Skip to main content
Log in

Hilar cholangiocarcinoma: Pathology and tumor biology

  • Review
  • Published:
Frontiers of Medicine in China Aims and scope Submit manuscript

Abstract

Hilar cholangiocarcinoma, first described by Klatskin in 1965, is a relatively rare tumor arising from the bile ducts. The histomorphological features of hilar cholangiocarcinoma are identical with other extra- and intra-hepatic bile duct carcinomas. The most common disease associated with cholangiocarcinoma is primary sclerosing cholangitis. The development of cholangiocarcinoma is a multistep process associated with several mutations in oncogenes and tumor-suppressor genes. Based on macroscopic appearance, three distinct subtypes have been described: sclerosing, nodular, and papillary. Microscopically, more than 95% of tumors are adenocarcinomas. Hilar cholangiocarcinoma is a slowly growing tumor and tends to spread longitudinally along the bile ducts with neural, perineural, and subepithelial extension. Lymph node invasion can be found in 30%–50% patients at the time of diagnosis, but blood-born metastases are rare and usually occur at late stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blechacz B, Gores G J. Cholangiocarcinoma: advances in pathogenesis, diagnosis, and treatment. Hepatology, 2008, 48(1): 308–321

    Article  CAS  PubMed  Google Scholar 

  2. Welzel T M, McGlynn K A, Hsing AW, O’Brien T R, Pfeiffer R M. Impact of classication of hila rcholangiocarcinomas (Klatskin tumors) on the incidence of intra- and extrahepatic cholangiocarcinoma in the United States. J Natl Cancer Inst, 2006, 98(12): 873–875

    Article  PubMed  Google Scholar 

  3. Ustundag Y, Bayraktar Y. Cholangiocarcinoma: a compact review of the literature. World J Gastroenterol, 2008, 14(42): 6458–6466

    Article  PubMed  Google Scholar 

  4. Mosconi S, Beretta G D, Labianca R, Zampino M G, Gatta G, Heinemann V. Cholangiocarcinoma. Crit Rev Oncol Hematol, 2009, 69(3): 259–270

    Article  PubMed  Google Scholar 

  5. Khan S A, Thomas H C, Davidson B R, Taylor-Robinson S D. Cholangiocarcinoma. Lancet, 2005, 366(9493): 1303–1314

    Article  PubMed  Google Scholar 

  6. Yachimski P, Pratt D S. Cholangiocarcinoma: natural history, treatment, and strategies for surveillance in high-risk patients. J Clin Gastroenterol, 2008, 42(2): 178–190

    Article  PubMed  Google Scholar 

  7. Klatskin G. Adenocarcinoma of the hepatic duct at its bifurcation within the porta hepatis. Am J Med, 1965, 38: 241–256

    Article  CAS  PubMed  Google Scholar 

  8. Khan S A, Miras A, Pelling M, Taylor-Robinson S D. Cholangiocarcinoma and its management. Gut, 2007, 56(12): 1755–1756

    Article  CAS  PubMed  Google Scholar 

  9. Yang J, Yan L N. Current status of intrahepatic cholangiocarcinoma. World J Gastroenterol, 2008, 14(41): 6289–6297

    Article  PubMed  Google Scholar 

  10. Hammill C W, Wong L L. Intrahepatic cholangiocarcinoma: a malignancy of increasing importance. J Am Coll Surg, 2008, 207(4): 594–603

    Article  PubMed  Google Scholar 

  11. Aljiffry M, Walsh M J, Molinari M. Advances in diagnosis, treatment and palliation of cholangiocarcinoma: 1990–2009. World J Gastroenterol, 2009, 15(34): 4240–4262

    Article  CAS  PubMed  Google Scholar 

  12. McLean L, Patel T. Racial and ethnic variations in the epidemiology of intrahepatic cholangiocarcinoma in the United States. Liver Int, 2006, 26(9): 1047–1053

    Article  PubMed  Google Scholar 

  13. Abbas G, Lindor K D. Cholangiocarcinoma in primary sclerosing cholangitis. J Gastrointest Cancer, 2009, 40(1–2): 19–25

    Article  PubMed  Google Scholar 

  14. Burak K, Angulo P, Pasha T M, Egan K, Petz J, Lindor K D. Incidence and risk factors for cholangiocarcinoma in primary sclerosing cholangitis. Am J Gastroenterol, 2004, 99(3): 523–526

    Article  PubMed  Google Scholar 

  15. Boberg K M, Bergquist A, Mitchell S, Pares A, Rosina F, Broomé U, Chapman R, Fausa O, Egeland T, Rocca G, Schrumpf E. Cholangiocarcinoma in primary sclerosing cholangitis: risk factors and clinical presentation. Scand J Gastroenterol, 2002, 37(10): 1205–1211

    Article  CAS  PubMed  Google Scholar 

  16. Lazaridis K N, Gores G J. Primary sclerosing cholangitis and cholangiocarcinoma. Semin Liver Dis, 2006, 26(1): 42–51

    Article  CAS  PubMed  Google Scholar 

  17. Charatcharoenwitthaya P, Enders F B, Halling K C, Lindor K D. Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma in primary sclerosing cholangitis. Hepatology, 2008, 48(4): 1106–1117

    Article  CAS  PubMed  Google Scholar 

  18. de Vries J S, de Vries S, Aronson D C, Bosman D K, Rauws E A, Bosma A, Heij H A, Gouma D J, van Gulik TM. Choledochal cysts: age of presentation, symptoms, and late complications related to Todani’s classification. J Pediatr Surg, 2002, 37(11): 1568–1573

    Article  PubMed  Google Scholar 

  19. Ishiguro S, Inoue M, Kurahashi N, Iwasaki M, Sasazuki S, Tsugane S. Risk factors of biliary tract cancer in a large-scale population-based cohort study in Japan (JPHC study); with special focus on cholelithiasis, body mass index, and their effect modification. Cancer Causes Control, 2008, 19(1): 33–41

    Article  PubMed  Google Scholar 

  20. Miyazaki M, Takada T, Miyakawa S, Tsukada K, Nagino M, Kondo S, Furuse J, Saito H, Tsuyuguchi T, Chijiiwa K, Kimura F, Yoshitomi H, Nozawa S, Yoshida M, Wada K, Amano H, Miura F. Risk factors for biliary tract and ampullary carcinomas and prophylactic surgery for these factors. J Hepatobiliary Pancreat Surg, 2008, 15(1): 15–24

    Article  PubMed  Google Scholar 

  21. Strömberg C, Luo J, Enochsson L, Arnelo U, Nilsson M. Endoscopic sphincterotomy and risk of malignancy in the bile ducts, liver, and pancreas. Clin Gastroenterol Hepatol, 2008, 6(9): 1049–1053

    Article  PubMed  Google Scholar 

  22. Mortensen F V, Jepsen P, Tarone R E, Funch-Jensen P, Jensen L S, Sørensen H T. Endoscopic sphincterotomy and long-term risk of cholangiocarcinoma: a population-based follow-up study. J Natl Cancer Inst, 2008, 100(10): 745–750

    Article  PubMed  Google Scholar 

  23. Kim H G, Han J, Kim M H, Cho K H, Shin I H, Kim G H, Kim J S, Kim J B, Kim T N, Kim T H, Kim T H, Kim J W, Ryu J K, Moon Y S, Moon J H, Park S J, Park C G, Bang S J, Yang C H, Yoo K S, Yoo B M, Lee K T, Lee D K, Lee B S, Lee S S, Lee S O, Lee WJ, Cho C M, Joo Y E, Cheon G J, Choi YW, Chung J B, Yoon Y B. Prevalence of clonorchiasis in patients with gastrointestinal disease: a Korean nationwide multicenter survey. World J Gastroenterol, 2009, 15(1): 86–94

    Article  PubMed  Google Scholar 

  24. Poomphakwaen K, Promthet S, Kamsa-Ard S, Vatanasapt P, Chaveepojnkamjorn W, Klaewkla J, Sujirarat D, Pichainarong N. Risk factors for cholangiocarcinoma in Khon Kaen, Thailand: a nested case-control study. Asian Pac J Cancer Prev, 2009, 10(2): 251–258

    PubMed  Google Scholar 

  25. Andoh H, Yasui O, Kurokawa T, Sato T. Cholangiocarcinoma coincident with schistosomiasis japonica. J Gastroenterol, 2004, 39(1): 64–68

    Article  PubMed  Google Scholar 

  26. Sahani D, Prasad S R, Tannabe K K, Hahn P F, Mueller P R, Saini S. Thorotrast-induced cholangiocarcinoma: case report. Abdom Imaging, 2003, 28(1): 72–74

    Article  CAS  PubMed  Google Scholar 

  27. Lipshutz G S, Brennan T V, Warren R S. Thorotrast-induced liver neoplasia: a collective review. J Am Coll Surg, 2002, 195(5): 713–718

    Article  PubMed  Google Scholar 

  28. Lazaridis K N, Gores G J. Cholangiocarcinoma. Gastroenterology, 2005, 128(6): 1655–1667

    Article  PubMed  Google Scholar 

  29. Okuda K, Nakanuma Y, Miyazaki M. Cholangiocarcinoma: recent progress. Part 1: epidemiology and etiology. J Gastroenterol Hepatol, 2002, 17(10): 1049–1055

    Article  PubMed  Google Scholar 

  30. Wu T T, Levy M, Correa A M, Rosen C B, Abraham S C. Biliary intraepithelial neoplasia in patients without chronic biliary disease: analysis of liver explants with alcoholic cirrhosis, hepatitis C infection, and noncirrhotic liver diseases. Cancer, 2009, 115(19): 4564–4575

    Article  PubMed  Google Scholar 

  31. Ben-Menachem T. Risk factors for cholangiocarcinoma. Eur J Gastroenterol Hepatol, 2007, 19(8): 615–617

    Article  PubMed  Google Scholar 

  32. Chuang S C, La Vecchia C, Boffetta P. Liver cancer: descriptive epidemiology and risk factors other than HBV and HCV infection. Cancer Lett, 2009, 286(1): 9–14

    Article  CAS  PubMed  Google Scholar 

  33. Lee C H, Chang C J, Lin Y J, Yeh C N, Chen M F, Hsieh S Y. Viral hepatitis-associated intrahepatic cholangiocarcinoma shares common disease processes with hepatocellular carcinoma. Br J Cancer, 2009, 100(11): 1765–1770

    Article  CAS  PubMed  Google Scholar 

  34. Kobayashi M, Ikeda K, Saitoh S, Suzuki F, Tsubota A, Suzuki Y, Arase Y, Murashima N, Chayama K, Kumada H. Incidence of primary cholangiocellular carcinoma of the liver in japanese patients with hepatitis C virus-related cirrhosis. Cancer, 2000, 88(11): 2471–2477

    Article  CAS  PubMed  Google Scholar 

  35. Zhou YM, Yin Z F, Yang JM, Li B, Shao WY, Xu F, Wang Y L, Li D Q. Risk factors for intrahepatic cholangiocarcinoma: a casecontrol study in China.World J Gastroenterol, 2008, 14(4): 632–635

    Article  PubMed  Google Scholar 

  36. El-Serag H B, Engels E A, Landgren O, Chiao E, Henderson L, Amaratunge H C, Giordano T P. Risk of hepatobiliary and pancreatic cancers after hepatitis C virus infection: A population-based study of U.S. veterans. Hepatology, 2009, 49(1): 116–123

    Article  PubMed  Google Scholar 

  37. Jaiswal M, LaRusso N F, Burgart L J, Gores G J. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res, 2000, 60(1): 184–190

    CAS  PubMed  Google Scholar 

  38. Jaiswal M, LaRusso N F, Gores G J. Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation to oncogenesis. Am J Physiol Gastrointest Liver Physiol, 2001, 281(3): G626–G634

    CAS  PubMed  Google Scholar 

  39. Schottenfeld D, Beebe-Dimmer J. Chronic inflammation: a common and important factor in the pathogenesis of neoplasia. CA Cancer J Clin, 2006, 56(2): 69–83

    Article  PubMed  Google Scholar 

  40. Wise C, Pilanthananond M, Perry B F, Alpini G, McNeal M, Glaser S S. Mechanisms of biliary carcinogenesis and growth. World J Gastroenterol, 2008, 14(19): 2986–2989

    Article  CAS  PubMed  Google Scholar 

  41. Prawan A, Buranrat B, Kukongviriyapan U, Sripa B, Kukongviriyapan V. Inflammatory cytokines suppress NAD(P)H:quinone oxidoreductase-1 and induce oxidative stress in cholangiocarcinoma cells. J Cancer Res Clin Oncol, 2009, 135(4): 515–522

    Article  CAS  PubMed  Google Scholar 

  42. Mon N N, Kokuryo T, Hamaguchi M. Inflammation and tumor progression: a lesson from TNF-alpha-dependent FAK signaling in cholangiocarcinoma. Methods Mol Biol, 2009, 512: 279–293

    Article  CAS  PubMed  Google Scholar 

  43. Han C, Wu T. Cyclooxygenase-2-derived prostaglandin E2 promotes human cholangiocarcinoma cell growth and invasion through EP1 receptor-mediated activation of the epidermal growth factor receptor and Akt. J Biol Chem, 2005, 280(25): 24053–24063

    Article  CAS  PubMed  Google Scholar 

  44. Sirica A E. Role of ErbB family receptor tyrosine kinases in intrahepatic cholangiocarcinoma. World J Gastroenterol, 2008, 14(46): 7033–7058

    Article  CAS  PubMed  Google Scholar 

  45. Fava G, Marzioni M, Benedetti A, Glaser S, DeMorrow S, Francis H, Alpini G. Molecular pathology of biliary tract cancers. Cancer Lett, 2007, 250(2): 155–167

    Article  CAS  PubMed  Google Scholar 

  46. Lai G H, Zhang Z, Shen X N, Ward D J, Dewitt J L, Holt S E, Rozich R A, Hixson D C, Sirica A E. erbB-2/neu transformed rat cholangiocytes recapitulate key cellular and molecular features of human bile duct cancer. Gastroenterology, 2005, 129(6): 2047–2057

    Article  CAS  PubMed  Google Scholar 

  47. Aishima S I, Taguchi K I, Sugimachi K, Shimada M, Sugimachi K, Tsuneyoshi M. c-erbB-2 and c-Met expression relates to cholangiocarcinogenesis and progression of intrahepatic cholangiocarcinoma. Histopathology, 2002, 40(3): 269–278

    Article  PubMed  Google Scholar 

  48. Yoon J H, Gwak G Y, Lee H S, Bronk S F, Werneburg N W, Gores G J. Enhanced epidermal growth factor receptor activation in human cholangiocarcinoma cells. J Hepatol, 2004, 41(5): 808–814

    Article  CAS  PubMed  Google Scholar 

  49. Choi H J, Kim H J, Choi J H. Expression of c-erbB-2 and cyclooxygenase-2 in intrahepatic cholangiocarcinoma. Hepatogastroenterology, 2009, 56(91–92): 606–609

    CAS  PubMed  Google Scholar 

  50. Batheja N, Suriawinata A, Saxena R, Ionescu G, Schwartz M, Thung S N. Expression of p53 and PCNA in cholangiocarcinoma and primary sclerosing cholangitis. Mod Pathol, 2000, 13(12): 1265–1268

    Article  CAS  PubMed  Google Scholar 

  51. Greene F L, Page D L, Fleming I D. AJCC(AmericanJoint Committee on Cancer), cancer staging manual. 6th ed. New York: Springer-Verlag, 2002

    Google Scholar 

  52. Nathan H, Aloia T A, Vauthey J N, Abdalla E K, Zhu A X, Schulick R D, Choti M A, Pawlik T M. A proposed staging system for intrahepatic cholangiocarcinoma. Ann Surg Oncol, 2009, 16(1): 14–22

    Article  PubMed  Google Scholar 

  53. Ito F, Agni R, Rettammel R J, Been M J, Cho C S, Mahvi D M, Rikkers L F, Weber S M. Resection of hilar cholangiocarcinoma: concomitant liver resection decreases hepatic recurrence. Ann Surg, 2008, 248(2): 273–279

    Article  PubMed  Google Scholar 

  54. Anderson C D, Rice M H, Pinson C W, Chapman W C, Chari R S, Delbeke D. Fluorodeoxyglucose PET imaging in the evaluation of gallbladder carcinoma and cholangiocarcinoma. J Gastrointest Surg, 2004, 8(1): 90–97

    Article  PubMed  Google Scholar 

  55. Jarnagin W R, Bowne W, Klimstra D S, Ben-Porat L, Roggin K, Cymes K, Fong Y, DeMatteo R P, D’Angelica M, Koea J, Blumgart L H. Papillary phenotype confers improved survival after resection of hilar cholangiocarcinoma. Ann Surg, 2005, 241(5): 703–712, discussion 712–714

    Article  PubMed  Google Scholar 

  56. Boonmars T, Wu Z, Boonjaruspinyo S, Pinlaor S, Nagano I, Takahashi Y, Kaewsamut B, Yongvanit P. Alterations of gene expression of RB pathway in Opisthorchis viverrini infectioninduced cholangiocarcinoma. Parasitol Res, 2009, 105(5): 1273–1281

    Article  PubMed  Google Scholar 

  57. Songserm N, Prasongwattana J, Sithithaworn P, Sripa B, Pipitkool V. Cholangiocarcinoma in experimental hamsters with longstanding Opisthorchis viverrini infection. Asian Pac J Cancer Prev, 2009, 10(2): 299–302

    PubMed  Google Scholar 

  58. Loilome W, Yongvanit P, Wongkham C, Tepsiri N, Sripa B, Sithithaworn P, Hanai S, Miwa M. Altered gene expression in Opisthorchis viverrini-associated cholangiocarcinoma in hamster model. Mol Carcinog, 2006, 45(5): 279–287

    Article  CAS  PubMed  Google Scholar 

  59. Yeh C N, Maitra A, Lee K F, Jan Y Y, Chen M F. Thioacetamide-induced intestinal-type cholangiocarcinoma in rat: an animal model recapitulating the multi-stage progression of human cholangiocarcinoma. Carcinogenesis, 2004, 25(4): 631–636

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Ping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuang, D., Wang, GP. Hilar cholangiocarcinoma: Pathology and tumor biology. Front. Med. China 4, 371–377 (2010). https://doi.org/10.1007/s11684-010-0130-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-010-0130-6

Keywords

Navigation