy of reslizumab with asthma, chronic sinusitis with nasal polyps and elevated blood eosinophils. J Allergy Clin Immunol. Elsevier AB86

  77. Virchow JC, Zangrilli J, Weiss S, Korn S (2016) Reslizumab (RES) in patients (pts) with inadequately controlled asthma and elevated blood eosinophils (EOS): Analysis of two phase 3, placebo-controlled trials. In: 5.1 Airway pharmacology and treatment. European Respiratory Society, pp OA1797

  78. Brusselle G, McElhattan J, Canvin J, Buhl R (2016) Reslizumab (RES) in asthma patients (pts) with severe eosinophilic asthma stratified by GINA asthma steps 4 and 5: Analysis of two phase 3, placebo (PBO)-controlled trials. In: 5.1 airway pharmacology and treatment. European Respiratory Society, pp PA4107

  79. Ghazi A, Trikha A, Calhoun WJ (2012) Benralizumab—a humanized mAb to IL-5Rα with enhanced antibody-dependent cell-mediated cytotoxicity—a novel approach for the treatment of asthma. Expert Opin Biol Ther 12:113–118. https://doi.org/10.1517/14712598.2012.642359

    Article  CAS  PubMed  Google Scholar 

  80. Laviolette M, Gossage DL, Gauvreau G et al (2013) Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J Allergy Clin Immunol 132(1086–1096):e5. https://doi.org/10.1016/j.jaci.2013.05.020

    Google Scholar 

  81. Castro M, Wenzel SE, Bleecker ER et al (2014) Benralizumab, an anti-interleukin 5 receptor α monoclonal antibody, versus placebo for uncontrolled eosinophilic asthma: a phase 2b randomised dose-ranging study. Lancet Respir Med 2:879–890. https://doi.org/10.1016/S2213-2600(14)70201-2

    Article  CAS  PubMed  Google Scholar 

  82. FitzGerald JM, Bleecker ER, Nair P et al (2016) Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 388:2128–2141. https://doi.org/10.1016/S0140-6736(16)31322-8

    Article  CAS  PubMed  Google Scholar 

  83. Bleecker ER, FitzGerald JM, Chanez P et al (2016) Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet 388:2115–2127. https://doi.org/10.1016/S0140-6736(16)31324-1

    Article  CAS  PubMed  Google Scholar 

  84. Goldman M, Hirsch I, Zangrilli JG et al (2017) The association between blood eosinophil count and benralizumab efficacy for patients with severe, uncontrolled asthma: subanalyses of the Phase III SIROCCO and CALIMA studies. Curr Med Res Opin 33:1605–1613. https://doi.org/10.1080/03007995.2017.1347091

    Article  CAS  PubMed  Google Scholar 

  85. FitzGerald JM, Bleecker ER, Menzies-Gow A et al (2017) Predictors of enhanced response with benralizumab for patients with severe asthma: pooled analysis of the SIROCCO and CALIMA studies. Lancet Respir Med pii S2213–2600(17):30344–30352. https://doi.org/10.1016/S2213-2600(17)30344-2

    Google Scholar 

  86. Nair P, Wenzel S, Rabe KF et al (2017) Oral glucocorticoid-sparing effect of benralizumab in severe asthma. N Engl J Med 376:2448–2458. https://doi.org/10.1056/NEJMoa1703501

    Article  CAS  PubMed  Google Scholar 

  87. A study to evaluate the onset of effect and time course of change in lung function with benralizumab in severe, uncontrolled asthma patients with eosinophilic inflammation (SOLANA)—full text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02869438?term=benralizumab&cond=Asthma&draw=1&rank=2. Accessed 11 Oct 2017

  88. Efficacy and Safety Study of Benralizumab in Patients With Uncontrolled Asthma on Medium to High Dose Inhaled Corticosteroid Plus LABA (MIRACLE)—Full Text View—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03186209?term=benralizumab&cond=Asthma&draw=1&rank=4. Accessed 11 Oct 2017

  89. A study of the safety and effectiveness of benralizumab to treat patients with severe uncontrolled asthma. (ANDHI)—full text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03170271?term=benralizumab&cond=Asthma&draw=1&rank=5. Accessed 11 Oct 2017

  90. Santini G, Mores N, Malerba M et al (2017) Dupilumab for the treatment of asthma. Expert Opin Investig Drugs 26:357–366. https://doi.org/10.1080/13543784.2017.1282458

    Article  CAS  PubMed  Google Scholar 

  91. Wenzel S, Castro M, Corren J et al (2016) Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet 388:31–44. https://doi.org/10.1016/S0140-6736(16)30307-5

    Article  CAS  PubMed  Google Scholar 

  92. Evaluation of dupilumab in patients with persistent asthma (liberty asthma quest)—full text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/study/NCT02414854. Accessed 10 Oct 2017

  93. Evaluation of dupilumab in patients with severe steroid dependent asthma—full text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02528214. Accessed 10 Oct 2017

  94. Long-term safety evaluation of dupilumab in patients with asthma (LIBERTY ASTHMA TRAVERSE)—tabular view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/record/NCT02134028. Accessed 10 Oct 2017

  95. Domingo C, Pomares X, Navarro A et al (2017) Omalizumab is equally effective in persistent allergic oral corticosteroid-dependent asthma caused by either seasonal or perennial allergens: a pilot study. Int J Mol Sci 18:521. https://doi.org/10.3390/ijms18030521

    Article  PubMed Central  Google Scholar 

  96. Kupryś-Lipińska I, Kuna P (2014) Loss of asthma control after cessation of omalizumab treatment: real life data. Postȩpy dermatologii i Alergol 31:1–5. https://doi.org/10.5114/pdia.2014.40553

    Google Scholar 

  97. Braunstahl G-J, Chen C-W, Maykut R et al (2013) The eXpeRience registry: the “real-world” effectiveness of omalizumab in allergic asthma. Respir Med 107:1141–1151. https://doi.org/10.1016/j.rmed.2013.04.017

    Article  PubMed  Google Scholar 

  98. Zazzali JL, Raimundo KP, Trzaskoma B et al (2015) Changes in asthma control, work productivity, and impairment with omalizumab: 5-year EXCELS study results. Allergy Asthma Proc 36:283–292. https://doi.org/10.2500/aap.2015.36.3849

    Article  Google Scholar 

  99. Pelaia G, Vatrella A, Busceti MT et al (2015) Anti-IgE therapy with omalizumab for severe asthma: current concepts and potential developments. Curr Drug Targets 16:171–178

    Article  CAS  PubMed  Google Scholar 

  100. Pasha MA, Jourd’heuil D, Jourd’heuil F et al (2014) The effect of omalizumab on small airway inflammation as measured by exhaled nitric oxide in moderate-to-severe asthmatic patients. Allergy Asthma Proc 35:241–249. https://doi.org/10.2500/aap.2014.35.3741

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Caruso.

Ethics declarations

Conflict of interest

None.

Statement of human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caruso, M., Morjaria, J., Emma, R. et al. Biologic agents for severe asthma patients: clinical perspectives and implications. Intern Emerg Med 13, 155–176 (2018). https://doi.org/10.1007/s11739-017-1773-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-017-1773-y

Keywords

Navigation