
Statistical Modeling for Prediction of CCT Diagrams
of Steels Involving Interaction of Alloying Elements

HENRY MARTIN , PETER AMOAKO-YIRENKYI, AARNE POHJONEN,
NANA K. FREMPONG, JUKKA KOMI, and MAHESH SOMANI

The interaction of different alloying elements has a significant impact on the mechanical and
microstructural properties of steel products due to the thermodynamic and kinetic effect. This
article presents a statistically developed and validated model for austenite decomposition during
cooling, based on a set of experimental continuous cooling transformation diagrams available in
literature. In the model, two-way interactions of the alloying elements are included as add-on
terms, and the procedure for the analysis ensures there is no overfitting. The model can be used
to predict phase transformation temperatures and critical cooling rates for the formation of
polygonal ferrite, bainite or martensite for the production of steel.
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I. INTRODUCTION

STEEL is used in a wide variety of applications,
which require specific mechanical properties. To achieve
the desired properties, thermomechanical processing
techniques are used, followed by continuous cooling,
which results in specific microstructural evolution
through phase transformation. This naturally influences
the combined requisite property. During the processing,
materials can be either deformed in austenitic state or
as-cast from the melt and then cooled to room temper-
ature. In the cooling stage, austenite can decompose to
ferrite phase types roughly classified as (polygonal)
ferrite, bainite and martensite. Since the different ferritic
phases have a decisive influence on the mechanical
properties, it is important to control the austenite

decomposition process. The most important factor
affecting the austenite decomposition is the chemical
composition of the steel and the applied cooling path.
The austenite decomposition is conventionally repre-

sented using time-temperature diagrams, either for
holding at constant temperature (TTT, time temperature
transformation diagrams) or for cooling at different
rates (CCT, continuous cooling transformation dia-
grams). The TTT diagram can be used to calculate an
estimate for the transformation start using Scheil’s
additivity rule,[1,2] but since there is a considerable
difference in the long-time isothermal holding and fast
continuous cooling, the usage of the CCT diagram gives
a better estimate of the transformation onset during
rapid cooling. Since fast cooling rates are often used in
steel production, predicting the decomposition of
austenite using CCT diagrams was the subject of several
earlier studies.[3–5] Earlier studies[6–8] focused on the
usage of an additive regression model of chemical
composition as well as the cooling path effect for the
start of transformation of ferrite, bainite and martensite,
respectively. In these earlier studies, the interaction of
different alloying elements was not taken into account;
instead, the applied model assumed linear dependence
on the alloying elements. Unfortunately, the physical
interpretation of the overall transformation kinetic of
undercooled austenite in steel is determined by several
factors, such as the mobility of the compositional atoms
participating in the transformation. This results in solute
microsegregation, formation of precipitates, etc., which
signifies interaction among the alloying elements. There-
fore, using an additive model does not practically
represent the physical phenomenon.
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To address this challenge, in this article we present a
model that considers the interaction and quadratic
dependence of alloying elements on the transformation
onset. This provides better description of the experi-
mental data since only the most significant interaction
and quadratic alloying element terms were considered.
This enables all the individual alloying elements to be
significant for the time-dependent growth and response
temperature. The efficiency of the current model has
been further examined by fitting it with the CCT
behavior of several steels, represented in References 9
and 10, which focus on molybdenum-containing steels.

II. METHODOLOGY AND MODEL FORMULA-
TION

This article aims to develop a methodology to model,
analyze and validate the characteristic curves for the
onset of autensite decomposition into the three main
primary undercooled phases, polygonal ferrite, bainite
and martensite, which are normally present on the CCT
diagrams. A range of molybdenum-containing steels
with a wide variety of compositions and different
combinations of alloying elements (two-way interaction)
was used in fitting a linear model. The construction of
longitudinal data (i.e., unbalanced time variation exper-
imental data points)[11] in the field of statistical modeling
and analysis was employed.[12–15] The transformation
start curves marking austenite decomposition were

extracted from various CCT diagrams in the References
9 and 10, thus encompassing 68 curves of ferrite
formation, 52 curves of bainite formation and 26 curves
of martensite formation, as shown in Figure 1.
The chemical compositions shown in Table I give the

range of mass concentration (in wt pct) of alloying
elements used in this study.

A. Model Formulation

In the current study, our intention is to develop a
statistical model and analyze and validate the data set
describing a large number of CCT diagrams. An
example of such a diagram for one steel is shown in
Figure 1(d). The construction of statistically based
models for phase transformation is not new as
researchers in this field seek to simulate the behavior
by drawing a relationship between the fractional weight
of alloying elements, (c), temperature, (T) and time
required for the undercooled formation of phases (t).
The alloying elements play a crucial role in the trans-
formation, and recently it has become even more
important to understand, ascertain and interpret their
interaction to provide a better understanding of various
microstructural phenomena, such as precipitation,
microsegregation and other physical phenomena that
occur in thermomechanical processing. The current
article describes in detail the statistical models that were
fitted to the experimental data and the approach that
provided the best fit to the data.

Fig. 1—Extracted experimental austenite decomposition start curves from various continuous cooling transformation (CCT) diagrams depicting
(a) 68 ferrite start curves, (b) 52 bainite start curves, (c) 26 martensite start curves and (d) corresponding curves for a single steel grade of 0.39
pct C-0.82 pct Mn-0.26 pct Si-0.21 pct Mo-1.0 pct Cr.
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1. Additive regression model
For both polygonal ferrite and bainite, we first fitted

the time coordinate (tcr) corresponding to the fastest
cooling rate that produces the given phase and then we
fitted the coefficients a that describe the effect of alloying
on the transformation temperature where b is the
intercept for the response temperature and d is the
amplitude for the inverse hyperbolic sine function. The
different model formulations are given below. The
implementation of Eqs. [AS1] and [AS2] represents the
relation of the additive function of alloying elements
and time-dependent growth of ferrite and bainite at a
given response temperature. Equation [AS2] is a newly
proposed model that contains a function to decrease the
slope steepness for the onset of ferrite and bainite
compared to the existing model of Eq. [AS1].[6,16] On the
other hand, Eq. [AS3] concerns the formation of
martensite,[8,17] thus presenting time-independent
growth since its response temperature is constant.
Finally, Eq. [AS4] depicts the logarithmic time for the
critical cooling rate in relation to the additive function
of alloying elements that takes care of any form of
skewness in Eqs. [AS1] and [AS2].

T ¼ bþ
Xk

l

alcl þ d arcsinh t� tcrð Þ þ e ½AS1�

T ¼ bþ
Xk

l

alcl þ d arcsinh log10 1þ t� tcrð Þð Þ þ e

½AS2�

T ¼ bþ
Xk

l

alcl þ e ½AS3�

log10 tcr ¼ bþ
Xk

l

alcl þ e ½AS4�

2. Interaction of alloying elements
Alloying elements may have different interacting

effects, either individually or in combination, from both
a thermodynamic and kinetic point of view. Thermody-
namics affects the driving force for the transformations
and grain boundary segregation, and the speed of the
transformation is affected by the atomic mobilities,
which are also subjected to interactions. The Grossman
formulation of hardenability used as todays’ benchmark
is based on all kinds of interaction terms.[18]

The atoms react with each other in any composition
affecting the microstructural processes, such as nucle-
ation, micro-segregation and precipitation in steel pro-
cessing. Hence, it is prudent that terms defining the
interaction of elements are included in the additive
regression model. In statistical modeling this is formu-
lated as follows: when the effect of a predictor on the
response depends on another predictor[19–22] or an
interaction of a predictor variable with itself. The
former is sometimes referred to as a multiplicative
interaction[23,24] and the latter a quadratic effect.
These additional terms have been ignored in most

earlier models for the onset of phase formation in phase
transformation of steel except for modeling C-Mn
steel.[25,26] Both the interaction of two different alloying
elements as well as the quadratic effect of all individual
alloying elements were employed for bainite formation.
Also the quadratic effect of individual alloying elements
was assessed in connection with martensite transforma-
tion in medium carbon S355 steel covering both the
modeling of the start temperature as well as the
prediction of mechanical properties.[27,28]

A two-way interaction, which incorporates either a
single combination of two alloying elements or a
quadratic effect of a single alloying element, or both,
is added to the model in Eqs. [AS1] through [AS4] to
obtain the interaction model shown in Eqs. [I1] through
[I4]. This is done using a stepwise regression
method[29,30] to finalize a model that shows a reasonable
effect, thus comprising good fitting using the model and
the significance of all the individual alloying elements
and their interaction in relation to the response temper-
ature and time-dependent growth.[11]

Table I. Range of Mass Concentration (Weight Percent) of Elements

Range C Mn Si Mo Ni Cr B Co

Ferrite Onset Formation
Min 0.097 0.32 0.16 0 0 0 0 0
Max 0.41 1.47 1.5 0.95 4.45 3.76 0.006 3.9
Bainite Onset Formation
Min 0.097 0.32 0.16 0 0 0 0 0
Max 0.41 1.47 1.5 0.95 4.43 1.54 0.006 3.9
Martensite Onset Formation
Min 0.3 0.68 0.26 0.21 0 0 0 0
Max 0.41 1.45 1.5 0.82 4.43 1.54 0 0
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T ¼ bþ
Xk

l

alcl þ d arcsinh ðt� tcrÞ þ
X2

l; j
hl<ji

Aljclcj þ e

½I1�

T ¼ bþ
Xk

l

alcl þ d arcsinh log10 1þ t� tcrð Þð Þ

þ
X2

l; j
hl<ji

Aljclcj þ e ½I2�

T ¼ bþ
Xk

l

alcl þ
X2

l; j
hl ¼ ji

Bljclcj þ e ½I3�

log10 tcr ¼ bþ
Xk

l

alcl þ
X2

l; j
hl ¼ ji

Bljclcj þ
X2

l; j
hl<ji

Aljclcj

þ e

½I4�

III. RESULTS AND DISCUSSION

The influence of combining alloy elements (i.e.,
two-way interaction) to reveal the impact of alloying
elements on the existing phase transformation model
(additive regression) describing the decomposition of
austenite in steel was modeled, and analyzed as
described in the previous section using mathematical

and computational modeling and simulation tools
(SAS[31], R and MATLAB), and statistical validation
was conducted, as explained in Section III–E.
Table II shows the goodness-of-fit statistics for the

additive model (Eqs. [AS1] through [AS3]) and the best
alloying element interaction attained for the new model
(Eqs. [I1] through [I3]).
From the statistics presented in Table II, the different

selection criteria show how extensive (or little) informa-
tion is lost for a model to obtain its observed data (thus
the smaller the value, the better the fit). This, in effect,
shows the quality of a model that is able to replicate the
observed data, hence causing relatively less error in
prediction. Four types of criteria (�2‘, AIC, AICC and
BIC) are used in this study mainly to show that an
add-on of terms to the additive model (Eqs. [AS1]
through [AS4]) is not causing any overfitting of the
parameter estimate.[11] The goodness-of-fit measurement
shown in Table II depicts the criteria for all of the
models displayed in the table. This indicates that the
addition of an interaction term (thus combining alloying
elements) gives the best fitness (i.e., the best model
described by Eqs. [I 1] through [I4] and the parameters
given in Tables IV, VI, VIII and X.
Also, it is clear from Figures 2, 3, and 4 that the data

set with removed sample ids has a very good fitness
measure. A global sensitivity analysis on studying the
variation between steel grades (influence diagnostics)
was conducted on the additive model (Eqs. [AS1]
through [AS3]) employing Cook’s distance (Di) statistics
for the influence parameter estimate and CovRatio for
the influence precision.[11]

Having known the influence of each steel grade on the
parameter estimates for the additive model, a suit-
able decision was made to delete any sample that did not
give any positive contribution to the extension/adapt-
ability of the model for any steel composition with the
range shown in Table I.
Figures 2, 3, and 4 show the manner in which almost

all the samples are at least contributing to the influence
of the parameter estimate even though a few of them
have a relatively higher impact than the others (thus D

Table II. Criteria (Fit Statistics) for Additive and Interaction Models for Polygonal Ferrite, Bainite and Martensite

Models �2‘ AIC AICC BIC

Onset of Ferrite Formation
AS1 10122.2 10146.2 10146.5 10172.3
AS2 10256.9 10280.9 10281.2 10307.0
I 1 10105.3 10131.3 10131.6 10159.6
I 2 10239.1 10265.1 10265.4 10293.4
Onset of Bainite Formation
AS1 8489.6 8513.6 8513.9 8536.6
AS2 8353.1 8377.1 8377.4 8400.0
I 1 8477.6 8505.6 8506.0 8532.4
I 2 8342.1 8370.1 8370.5 8396.9
Onset of Martensite Formation
AS3 10687.4 10711.4 10711.7 10738.1
I3 10239.1 10265.1 10265.4 10293.4
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Fig. 2—Ferrite formation influence diagnostics of steel grades measuring (a) Cook’s D fixed effects, (b) Cook’s D covariance parameters, (c)
CovRatio fixed effects, (d) CovRatio covariance parameters.

Fig. 3—Bainite formation influence diagnostics of steel grades measuring (a) Cook’s D fixed effects, (b) Cook’s D covariance parameters, (c)
CovRatio fixed effects, (d) CovRatio covariance parameters.

METALLURGICAL AND MATERIALS TRANSACTIONS B VOLUME 52B, FEBRUARY 2021—227



values >0:2), which is less than in a very influential
sample, as known by a cutoff value of 1. Also, very few
samples have a degradable precision, which does not

affect the estimates, given that their impact is not a
threat to the estimates. Therefore, the full data set with
some sample ids with much more degradable precision
can be removed for a good data set to generate a usable,
adaptable and extendable model with other steel com-
positions within the range provided.
We continue with testing the significance (thus Pr

<0:05) of the alloying elements and their interaction
while checking the goodness-of-fit statistics (thus �2‘,
AIC, AICC and BIC) for each model (Eqs. [AS1]
through [I4]). This numerical test comparison ascertains
the combined alloying element (interaction) that affects
the selected additive model positively. This was done
chronologically for all the phases. For example, for the
formation of polygonal ferrite, Tables III and IV
indicate the significance of all the individual elements
and their interaction in the models (thus the additive
model (Eqs. [AS1] and [AS2]) and interaction model
(Eqs. [I 1] and [I 2]) when the set of three sample ids was
removed from the initial data set of ferrite formation).
Again, this shows that the best fit is the interaction of
the alloying element model (Eq. [I 1]) because apart
from the interaction (C*Ni) itself showing a high

Fig. 4—Martensite formation influence on the diagnostics of steel
grades.

Table IV. Parameter Estimates for the Polygonal Ferrite Interaction Model

I1 I2

Effect Estimate Pr >jtj Effect Estimate Pr >jtj

Intercept b 796.97 < .0001 intercept b 785.75 < .0001
C al � 243.37 < .0001 C al � 238.33 < .0001
Mn � 55.5699 < .0001 Mn � 54.5785 < .0001
Si 18.4717 0.0003 Si 18.8225 0.0003
Ni � 53.9073 < .0001 Ni � 54.3365 < .0001
Mo � 22.7219 0.0006 Mo � 22.4077 0.0009
Cr � 15.3014 0.0001 Cr � 15.4388 0.0002
B � 4182.67 0.0095 B � 3727.63 0.0218

Co 8.3326 0.0059 Co 8.2448 0.0071

C*Ni Alj 63.0462 < .0001 C*Ni Alj 65.9392 < .0001
d 9.5621 < .0001 d 44.4567 < .0001

a = 0.05, a drastic change of Pr values were obtained after the addition of the 2 way interaction of alloying elements.

Table III. Parameter Estimates for the Polygonal Ferrite Additive Model

AS1 AS2

Effect Estimate Pr >jtj Effect Estimate Pr >jtj

Intercept b 773.59 < .0001 intercept b 761.27 < .0001
C al � 160.92 < .0001 C al � 152.07 < .0001
Mn � 63.2933 < .0001 Mn � 62.6536 < .0001
Si 16.1381 0.0047 Si 16.3829 0.0049
Ni � 32.1110 < .0001 Ni � 31.5361 < .0001
Mo � 19.5573 0.0078 Mo � 19.0940 0.0108
Cr � 13.5218 0.0023 Cr � 13.5748 0.0027
B � 2010.97 0.2373 B � 1454.33 0.4014
Co 6.0766 0.0679 Co 5.8853 0.0831
d 9.5706 < .0001 d 44.4968 < .0001

a = 0.05, a drastic change of Pr values were obtained after the addition of the 2 way interaction of alloying elements.
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significance value, it also changed the individual ele-
ments to significant (indicated with italic and boldface
type in Tables III, IV, V, VI, VII, VIII, IX, X, XI, and
XII).

Ferrite
In addition to undertaking the above numerical test

comparison for all phases in this article, we further
conducted an influential diagnostic test on the observa-
tion location space for the fastest cooling rate (tcr) of
ferrite and bainite in Eqs. [AS4] and [I4] and the
martensite onset temperature in Eqs. [AS3] and [I3].

Bainite
The location of observations plays an important role

in the estimation of predicted values, regression esti-
mates and other model summary statistics such as the
adjusted R2 and root mean square error (RMSE) for an
add-on parameter (thus the interaction). These are
shown in Tables V, IX and XI for ferrite, bainite and
martensite, respectively, supporting the argument in
Tables VI, X and XII that the interaction of the alloying
element yields better goodness of fit for the time of the
critical cooling rate of ferrite and bainite as well as for
the martensite onset temperature. As shown, Eq. [I4] has
less error than additive regression Eq. [AS4]. Also, the
variation from the predicted value (thus Adj R2) gets
closer to 1 than in the case of the additive regression
equation showing the extensiveness of an add-on inter-
action term fits the data well.

These influential diagnostic tests (predicted value,
outlier and leverage) on the observation location space
are shown in Figures 5, 6, 7, 8, 9, and 10 for polygonal
ferrite, bainite and martensite, respectively.

Martensite

A. Discussion of the Interaction of Alloying Elements

The production of a new steel often requires heat
treatment and a knowledge of the effect of alloying
elements on the CCT diagram to achieve the desired
final microstructure and mechanical properties.[32]

Alloying elements affect the details of the CCT
diagram through their effect on thermodynamic and
kinetic parameters controlling the formation of ferrite,
bainite and martensite.[33,34] These are highly depen-
dent on the type, amount and interaction of alloying
elements. The alloying elements can be in solid solution
or in precipitates and thereby affect the prior austenite
grain size and condition of the austenite dislocation
structure following any thermomechanical treat-
ment.[35] Hence, they also affect the transformation
start by changing the concentration of heterogeneous
nucleation sites.[6]

Alloying elements can be classified according to their
chemical properties as carbide formers: Mn, Cr and Mo;
non-carbide formers: Ni and Si; ferrite stabilizers: Mo
and Si; austenite stabilizers: Mn, C and Ni. Reference 35
gives a qualitative description and physical explanation
of all the single alloying element effects, which agree
with our results. C, Mn, Cr and Mo retard the phase
transformation while Si promotes ferrite formation.
The nonlinearity relationship between the heat treat-

ment and the alloying elements is a known characteristic
that specifies the interactions between the alloying
elements.[36] This description was also confirmed in
Reference 37 with the occurrence of concave regions
signifying the interaction between alloying elements
either enhancing or reducing each other’s effects. This
agrees with our results as Table IV further shows that
the analysis of the interaction of C-Ni in ferrite
transformation starts with the physical contribution of
high hardenability. The positive Ni*C term and high
statistically significant value mean that C depresses the

Table V. Onset of the Ferrite Model Fit Statistics for the
Time of the Critical Cooling Rate

Model R2 Adj R2 RMSE

AS4 0.8054 0.7776 0.52844
I4 0.9265 0.9095 0.33705

Table VI. Parameter Estimates of the Time for the Critical Cooling Rate Models for Ferrite Onset

AS4 I4

Effect Estimate Pr >jtj Effect Estimate Pr >jtj

Intercept b � 1.5962 0.0034 intercept b � 2.2898 < .0001
C al 2.5496 0.0275 C al 3.0372 0.0002
Mn 1.15167 0.0037 Mn 1.5427 < .0001
Si 0.0102 0.9601 Si 0.06265 0.6332
Ni 0.4597 < .0001 Ni 0.2723 < .0001
Mo 3.2113 < .0001 Mo 6.5357 < .0001
Cr 0.5868 0.0004 Cr 0.4426 0.0002
B 320.62 < .0001 B 827.7659 < .0001
Co � 0.1705 0.1665 Co � 11.69184 0.0418
— Bij — — Mo*Mo Blj � 4.90195 < .0001

— — — B*B � 89309 0.0045

— Alj — — Mo*Ni Alj 0.6626 0.0011
— — — C*Co 29.6718 0.0416

a = 0.05, a drastic change of Pr values were obtained after the addition of the 2 way interaction of alloying elements.
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start of the ferrite reaction less in the presence of Ni than
otherwise. This interaction further acknowledges the
hardenability modification of B and Co[10,38] also with a
statistically significant value. Table VI continues with
the time for the critical cooling rate. This again indicates
the non-linearity with the interaction of C-Co, Mo-Ni,
Mo2 and B2. All of these interactions obtained statis-
tically significant values, which caused Co also to be
statistically significant. Mo2 and B2 indicate a way of
balancing the hardenability of the steel. This has been
explained with boron being the main factor of harden-
ability as it reduces the free energy of austenite grain
boundaries due to segregation, retarding the nucleation
of ferrite and bainite.[39] This result of the interaction
between Mo and Ni causes an increase in the delay of
the start of ferrite transformation leading to the man-
ifestation of hardenability. The presence of the interac-
tion between C and Co introduces a faster austenite
transformation, which brings in a lower hardenability.
Therefore, the C-Co interaction was a means of adjust-
ing the hardenability contributed from the Mo2 inter-
action in the ferrite.

In the case of the bainite onset parameters shown in
Table VIII and Reference 10, the References 40, 41, and
42 confirms our results of an interaction of alloying
elements with several explanations: Nickel is known to
reduce the critical cooling rates of bainite while silicon
increases the critical cooling rate of ferrite and bainite,
hence the report that the effect of molybdenum is
enhanced by nickel.[37] Also, Mo exerts a solute drag
effect.[43] This is consistent with the analysis of our
results indicating the Ni-Mo and Si-Mo interaction.
This shows that the balance of the reaction effect caused
Si in Table VII to be statistically significant in
Table VIII. Manganese being a weak carbide-forming
element and an austenite stabilizer enhances the effect of
C by increasing carbon solubility in austenite. There-
fore, the C-Mn interaction is understood to increase the
incubation time for bainite transformation.[44]

In the case of martensite temperature onset parame-
ters, Mn2 obtaining a statistically significant value
causes Mn to also be significant in Table XII. Man-
ganese is well known to also increase martensite
hardenability because of its partitioning between the

Fig. 5—Ferrite onset time of the critical cooling rate for additive model indicating (a) comparison of the predicted fit to data and (b) outlier and
leverage diagnostics.

Fig. 6—Ferrite onset time of the critical cooling rate for the interaction model indicating (a) comparison of the predicted fit to data and (b)
outlier and leverage diagnostics.
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austenite and ferrite during transformation, inducing
microsegregation and bands of course in the hot-rolled
product.[45] Also, manganese is known to move the
phase region of martensite to low temperature. The
non-linearity effect of manganese from our results agrees

with References 17 and 37. Finally, we think an analysis
with an increased order of interaction to cater for the
single insignificant value that was not achieved is
needed. An example is Si, Co and Mo in Tables VI, X
and XII, respectively.

Fig. 7—Bainite onset time of the critical cooling rate for the additive model indicating (a) comparison of the predicted fit to data and (b) outlier
and leverage diagnostics.

Fig. 8—Bainite onset time of the critical cooling rate for the interaction model indicating (a) comparison of the predicted fit to data and (b)
outlier and leverage diagnostics.

Fig. 9—Martensite temperature of onset for the additive model indicating (a) comparison of the predicted fit to data and (b) outlier and leverage
diagnostics.
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B. Model Validation

Model validation is the task of confirming that the
parameter estimates from the statistical model are
acceptable by obtaining a response variable with less
error using a data-generating process. This process

decides whether the numerical results quantifying the
hypothesized relationships between variables (i.e., sig-
nificance of alloying elements and their interaction)
obtained from the regression analysis are acceptable as a
descriptions of the data. This is based on the data that

Fig. 10—Martensite temperature of onset for the interaction model indicating (a) comparison of the predicted fit to data and (b) outlier and
leverage diagnostics.

Table VII. Parameter Estimates for the Onset Bainite Additive Model

AS1 AS2

Effect Estimate Pr >jtj Effect Estimate Pr >jtj

Intercept b 899.61 < .0001 intercept b 886.50 < .0001
C al � 551.68 < .0001 C al � 539.14 < .0001
Mn � 102.83 < .0001 Mn � 102.27 < .0001
Si � 6.7191 0.5461 Si � 6.2975 0.5650
Ni � 60.2258 < .0001 Ni � 58.3767 < .0001
Mo � 183.14 < .0001 Mo � 183.64 < .0001
Cr � 89.9940 < .0001 Cr � 90.9165 < .0001
B � 24458 < .0001 B � 23,816 < .0001
Co 25.6220 < .0001 Co 25.8393 < .0001
d 18.8214 < .0001 d 74.8521 < .0001

a = 0.05, a drastic change of Pr values were obtained after the addition of the 2 way interaction of alloying elements.

Table VIII. Parameter Estimates for the Onset Bainite Interaction Model

I 1 I 2

Effect Estimate Pr >jtj Effect Estimate Pr >jtj

Intercept b 871.93 < .0001 intercept b 859.24 < .0001
C al � 572.32 < .0001 C al � 559.36 < .0001
Mn � 97.5479 < .0001 Mn � 96.4405 < .0001
Si 44.3756 0.0507 Si 43.5439 0.0537

Ni � 46.6330 < .0001 Ni -45.9549 < .0001
Mo � 117.56 < .0001 Mo � 120.91 < .0001
Cr � 86.8119 < .0001 Cr � 87.8734 < .0001
B � 25252 < .0001 B � 24516 < .0001
Co 23.0973 0.0001 Co 23.6204 < .0001
Si*Mo Alj � 102.70 0.0084 Si*Mo Alj � 99.7102 0.0100

Ni*Mo � 43.1331 0.0114 Ni*Mo � 39.0975 0.0202

d 18.8267 < .0001 d 74.8666 < .0001

a = 0.05, a drastic change of Pr values were obtained after the addition of the 2 way interaction of alloying elements.
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were used in the construction of the model, which
involve analyzing the goodness of fit of the model. We
performed this test using five different sample ids with
an in-house MATLAB code to generate Figures 11, 12,
13, 14, and 15.

The construction of the best model (interaction of
alloying elements) can be attained by replacing the
parameter estimates (i.e., al, b, d, Blj and Alj ) in Eqs. [I1]
through [I4] with the value obtained by the statistical
modeling and analysis given in Tables IV, VI, VIII and
X.

IV. CONCLUSION

The combined effects of pairs of alloying elements
(two-way interactions) in the prediction of CCT dia-
grams has been quantitatively modeled, analyzed and
validated. The approach used provides a novel way of
constructing a model to predict austenitic decomposi-
tion for use in steel development. Unlike with previous
models,[6,26,46] this article has shown that an add-on
term improves the fit without causing overfitting.
Finally, apart from the add-on terms (interaction of
alloying elements, i.e., two way or quadratic) themselves
showing high significance values (Pr<:0001), it also
improved the significance of some of the individual
elements and further caused others to be significant
(Pr<0:05) to the response temperature and critical
cooling rate. We found that, out of the tested models,
the best description for the CCT start curves is given by
the following equations: The ferrite start curve TfðtÞ is
described by Eq. [1]

TfðtÞ ¼ 796:97� 243:37C� 55:70Mnþ 18:47Si
� 53:91Ni� 22:72Mo� 15:30Cr� 4182:67B
þ 8:33Coþ 63:05CNiþ 9:56 arcsinh t� tcr;f

� �

½1�

where t � tcr;f. The critical cooling time for ferrite, tcr;f,
is obtained from Eq. [2]

log10 tcr;f
� �

¼ �2:29þ 3:04Cþ 1:54Mnþ 0:063Si
þ 0:27Niþ 6:54Moþ 0:44Crþ 827:77B

� 11:69Co� 4:90Mo2 � 89309B2

þ 0:66MoNiþ 29:67CCo

½2�

The bainite start curve TbðtÞ is described by Eq. [3]

TbðtÞ ¼ 859:24� 559:36C� 96:44Mnþ 43:54Si
� 45:95Ni� 120:91Mo� 87:87Cr� 24516B
þ 23:62Co� 99:71SiMo� 39:10NiMo
þ 74:87 arcsinh log10 1þ t� tcr;b

� �� �

½3�

where t � tcr;b. The critical cooling time for bainite,
tcr;b, is obtained from Eq. [4]

log10 tcr;b
� �

¼ �8:19þ 20:49Cþ 7:29Mnþ 0:31Si
þ 0:66Niþ 1:17Moþ 0:74Crþ 2418:18B
� 0:10Co� 70:84NiB� 1650:11MnB

� 17:20CMn� 157; 312B2;

½4�

and the martensite start temperature is given by
Eq. [5]

Table IX. Onset of Bainite Model Fit Statistics for the Time
of the Critical Cooling Rate

Model R2 Adj R2 RMSE

AS4 0.8229 0.7884 0.34108
I4 0.9434 0.9251 0.20299

Table XI. Onset of Martensite Model AS3 fit Statistics for
Temperature

Model R2 Adj R2 RMSE

AS3 0.9022 0.8696 16.40373
I3 0.9238 0.8925 14.89245

Table X. Parameter Estimates of the Time for the Critical Cooling Rate Models for Bainite Onset

AS4 I4

Effect Estimate Pr >jtj Effect Estimate Pr >jtj

Intercept b � 1.3302 0.0032 Intercept b � 8.19007 0.0029
C al 4.6781 < .0001 C al 20.4879 0.0039
Mn 0.2414 0.4600 Mn 7.28762 0.0214

Si 0.14070 0.3939 Si 0.30940 0.0036

Ni 0.5196 < .0001 Ni 0.66200 < .0001
Mo 0.8394 0.0017 Mo 1.16926 < .0001
Cr 0.4880 0.0002 Cr 0.73920 < .0001
B 150.2221 0.0025 B 2418.1819 < .0001
Co � 0.17431 0.0534 Co � 0.10468 0.0646
- Blj — — B*B Blj � 157312 < .0001

- Alj — — Ni*B Alj � 70.8405 < .0001

- — — Mn*B � 1650.1143 0.0038
— — — C*Mn � 17.1969 0.0345

a = 0.05, a drastic change of Pr values were obtained after the addition of the 2 way interaction of alloying elements.
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Table XII. Parameter Estimates for the Onset Martensite Additive and Interaction Models

AS3 I3

Effect Estimate Pr >jtj Effect Estimate Pr >jtj

Intercept b 624.7086 < .0001 intercept b 406.6550 0.0015
C al � 671.3039 < .0001 C al � 843.1093 < .0001
Mn � 22.2523 0.3219 Mn 528.0025 0.0506

Si � 20.1481 0.0711 Si � 20.5010 0.0463
Ni � 25.4520 < .0001 Ni � 20.79077 < .0001
Mo 14.44503 0.5745 Mo 20.55019 0.3860
Cr � 17.6135 0.1008 Cr � 19.50909 0.0508
— Blj — — Mn*Mn Blj � 250.93470 0.0420

a = 0.05, a drastic change of Pr values were obtained after the addition of the 2 way interaction of alloying elements.

Fig. 11—Model validation for Sample id 29 with composition 0.3
pct C-0.69 pct Mn-0.38 pct Si-0.24 pct Mo-1.79 pct Ni-0.78 pct Cr.

Fig. 12—Model validation for sample id 59 with composition 0.38
pct C-1.45 pct Mn-0.36 pct Si-0.76 pct Mo).

Fig. 13—Model validation for sample id 63 with composition 0.34
pct C-0.8 pct Mn-0.38 pct Si-0.78 pct Mo-0.34 pct Cr.

Fig. 14—Model validation for sample id 66 with composition 0.4 pct
C-1.38 pct Mn-1.5 pct Si-0.8 pct Mo.
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Tm ¼ 406:66� 843:11Cþ 528:00Mn� 20:50Si

� 20:79Niþ 20:55Mo� 19:51Cr� 250:93Mn2

½5�

where the alloying elements (C, Mn, Si, Ni, Mo, Cr,
B, Co) are given in wt pct.
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27. W. Piekarska and D. Goszczyńska-Króliszewska: Procedia Eng.,
2016, vol. 136, pp. 82–87.

28. Z.S.W. Piekarska and D. Goszczynska: Appl. Math. Comput.
Mech., 2015, vol. 2, pp. 61–72.

29. D.P. Foster and R.A. Stine: J. Am. Stat. Assoc., 2004, vol. 99,
pp. 303–13.

30. R.R. Hocking: Biometrics, 1976, vol. 32, pp. 1–49.
31. SAS/STAT software, SAS Institute Inc., version 9.4 ed, Cary, NC,

USA, 2013.
32. H. Martin, A.O. Nunoo, and A.B.C. Dadson: in 27th Biennial

Conference Proceeding, Ghana Science Association Improve the
Ductility of Locally Manufactured Steel Rods by Tempering,
Kumasi, Ghana, 2011.

33. R. Reed and H. Bhadeshia: Mater. Sci. Technol., 1992, vol. 8,
pp. 421–36.

34. H. Bhadeshia: Met. Sci., 1982, vol. 16, pp. 159–66.
35. W. Bleck: in International Conference on TRIP-Aided High

Strength Ferrous Alloys, Using the trip effect-the dawn of a
promising group of cold formable steels, Ghent, Mainz/Aachen,
2002, pp. 13–23.

36. J. Miettinen, S. Koskenniska, M. Somani, S. Louhenkilpi, A.
Pohjonen, J. Larkiola, and J. Kömi: Metall. Mater. Trans. B,
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Fig. 15—Model validation for sample id 24 with composition 0.39
pct C-0.82 pct Mn-0.26 pct Si-0.21 pct Mo-1.0 pct Cr.
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