Skip to main content
Log in

Optoelectronic Transport Properties of Nanostructured Multi-Quantum Well InAs/GaSb Type II LWIR and MWIR Detectors

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report in this study the optoelectronic properties of mid- and long-wave infrared type II multiple quantum wells (MQWs) of InAs(d1)/GaSb(d2) using our enhanced envelope function formalism at low temperature. We have investigated the band structure energy subbands and carrier effective mass m*/m0 of the MQWs in the growth direction and in-plane. The relationship between semiconductor-to-semimetal (SC–SM) transition and well thickness d1 were analyzed. Furthermore, we studied and interpreted the evolution of the photodetector parameters including fundamental band gap, corresponding cutoff wavelength λc and electron effective mass as a function of the well thickness d1, valence band offset Λ, ratio R = d1/d2 and temperature. We calculated the electronic transport parameters including transport scattering time, Fermi velocity and mean free path for the three investigated MQWs. The studied systems show a direct band gap, and the result of cutoff wavelength in the studied temperature range of 5 K to 300 K indicates that they are mid- and long-wave infrared detectors. We found that the band gap energy is highly dependent on d1. The results of density of states (DOS) and Fermi level energy (EF) show that the conductivity of the system varies from p-type to n-type following the increase in well thickness d1. Our theoretical findings are in good agreement with the available experimental measurements in previous studies, and they provide a route for future improvements in the engineering of infrared devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.K. Bhan and V. Dhar, Recent Infrared Detector Technologies, Applications, Trends and Development of HgCdTe Based Cooled Infrared Focal Plane Arrays and their Characterization. Opto-Electron. Rev. 27, 174 (2019). https://doi.org/10.1016/j.opelre.2019.04.004.

    Article  Google Scholar 

  2. C.L. Tan and H. Mohseni, Emerging Technologies for High Performance Infrared Detectors. Nanophotonics 7, 169 (2018). https://doi.org/10.1515/nanoph-2017-0061.

    Article  Google Scholar 

  3. C. Leroy, P. Chorier, and G. Destefanis, LWIR and VLWIR MCT Technologies and Detectors Development at SOFRADIR for Space Applications. Infrared Technol. Appl. XXXVIII 8353, 944 (2012). https://doi.org/10.1117/12.922128.

    Article  CAS  Google Scholar 

  4. A. Rogalski, Progress in Focal Plane Array Technologies. Prog. Quantum Electron. 36, 342 (2012). https://doi.org/10.1016/j.pquantelec.2012.07.001.

    Article  Google Scholar 

  5. D.Z. Ting, S.B. Rafol, S.A. Keo, J. Nguyen, A. Khoshakhlagh, A. Soibel, L. Hoglund, A.M. Fisher, E.M. Luong, J.M. Mumolo, J.K. Liu, and S.D. Gunapala, InAs/InAsSb Type-II Superlattice Mid-Wavelength Infrared Focal Plane Array with Significantly Higher Operating Temperature Than InSb. IEEE Photonics J (2018). https://doi.org/10.1109/JPHOT.2018.2877632.

    Article  Google Scholar 

  6. Y. Wei, A. Hood, H. Yau, V. Yazdanpanah, M. Razeghi, M.Z. Tidrow, and V. Nathan, High-Performance Type-II InAs/GaSb Superlattice Photodiodes with Cutoff Wavelength Around 7 μm. Appl. Phys. Lett. 86, 091109 (2005). https://doi.org/10.1063/1.1879113.

    Article  CAS  Google Scholar 

  7. G.J. Sullivan, A. Ikhlassi, J. Bergman, R.E. DeWames, J.R. Waldrop, C. Grein, M. Flatté, K. Mahalingam, H. Yang, M. Zhong, and M. Weimer, Molecular Beam Epitaxy Growth of High Quantum Efficiency InAs/GaSb Superlattice Detectors. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 23, 1144 (2005). https://doi.org/10.1116/1.1928238.

    Article  CAS  Google Scholar 

  8. E.H. Aifer, E.M. Jackson, G. Boishin, L.J. Whitman, I. Vurgaftman, J.R. Meyer, J.C. Culbertson, and B.R. Bennett, Very-Long Wave Ternary Antimonide Superlattice Photodiode with 21 μm Cutoff. Appl. Phys. Lett. 82, 4411 (2003). https://doi.org/10.1063/1.1584518.

    Article  CAS  Google Scholar 

  9. A. Rogalski, M. Kopytko, and P. Martyniuk, InAs/GaSb Type-II Superlattice Infrared Detectors: Three Decades of Development. Infrared Technol. Appl. XLIII 10177, 1017715 (2017). https://doi.org/10.1117/12.2272817.

    Article  Google Scholar 

  10. P. Damayanthi, R.P. Joshi, and J.A. McAdoo, Electron Mobility and Drift Velocity Calculations for Bulk GaSb Material. J. Appl. Phys. 86, 5060 (1999). https://doi.org/10.1063/1.371479.

    Article  CAS  Google Scholar 

  11. E. Luna, F. Ishikawa, B. Satpati, J.B. Rodriguez, E. Tournié, and A. Trampert, Interface Properties of (Ga, In)(N, As) and (Ga, In)(As, Sb) Materials Systems Grown by Molecular Beam Epitaxy. J. Cryst. Growth 311, 1739 (2009). https://doi.org/10.1016/j.jcrysgro.2008.10.039.

    Article  CAS  Google Scholar 

  12. P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, New Concepts in Infrared Photodetector Designs. Appl. Phys. Rev. 1, 041102 (2014). https://doi.org/10.1063/1.4896193.

    Article  CAS  Google Scholar 

  13. V. Daumer, V. Gramich, R. Müller, J. Schmidt, F. Rutz, T. Stadelmann, A. Wörl, and R. Rehm, Photodetector Development at Fraunhofer IAF: From LWIR to SWIR Operating From Cryogenic Close to Room Temperature. Infrared Technol. Appl. XLIII (2017). https://doi.org/10.1117/12.2262509.

    Article  Google Scholar 

  14. E.K. Huang, A. Haddadi, G. Chen, B.-M. Nguyen, M.-A. Hoang, R. McClintock, M. Stegall, and M. Razeghi, Type-II Superlattice Dual-Band LWIR Imager with M-Barrier and Fabry–Perot Resonance. Opt. Lett. 36, 2560 (2011). https://doi.org/10.1364/ol.36.002560.

    Article  Google Scholar 

  15. E.A. Plis, InAs/GaSb Type-II Superlattice Detectors. Adv. Electron. 2014, 1 (2014). https://doi.org/10.1155/2014/246769.

    Article  Google Scholar 

  16. M. Razeghi, A. Haddadi, A.M. Hoang, G. Chen, S. Bogdanov, S.R. Darvish, F. Callewaert, P.R. Bijjam, and R. McClintock, Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems. J. Electron. Mater. 43, 2802 (2014). https://doi.org/10.1007/s11664-014-3080-y.

    Article  CAS  Google Scholar 

  17. F. Szmulowicz, H.J. Haugan, S. Elhamri, G.J. Brown, and W.C. Mitchel, Transport Studies of MBE-Grown InAs/GaSb Superlattices. Opto-Electron. Rev. 18, 267 (2010). https://doi.org/10.2478/s11772-010-0027-6.

    Article  CAS  Google Scholar 

  18. H.S. Kim, Optical and Electrical Study of InAs/GaSb Type II Strained Layer Superlattice for Mid-Wave Infrared Detector. J. Korean Phys. Soc. 74, 358 (2019). https://doi.org/10.3938/jkps.74.358.

    Article  CAS  Google Scholar 

  19. Y. Le Thi, Y. Kamakura, and N. Mori, Evaluation of the Optical Characteristics of a Type-II InAs/GaSb Superlattice Infrared p–i–n Photodetector. Jpn. J. Appl. Phys. 58, 081003 (2019). https://doi.org/10.7567/1347-4065/ab2b67.

    Article  CAS  Google Scholar 

  20. R. Alchaar, J.B. Rodriguez, L. Höglund, S. Naureen, and P. Christol, Characterization of an InAs/GaSb Type-II Superlattice Barrier Photodetector Operating in the LWIR Domain. AIP Adv. 9, 055012 (2019). https://doi.org/10.1063/1.5094703.

    Article  CAS  Google Scholar 

  21. G. Bastard, Theoretical Investigations of Superlattice Band Structure in the Envelope-Function Approximation. Phys. Rev. B 25, 7584 (1982).

    Article  CAS  Google Scholar 

  22. D. Barkissy, A. Nafidi, A. Boutramine, N. Benchtaber, A. Khalal, and T. El Gouti, Investigation in Band Structures of GaAs/AlxGa1xAs Nanostructures Superlattices at High Magnetic Field and Low Temperatures. Appl. Phys. A Mater. Sci. Process. 123, 1 (2017). https://doi.org/10.1007/s00339-016-0688-1.

    Article  CAS  Google Scholar 

  23. D. Barkissy, A. Nafidi, A. Boutramine, E.Y. El Yakoubi, and H. Chaib, Investigations in Electronic Quantum Transport of Quasi Two Dimensional InxGa1xAs/InP Nanostructure Superlattice for Infrared Detection. Superlattices Microstruct. 127, 54 (2019). https://doi.org/10.1016/j.spmi.2018.03.016.

    Article  CAS  Google Scholar 

  24. T. Andlauer and P. Vogl, Full-Band Envelope-Function Approach for Type-II Broken-Gap Superlattices. Phys. Rev. B 80, 035304 (2009). https://doi.org/10.1103/PhysRevB.80.035304.

    Article  CAS  Google Scholar 

  25. J.M. Masur, R. Rehm, J. Schmitz, L. Kirste, and M. Walther, Four-Component Superlattice Empirical Pseudopotential Method for InAs/GaSb Superlattices. Infrared Phys. Technol. 61, 129 (2013). https://doi.org/10.1016/j.infrared.2013.07.014.

    Article  CAS  Google Scholar 

  26. E.O. Kane, Band Structure of Indium Antimonide. J. Phys. Chem. Solids 1, 249 (1957). https://doi.org/10.1016/0022-3697(57)90013-6.

    Article  Google Scholar 

  27. I.C. Sandall, J.S. Ng, S. Xie, P.J. Ker, and C.H. Tan, Temperature Dependence of Impact Ionization in InAs. Opt. Express 21, 8630 (2013). https://doi.org/10.1364/oe.21.008630.

    Article  CAS  Google Scholar 

  28. A.P. Roth, W.J. Keeler, and E. Fortin, Photovoltaic Effect and Temperature Dependence of the Energy Gap in the In1xGaxSb Alloy System. Can. J. Phys. 58, 560 (1980). https://doi.org/10.1139/p80-079.

    Article  CAS  Google Scholar 

  29. G.J. Gualtieri, G.P. Schwartz, R.G. Nuzzo, R.J. Malik, and J.F. Walker, Determination of the (100) InAs/GaSb Heterojunction Valence-Band Discontinuity by X-Ray Photoemission Core Level Spectroscopy. J. Appl. Phys. 61, 5337 (1987). https://doi.org/10.1063/1.338270.

    Article  CAS  Google Scholar 

  30. G.A. Sai-Halasz, L.L. Chang, J.M. Welter, C.A. Chang, and L. Esaki, Optical Absorption of In1xGaxAsGaSb1yAsy Superlattices. Solid State Commun. 27, 935 (1978). https://doi.org/10.1016/0038-1098(78)91010-4.

    Article  CAS  Google Scholar 

  31. A.J. Ekpunobi, Curvature of Band Overlap in InAs/GaSb Type II Superlattices. Mater. Sci. Semicond. Process. 8, 463 (2005). https://doi.org/10.1016/j.mssp.2004.05.006.

    Article  CAS  Google Scholar 

  32. S.R.M. Levinshtein, Handbook Series on Semiconductor Parameters (Singapore: World Scientific, 1996).

    Book  Google Scholar 

  33. H.J. Haugan, B. Ullrich, S. Elhamri, F. Szmulowicz, G.J. Brown, L.C. Tung, and Y.J. Wang, Magneto-Optics of InAs/GaSb Superlattices. J. Appl. Phys. 107, 083112 (2010). https://doi.org/10.1063/1.3391976.

    Article  CAS  Google Scholar 

  34. Y. Song, S. Wang, C. Asplund, R.M. von Würtemberg, H. Malm, A. Karim, X. Lu, and J. Shao, Growth Optimization, Strain Compensation and Structure Design of InAs/GaSb Type-II Superlattices for Mid-Infrared Imaging. Cryst. Struct. Theory Appl. 02, 46 (2013). https://doi.org/10.4236/csta.2013.22007.

    Article  CAS  Google Scholar 

  35. J.J. Quinn and J.J. Quinn, Semimetal-Semiconductor Transition in InAs-GaSb Heterostructures. Surf. Sci. 361, 930 (1996). https://doi.org/10.1016/0039-6028(96)00567-5.

    Article  Google Scholar 

  36. L.L. Chang, N.J. Kawai, E.E. Mendez, C.A. Chang, and L. Esaki, Semimetallic InAs-GaSb Superlattices to the Heterojunction Limit. Appl. Phys. Lett. 38, 30 (1981). https://doi.org/10.1063/1.92115.

    Article  CAS  Google Scholar 

  37. I. Lapushkin, A. Zakharova, S.T. Yen, and K.A. Chao, Electronic Band Structure and Semimetal-Semiconductor Transition in InAs/GaSb Quantum Wells. Micro Nanoelectronics 5401, 472 (2004). https://doi.org/10.1117/12.562646.

    Article  CAS  Google Scholar 

  38. D.M. Symons, M. Lakrimi, M. Van Der Burgt, T.A. Vaughan, R.J. Nicholas, N.J. Mason, and P.J. Walker, Temperature Dependence of the Band Overlap in InAs/GaSb Structures. Phys. Rev. B 51, 1729 (1995). https://doi.org/10.1103/PhysRevB.51.1729.

    Article  CAS  Google Scholar 

  39. H. Ünlü, A Thermodynamic Model for Determining Pressure and Temperature Effects on the Bandgap Energies and Other Properties of Some Semiconductors. Solid State Electron. 35, 1343 (1992). https://doi.org/10.1016/0038-1101(92)90170-H.

    Article  Google Scholar 

  40. Y.P. Varshni, Temperature Dependence of the Energy Gap in Semiconductors. Physica 34, 149 (1967). https://doi.org/10.1016/0031-8914(67)90062-6.

    Article  CAS  Google Scholar 

  41. H.J. Haugan, G.J. Brown, F. Szmulowicz, S. Elhamri, B.V. Olson, T.F. Boggess, and L. Grazulis, The role of InAs Thickness on the Material Properties of InAs/GaSb Superlattices, Infrared Remote Sensing and Instrumentation XIX. ed. M. Strojnik, and G. Paez (Bellingham: SPIE, 2011), p. 8154. https://doi.org/10.1117/12.892751.

    Chapter  Google Scholar 

  42. C. Kittel, Introduction to Solid State Physics (New York: Wiley, 2001).

    Google Scholar 

  43. D.L. Smith, C. Mailhiot, and D.L. Smith, Proposal for Strained Type II Superlattice Infrared Detectors Proposal for Strained Type II Superlattice Infrared Detectors. J. Appl. Phys. 62, 2545 (1987). https://doi.org/10.1063/1.339468.

    Article  CAS  Google Scholar 

  44. H. Mohseni, A. Tahraoui, J. Wojkowski, M. Razeghi, G.J. Brown, W.C. Mitchel, and Y.S. Park, Very Long Wavelength Infrared Type-II Detectors Operating at 80 K Very Long Wavelength Infrared Type-II Detectors Operating at 80 K. Appl. Phys. Lett. 77, 1572 (2000). https://doi.org/10.1063/1.1308528.

    Article  CAS  Google Scholar 

  45. J. Imbert, V. Trinite, S. Derelle, J. Jaeck, E. Giard, M. Delmas, M. Carras, R. Haidar, J.B. Rodriguez, and P. Christol, Electronic Structure of InAs/GaSb Superlattice for the Modelling of MWIR Pin Photodiode. Infrared Phys. Technol. 70, 81 (2014). https://doi.org/10.1016/j.infrared.2014.09.035.

    Article  CAS  Google Scholar 

  46. R.J. Nicholas, Y. Shimamoto, Y. Imanaka, N. Miura, N.J. Mason, and P.J. Walker, Interface and Layer Thickness Dependence of the Effective Mass in Superlattices Studied by High Field Cyclotron Resonance. Solid State Electron. 40, 181 (1996). https://doi.org/10.1016/0038-1101(95)00242-1.

    Article  CAS  Google Scholar 

  47. E. Giard, I. Ribet-mohamed, J. Jaeck, T. Viale, R. Haïdar, R. Taalat, M. Delmas, J.-B. Rodriguez, E. Steveler, N. Bardou, F. Boulard, and P. Christol, Quantum Efficiency Investigations of Type-II InAs/GaSb Midwave Infrared Superlattice Photodetectors. J. Appl. Phys. 116, 043101 (2014). https://doi.org/10.1063/1.4890309.

    Article  CAS  Google Scholar 

  48. D.R. Allee, S.Y. Chou, J.S. Harris Jr., and R.F.W. Pease, Engineering Lateral Quantum Interference Devices Using Electron Beam Lithography and Molecular Beam Epitaxy. J. Vac. Sci. Technol. B 7, 2015 (1989). https://doi.org/10.1116/1.584669.

    Article  CAS  Google Scholar 

  49. A. Saxler, P. Debray, R. Perrin, S. Elhamri, W.C. Mitchel, and C.R. Elsass, Electrical Transport of an AlGaN/GaN Two-Dimensional Electron Gas. MRS Internet J. Nitride Semicond. Res. 5, 619 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merieme Benaadad.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benaadad, M., Nafidi, A., Melkoud, S. et al. Optoelectronic Transport Properties of Nanostructured Multi-Quantum Well InAs/GaSb Type II LWIR and MWIR Detectors. J. Electron. Mater. 51, 6835–6845 (2022). https://doi.org/10.1007/s11664-022-09906-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09906-y

Keywords

Navigation