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Abstract 10 
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The aim of this work was to develop a prediction model for hot metal desulfurization. More 12 

specifically, the study aimed at finding a set of explanatory variables that are mandatory in 13 

prediction of the kinetics of the lime-based transitory desulfurization reaction and evolution of 14 

the sulfur content in the hot metal. The prediction models were built through multivariable 15 

analysis of process data and phenomena-based simulations. The model parameters for the 16 

suggested model types are identified by solving multivariable least-squares cost-functions 17 

with suitable solution strategies. One conclusion we arrived at was that in order to accurately 18 

predict the rate of desulfurization, it is necessary to know the particle size distribution of the 19 

desulfurization reagent. It was also observed that a genetic algorithm can be successfully 20 

applied in numerical parameter identification of the proposed model type. It was found that 21 

even a very simplistic parameterized expression for the 1
st
 order rate constant provides more 22 

accurate prediction for the end content of sulfur compared to more complex models, if the 23 

data-set applied for the modeling contains the adequate information.  24 
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 35 

I.  INTRODUCTION 36 

 37 

In blast furnace-based steel production, sulfur is considered one of the main impurities in hot 38 

metal. In powder injection, a desulfurization reagent is injected into hot metal with the help of 39 

an inert carrier gas through an immersed lance. Suitable desulfurization reagents include lime, 40 

calcium carbide, magnesium, soda ash, limestone and zinc oxide. 
[4]

 The focus of this study is 41 

on lime- and limestone-based desulfurization reagents.  42 

  43 

The effect of particle size distribution on the rate of desulfurization reaction has not been 44 

extensively studied in the case of lime-based desulfurization reagents. In the studies 45 

conducted by Coudure and Irons 
[3]

, Lindström and Sichen 
[4] 

and Shevchenko et al. 
[2]

, it was 46 

postulated that decreasing the particle size of a desulfurization reagent increases the extraction 47 

capacity of the material. The studies conducted by Lindström and Sichen 
[18]

 indicate that a 48 

smaller particle size provides improved reaction kinetics between solid lime and sulfur, 49 

although the study considers only the solid-state diffusion controlled phase, which is not 50 

considered the only rate-controlling mechanism in the injection-based industrial hot metal 51 

desulfurization. In addition, the authors were not able to extract the effect of a fluidizing 52 

element on the efficiency of a fine-grade lime-based reagent, and so could not give a 53 

quantitative description of the variables that determine the overall reaction kinetics in the full-54 

scale process. Most importantly, the experiments were conducted with constant process 55 

parameters and in a two-phase system (reagent-metal), whereas the industrial hot metal 56 

desulfurization carried out with powder injection can be considered a three-phase system 57 

(metal-gas-reagent), in which the carrier-gas potentially affects the desulfurization reaction by 58 

preventing a direct metal-reagent contact. 
[3-4]

 59 

 60 

The studies conducted by Coudure and Irons 
[3]

 concerned only the kinetics of calcium 61 

carbide, and so their results are only partially comparable to the results of this study. 62 

Shevchenko et al.
[2]

 found out that material efficiency of a more fine-grade lime with a 63 

diameter less than 100 µm is higher than the corresponding efficiency of more coarse particles, 64 

but the authors did not consider the extent to which the finer gradation of lime might improve  65 

the desulfurization kinetics. In addition, the methodology applied for determining the particle 66 

size distribution of lime was a sieving-analysis with only a few sieve classes, which gives a 67 

relatively inaccurate approximation of the full particle size distribution of the material. 
[4] 

68 
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69 

Vinoo et al.
[22]

 applied multivariable regression modeling for predicting the evolution of the 70 

sulfur content of the metal bath in the case of a calcium carbide reagent. However, the authors 71 

did not apply the properties of the injected reagent as a predictor variable, which assumedly 72 

decreases the accuracy of the model especially in continuous production, as the reagent 73 

properties cannot be assumed constant. The authors found that the variables affecting the 74 

efficiency of desulfurization could be described in terms of simple linear interactions in pre-75 

classified operational temperatures, as a result of which the rate of desulfurization predicted 76 

by the model does obey the mass-transfer laws only in certain linearized operational states. In 77 

addition, the prediction error of the model was relatively large (± 0.003% units), and was 78 

based on the validation data of 15 treatments only. 
[22]

  79 

 80 

Rastogi et al. 
[28]

, Deo et al.
 [29]

 and Datta et al. 
[15] 

applied genetic algorithms and artificial 81 

neural networks in the identification of hot metal desulfurization prediction models. The 82 

authors managed to identify the most significant reaction mechanisms based on the industrial 83 

data 
[28]

, and several other assumedly significant explanatory variables, but excluded the 84 

particle size distribution of the reagent from the data set. 
[29, 15]

 As the significance of particle 85 

size distribution as a suitable explanatory variable candidate has been confirmed in several 86 

studies 
[2, 3, 4, 17, 18]

, the absence of it assumedly resulted in a relative poor predictive power of 87 

the approach, regardless of the complex model structure. 
[22, 28, 29, 15]

  88 

 
89 

In this paper, the hot metal desulfurization is analyzed concurrently with data-driven and 90 

phenomena-based modeling. In mathematical modeling of hot metal desulfurization, there are 91 

certain obscurities related to phenomena occurring in the hot metal ladle. For this reason, fully 92 

phenomena-based models with evaluative fitting parameters, and without accurate 93 

determination of the particle size distribution, often fail to predict the end content of sulfur 94 

precisely.
[6, 9, 22, 28-29] 

Moreover, mathematical models that are based on exhaustive 95 

descriptions of the physical and chemical fundamentals – especially those that provide a 96 

detailed solution of the fluid flow field – tend to be computationally heavy and unsuited to 97 

day-to-day process control. 98 

 99 

The objective of this study is to develop a mathematical description with a high prediction 100 

performance based on a comprehensive analysis of system kinetics. The scope of the study is 101 

limited to the proper form of the prediction model, and to the set of explanatory variables that 102 
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are relevant for the prediction of the final sulfur content and kinetics of desulfurization. In 103 

particular, the model aims to account for the effect of the reagent particle size distribution and 104 

certain operating variables on the kinetics of the transitory reaction.  105 

 106 

The parameters for the suggested model types are identified by minimizing a multivariable 107 

least-squares cost-function using the suitable solution strategies. The process data for analysis, 108 

fitting and validation of the models is gathered from the primary desulfurization process at 109 

SSAB Raahe, Finland. All the algorithms and suggested solution strategies have been 110 

programmed with Matlab®. 111 

  112 

II. METHODOLOGY 113 

 114 

Given a large data set with high number of variables, finding the suitable set of features that 115 

describe accurately enough the changes in the output variable is a complex task. With high-116 

dimensional data sets there is often a risk of selecting irrelevant, noisy or collinear variables, 117 

which often results in a poorly interpretable model or weakened model performance. There 118 

are standardized methods for determining a proper set of variable which can be further 119 

categorized as manual and automatized feature selection methods.
 [8]

 In this work, the analysis 120 

and variable selection procedure is carried out in such a way that the variables chosen in the 121 

parameterized prediction models are partially extracted with manual feature selection, by 122 

applying the results of the simulations based on a theoretical description of the transitory 123 

reaction kinetics.  124 

 125 

A. System identification based on the rate of transitory reaction 126 

 127 

Hot metal desulfurization with powder injection consists of two main reactions: 
[11] 

128 

i) Transitory contact reaction (reagent-metal) 129 

ii) Permanent contact reaction (slag-metal)  130 

The kinetics of the desulfurization reaction is determined as a sum of reaction rates ki and kii, 131 

but due to the fact that in the case of powder injection the large interfacial area, determined by 132 

numerous spherical particles, for mass transfer results that 𝑘 i >> kii, which is why the 133 

permanent contact reaction can often be neglected from the overall kinetics. 
[6, 11, 26, 28] 

In some 134 

studies, the reaction between the particles entrapped in the carrier-gas bubbles and the hot 135 

metal is also considered as one of the main mechanisms, but the contribution of the entrapped 136 
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particles on the overall kinetics has been studied to be negligible. 
[3, 21, 28]

 In the case of a 137 

transitory desulfurization reaction with a solid lime-based reagent, the calcium oxide is 138 

converted into sulfide by a following ion-exchange reaction: [1]
  139 

 140 

< CaO >  + [S] → < CaS > +[O]  [1] 

 141 

The transitory reaction is often considered to follow first order reaction kinetics, by assuming 142 

the mass transfer related control of the reaction rate. Based on the previous research, the rate 143 

constant for hot metal desulfurization carried out with powder injection can be summarized to 144 

be mainly a function of the following parameters: 
[1-7, 9, 12-15, 17] 

145 

 146 

 active solid surface area in contact with the metal phase, 147 

 feed rate of the particles, 148 

 mass of the metal bath, 149 

 total flow rate of the gaseous compounds,  150 

 mass transfer coefficient in the metal-reagent diffusion boundary layer, 151 

 rate of solid-state diffusion in the product phase, and 152 

 average residence time of the reagent particles in the metal bath.  153 

 154 

Various studies 
[3, 5, 6, 9, 26]

 have found the transitory desulfurization reaction to be controlled 155 

by mass transfer in the hot metal boundary layer. However, as the reaction proceeds, the 156 

diffusion of sulfur and calcium ions inside the CaS layer determines the rate of reaction as the 157 

slowest step of mass transfer. 
[1, 6] 

Delhey et al.
[52]

 studied hot metal desulphurization with 158 

lime and calcium carbide according to the lance injection process. In general, the 159 

desulphurization efficiency increased non-linearly as a function of the amount of reagent 160 

injected. 
[52]

 For a given injection rate, the efficiency of desulphurization increased with a 161 

higher lance depth. 
[52]

 The increase in rate constant was not found to be linearly dependent on 162 

the estimated residence time of the particles, and consequently it was suggested that the 163 

deposition of the reaction product on the surface of the reagent hindered the increase in 164 

reaction rate. 
[52]

 As for lime, the desulphurization efficiency was found to be increased with a 165 

higher Al content of the metal bath. 
[52]

  166 

 167 
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Although, with very high injection rates a fresh solid surface is continuously introduced in the 168 

melt, which assumedly increases the rate of desulfurization during the solid-state diffusion 169 

control. For this reason, the boundary-layer diffusion assumption is applicable in several 170 

situations, especially when applying relatively large particles in the injection and high 171 

injection rates of the solid reagent. As the desulfurization is assumed to follow first order 172 

reaction kinetics, the dynamic changes in the sulfur concentration of hot metal phase can be 173 

written as a lumped parameter model, where the sulfur concentration in the melt approaches 174 

the equilibrium concentration of sulfur:  175 

 176 

d[S]

d𝑡
=  −𝑘tot([S] − [S]eq), 

 

[2] 

where 𝒌𝐭𝐨𝐭  is the rate constant for transitory desulfurization reaction, [S] is the sulfur 177 

concentration and [S]eq is the equilibrium sulfur concentration. The Eq. 2 can be re-arranged 178 

and integrated over the concentration gradient and treatment time. The analytical solution for 179 

the dynamic sulfur concentration is therefore 180 

 181 

[S]𝑡 = ([S]0 − [S]eq) exp(−𝑘tot𝑡) + [S]eq, [3] 

 182 

where [S]0 is the initial sulfur concentration in the melt. Moreover, the rate constant for the 183 

transitory reaction can be formulated as:  184 

 185 

𝑘tot = −
1

𝑡
ln (

[S]𝑡 − [S]eq

[S]0 − [S]eq
), 

[4] 

 186 

 187 

B. Particle size class specific rate constant 188 

 189 

In a fully theoretic approach, the values of predicted particle size class specific rate constants 190 

are more or less trivial, as the residence-times and the number of injected particles that get 191 

into contact with the melt are complex to determine accurately without extensive experiments 192 

or computational fluid dynamics simulations. For this reason, the mathematical models often 193 

apply evaluative fitting parameters in the prediction. 
[6, 9]

 The problem of this approach in 194 

dynamic process control is that the proposed fitting parameters are a function of operational 195 
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variables, such as flow rate of the injection gas, mass flow rate of the reagent and amount of 196 

co-injected gas-releasing agents, all of which affect to the convective flows in the system. 197 

Based on a simplified surface-area approach, the rate constant for a single particle size class 198 

can be written as: 
[6]

 199 

 200 

where 𝑘𝑖,𝑑𝑝
 is the particle size class specific rate constant, 𝑚̇𝑟 is the particle class specific 201 

feed-rate, 𝑚Fe is the mass of the hot metal, 𝑡res is the average residence time of the particle in 202 

the melt and 𝜌𝑗 is the density of a phase j. It should be noted that the term 6/dp corresponds to 203 

(A/V)p in the case of a sphere. In this formulation, the residence time of the single particle 204 

size class acts as an unknown fitting parameter. In the surface-area approach, the rate constant 205 

is assumed inversely proportional to diameter of a reagent particle, and thus 𝑘𝑖,𝑑𝑝
 → ∞ as 𝑑p 206 

→ 0. Eq. 5 gives the rate constant for a single size class, which is prediction models of this 207 

kind often apply a suitable mean size class for the mean diameter. 
[3, 6, 9]

 The surface-based 208 

mean diameter (d32 = 6/dp) is also known as the Sauter mean diameter (SMD). 209 

 210 

In the case of an example particle size distribution applied in this study, the calculated values 211 

for Sauter mean diameter are even as small as d32 ≈ 4 µm. So as the rate of mass transfer is 212 

mostly determined by the surface area between the emulsified discrete phase and the 213 

continuous phase, the Sauter mean diameter often drastically overestimates the rate constant. 214 

This is because the solid surface area of the injected material is often significantly larger than 215 

the surface area that actually takes part in the reactions. In several cases, the theoretical single 216 

particle models applying the Sauter mean diameter in a prediction of the rate constant for the 217 

transitory reaction the values are overestimated.  218 

 219 

The expression for the rate constant also suggests that all of the reagent particles get into 220 

contact with the melt, and thus the rate constant of a particle size class is directly proportional 221 

to the solid injection rate. The formulation also treats assumedly an emulsified system as a 222 

non-emulsified, and so the rate constant is valid only when the thermodynamic extraction 223 

capacity for a single size class is very small, which corresponds to a situation where the 224 

desulfurization reaction is truly controlled by boundary-layer diffusion instead of solid-state 225 

diffusion. With short average residence-times, this approach can be considered valid, as the 226 

formed CaS layers around the particle are relatively thin. 
[1, 6] 

To treat the time constant in the 227 

𝑘𝑖,𝑑𝑝
= 𝛽[S]

6

𝑑𝑝
 
𝑚̇𝑟

𝑚Fe

𝜌Fe

𝜌𝑟
𝑡res, 

[5] 



  

8 

 

case of a full particle size distribution, the volume based rate constant can be written as a 228 

weighted sum of particle size class specific time constants:  229 

 230 

𝑘tot = ∑Φ𝑖𝑦𝑖𝑘𝑖,𝑑𝑝

𝑛

𝑖=0

, 

 

 

[6] 

where Φi is a binary variable determined from the contact criteria for a particle size class i, yi 231 

is the volume fraction of particle class i. The rate constant for a particle size class i is yield by 232 

weighting the solids flow rate with the mass-fraction of a size class i in the cumulative 233 

distribution as follows:  234 

Φ𝑦𝑖𝑘𝑖,𝑑𝑝
=  Φ𝛽[S]

6

𝑑𝑝
 
𝑚̇𝑟

𝑚Fe

𝜌Fe

𝜌𝑟
𝑡res(𝑅𝑖+1 − 𝑅𝑖). 

 

[7] 

The rate constant for the injected particles following a certain particle size distribution can be 235 

predicted by applying a mathematical description to the cumulative particle size distribution. 236 

In this study, the particle size distribution was described with Rosin-Rammler-Sperling-237 

distribution (RRS). The cumulative mass fraction of a particle size class i in the size 238 

distribution can be expressed by applying d80 as the fineness parameter as follows: 
 

239 

 
240 

𝑅𝑖 = 0.2
[(

𝑑80
𝑑𝑝

)
𝑛

]
, 

 

[8] 

where 𝑅𝑖  is the cumulative mass fraction of a particle size class i, 𝑑80  is the particle size 241 

corresponding to percentage below 80% in the overall distribution and n is the spreading-242 

parameter that describes the homogeneity of the distribution. The fineness-parameter can be 243 

solved as a general least-squares optimization problem based on the characteristic particle size 244 

distribution. 245 

   246 

C. Mass-transfer around the dispersed phase 247 

 248 

As the surface-based mean can often give highly overestimated results, the particle size 249 

distribution can be averaged by taking account the mass-transfer inside the boundary-layer. 250 

Coudure and Irons 
[3]

 proposed a particle mean diameter based on the Sherwood-number and 251 

the expression of the rate constant for the transitory reaction. In the case of a solid reagent 252 
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particle, the viscous mass transfer rate in the continuous phase surrounding a rigid sphere can 253 

be calculated with the Ranz-Marshall correlation: 
[16]

 254 

 255 

Sh =  
𝛽[S]𝑑p

𝐷[𝑆]
= 2 + 0.6(Re)

1
2(Sc)

1
3, 

 

 [9] 

where 𝐷[S] is the reference mass diffusivity of sulfur in the metal phase, Re is the Reynolds 256 

number, Sc is the Schmidt number and Sh is the Sherwood number. Based on the limit of the 257 

Sherwood-number (Sh = 2 when Re = 0) and the expression of the macrokinetic rate constant, 258 

the averaged particle size in terms of a viscous mass-transfer in a diffusion-controlled process 259 

can be formulated as:
 [3]

 260 

 261 

𝑑ka = (∑
% 𝑉𝑜𝑙, 𝑖 

100𝑑𝑝,𝑖
2

𝑘

𝑖=0

)

−2

, 

 

[10] 

 262 

 263 

where % 𝑉𝑜𝑙, 𝑖 corresponds to volumetric percentage of particle size class i in the differential 264 

particle size distribution. The transitory desulfurization reaction is assumed to occur within 265 

the ascending trajectory of the reagent particles, during which the injected particles are 266 

assumed to reach their terminal velocity very fast. The terminal velocity of a single particle 267 

size class was solved from force balance using the drag coefficient correlation proposed by 268 

Lapple. 
[16] 

269 

 270 

D. Criteria for particle-metal contact 271 

 272 

In literature, a major factor that to limits the surface area in the injection is presented to be the 273 

number of particles that get into contact with the melt, referred as the contact control. 
[12, 17, 21]

 274 

Mathematical treatments of the limited contact of fine-grade particles have been employed for 275 

calcium carbide
[13, 21]

. Chiang et al. 
[21]

 suggested that only 30% of the injected particles get 276 

into contact with the melt based on the theoretical expression of desulfurization rate in the 277 

plume, whereas Zhao and Irons 
[13]

 proposed that the fraction of non-contacted reagent 278 

particles can be determined from the heat-balance of the system. Lee and Morita
[17]

 stated that 279 

the particles with a diameter less than 100 µm do not necessarily wet the hot metal phase in 280 
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full-scale injection due to surface forces of the continuous phase, and may float on the surface 281 

unreacted. 
[17] 

282 

 283 

In practical injection conditions, the velocity of particle jet in the injection lance is 40% of the 284 

gas velocity. 
[23]

 The velocity profile of particle-gas flow cannot be considered as uniform as 285 

the boundary layer between the individual particles is a function of particle diameter and 286 

density.
[7]

 The directional gas-particle-force balance calculations reveal that the terminal 287 

velocity of very small size classes approaches 0, and so it is possible that particles move with 288 

almost an equal velocity with the gas phase, or at least very close to terminal velocity. In 289 

CFD-modeling study of a dephosphorization process with solid lime, the particle jet velocity 290 

profile has been discovered to follow a normal distribution.
[24]

 Therefore, in this study the 291 

particle velocities in the continuous gas-phase were assumed to follow a normal distribution 292 

with an expected value of 0.4ug, and a standard deviation derived from the 𝐸(𝑥) ± 3σ. The 293 

velocity of a single particle in the lance tip can be thus treated as a random number drawn 294 

from a normal distribution, which is given as: 295 

 296 

𝑢𝑝~ 𝑁(𝐸(𝑥), 𝜎2) ~ 𝑁 (0.4𝑢𝑔, (
0.4𝑢𝑔

3
)
2

), 

 

[11] 

where 𝐸(𝑥) is the expected value for a particle velocity and σ is the standard deviation of 297 

velocity. Nakano and Ito 
[12]

 gave a quantitative measure for the minimum penetration 298 

velocity, which corresponds to a velocity to be exceeded in order for a particle penetrate 299 

through gas-metal-interface. This velocity can be expressed as a function of single particle 300 

diameter based on a critical Weber number, which is given as: 
[12]

 301 

 302 

We𝑐 =
1

0.044 
{(1 − 𝑒𝑥𝑝 (

0.66

𝜌∗ + 
1
4

))(
𝜌∗ + 

1
4

0.33
− 1 + cos 𝜃) + 2}, 

 

 

[12] 

 303 

where Wec is the critical Weber number, 𝜃 is the contact angle of solid CaO and hot metal and 304 

𝜌∗ is the relative density between continuous and dispersed phases. The critical penetration 305 

velocity can thus be solved from the expression of the critical Weber number as: 
[12]

  306 

 307 
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𝑢𝑐 = √
We𝑐𝛾

𝑑𝑝

2
𝜌𝑙

, 

 

[13] 

where uc is the critical penetration velocity for a particle size and 𝛾 is the surface tension of 308 

the continuous phase. Desulfurization reaction between the reagent particles and the hot metal 309 

occurs only if the injected particles are wetted by the melt. 
[17]

 Therefore, the rate constant for 310 

a particle size class that is contact with the hot metal can be expressed by weighting the 311 

expression of rate constant with a binary variable Φ. The values of Φ are defined as: 312 

 313 

𝛷 = {
1,                                       𝑖𝑓 𝑢𝑝 ≥ 𝑢𝑐

0,                                        𝑖𝑓 𝑢𝑝 < 𝑢𝑐
. 

 

[14] 

From Eqs. 11-14, it results that the probability for reagent-metal contact is proportional to the 314 

diameter of the particle size class. This is due to the fact that critical Weber number is both a 315 

function of surface tension and diameter of the reagent particle; with constant surface tension 316 

a smaller particle size class results as a higher critical penetration velocity, from which 317 

follows that the probability for particle-metal contact approaches zero as the diameter of the 318 

particle approaches 0. The contact angle between solid particles and hot metal, and the surface 319 

tension of hot metal were extracted from the literature. 
[17]

  320 

 321 

E. Injection of gas-releasing agents 322 

 323 

The injection of limestone as a gas-releasing additive within a desulfurization reagent has 324 

been studied only in the case of calcium carbide.
[5, 25]

 The injected limestone is assumed to 325 

decompose through a following reaction: 
[19]

 326 

 

< CaCO3 >→< CaO >  + {CO2}
 

 

[15] 

 327 

In the case of a calcium carbide, the injection of limestone is observed to improve the reaction 328 

kinetics by providing more solid surface area for metal-reagent contact, but also to limit the 329 

rate of desulfurization due to possibility for the increase of oxygen potential in the system 330 

through Boudouard reaction equilibrium. 
[5, 25]

 The increase in the solid-surface area by 331 

adding gas-releasing agents was later confirmed by Lindström et al. 
[14]

 for lime-magnesium 332 
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reagent mixes. 
[14] 

The effect of gas-releasing agents on the mixing of the metal bath was 333 

found to be negligible compared to the flow rate of the carrier gas by Irons 
[5]

. Based on the 334 

studies conducted by Lindström and Sichen 
[18]

, the increase in the oxygen potential of the 335 

system leads to more thermodynamically favorable conditions for the formation of 336 

2CaO∙SiO2-product layer, which on the other hand could be prevented by decreasing the 337 

particle size of lime. 
[4, 18]

 Although, when hot metal desulfurization operates a very far from 338 

thermodynamic equilibrium state, the increase in the provided solid surface area assumedly 339 

has more prominent effect on the rate of the desulfurization than the oxygen potential, as in 340 

the high sulfur concentrations the reaction is controlled by rate of mass transfer and not by the 341 

thermodynamic driving force. Also, it is worth mentioning 2CaO∙SiO2 covers only half of the 342 

nominal surface area of the injected particles. 
[6]

 Nevertheless, the extent to which the 343 

injection of gas-releasing agents improves the rate of desulfurization in the industrial scale hot 344 

metal desulfurization remains unclear. 
 

345 

 346 

As the kinetics of calcium carbonate decomposition is not comprehensively studied in the 347 

operational temperature of hot metal desulfurization, the effect of particle size distribution of 348 

limestone on the rate of decomposition is ignored from the approach. 
[19]

 Similar to Irons 
[5]

, 349 

the injected limestone particles are assumed to decompose instantly as the reagent particles 350 

are introduced to the melt. This assumption is based on the following considerations. First, 351 

despite the heat consuming decomposition reaction the heat flux between single limestone 352 

particle and the hot metal is large. Second, owing to their small size, the Biot number is 353 

estimated to be << 0.1 and consequently, the heat transfer is virtually independent from the 354 

internal resistances of the limestone particles. Thus, a simplistic expression for the volume of 355 

injected gaseous compound and carrier-gas in hot metal per unit of time is derived from the 356 

ideal gas law and can be expressed as follows: 357 

 358 

𝑄𝑡𝑜𝑡 = 𝑄N2

𝑝𝑖𝑛𝑗.

(𝑝𝑎𝑡𝑚 + 𝜌Fe𝑔ℎ)

𝑇

𝑇STP
+ 

𝑚̇𝑟𝑤CaCO3
𝑅𝑇

𝑀CaCO3
 (𝑝𝑎𝑡𝑚 + 𝜌Fe𝑔ℎ)

 , 
[16] 

 359 

 360 

where 𝑄𝑡𝑜𝑡 is total amount of gas in the system per unit of time, 𝑝𝑖𝑛𝑗. is the pressure of the 361 

injection gas, T is the temperature of hot metal, 𝑇STP is the temperature in standard conditions, 362 

𝑄N2
 is the flowrate of carrier-gas, 𝑤CaCO3

is the mass-fraction of limestone in the reagent mix, 363 
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𝑀CaCO3
is the molar mass of limestone, h is the injection depth, patm is the atmospheric 364 

pressure and g is the gravitational constant.  365 

 366 

 367 

 368 

 369 

F. Parameterized expression for the rate constant 370 

 371 

In the research conducted by Chiang et al. 
[21]

 and Coudure and Irons 
[3]

 the rate constant of 372 

desulfurization with a carbide-based reagent was expressed based on operational variables and 373 

initial slag condition. It was suggested that the rate constant for transitory desulfurization 374 

reaction could be formulated by applying a logistic multivariable regression model of a 375 

following multiplicative form: 
[3, 21]

  376 

 377 

𝑘𝑡𝑜𝑡 = 10𝑏0 ∏𝑥𝑖
𝑏𝑖 ,

𝑛

𝑖=1

 

 

 

[17] 

  

where i is the number of a variable, n is the total number of prediction variables in a 378 

regression model and 𝑏𝑖 is the corresponding regression coefficient. The original models were 379 

derived individually for operational parameters, particle size distribution and initial slag 380 

condition, but did not account for their interactions. For this reason, the models proposed by 381 

Coudure and Irons
[3]

 and Chiang et al.
[21]

 of are far too simplistic to apply in the prediction of 382 

high-dimensional industrial problems. In the surface-area based approach, the rate constant is 383 

directly proportional on the term (A/V)p, but due to the fact that all of the injected solid 384 

surface is not available for extraction and keeping in mind the high complexity of the 385 

injection of multiple particles, the increase of the surface area can be assumed to follow a 386 

logistic, rather than a linear growth. As there still is a large uncertainty related to the system 387 

identification, the relation between the theoretical rate constant and actual rate constant can be 388 

assumedly given as: 389 

 390 

𝑘𝑡𝑜𝑡 = 𝑒𝑏0𝑘𝑡𝑜𝑡

𝑏𝑗
, 

 

[18] 
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 391 

where bj is the corresponding regression coefficient and 𝑒𝑏0 is the pre-exponential bias-term, 392 

which summarizes the effect of unknown process variables on the rate of transitory reaction. 393 

It should be noted that if the mathematical description of the rate constant strictly corresponds 394 

to the actual process, the values of 𝑒𝑏0 and bj should approach unity, which is rarely true in 395 

the case of full-scale processes. Now, the regression coefficient gives the limit of the ratio of 396 

the percentage change in the time constant and the percentage change in the input variable. 397 

The multiplicative model is suitable especially in the situations where it relates fundamental 398 

uncertainties to the measured variables. 
[31]

 For instance, if it is considered that there is a 399 

certain fraction of particles that gets into contact with the metal phase, but only measurable 400 

variable is the particle size distribution and the actual flow rate, the effect of the solid surface-401 

area on the rate constant can be given as:  402 

 403 

𝑨𝑺𝒐𝒍𝒊𝒅 =  Ω𝑨𝒊𝒏𝒋𝒆𝒄𝒕𝒆𝒅.  

 

[19] 

Where 𝑨𝑺𝒐𝒍𝒊𝒅 is the actual solid surface area and 𝑨𝒊𝒏𝒋𝒆𝒄𝒕𝒆𝒅 is the injected surface area. Now Ω, 404 

denoting the fraction of particles that get into contact with hot metal, is an unobservable 405 

variable. From the form of the rate constant it results that the error term in the multiplicative 406 

prediction model is a function of corresponding regression coefficient:  407 

 408 

𝜺 =  Ω−𝒃𝒋 

 

[20] 

And furthermore for the whole expression of rate constant, the error term can be given as:  409 

 410 

𝜺𝒊 = ∏Ω
𝒊𝒋

−𝒃𝒋 ,

𝒌

𝒋=𝟏

 

 

[21] 

where Ω is the unknown factor related to each of the variables in the expression of rate 411 

constant, in example the residence time, mass-transfer coefficient and the contact ratio. Thus, 412 

when writing the multiplicative form of the model, the product of measurable variables and 413 

unknown factor are absorbed into the pre-exponential bias-term, and the error of the 414 

prediction is a function of the unknown factors. 
[31]

 Keeping in mind the aforementioned 415 
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assumptions of, the surface-area approximation based rate constant for a single size-class can 416 

be expressed in a multiplicative form:  417 

 418 

𝑘𝑡𝑜𝑡 = 𝑒𝑏0 (
6

𝑑p
)
𝑏1

𝑄𝑡𝑜𝑡
𝑏2 (

𝑚̇𝑟

𝜌𝑟
)
𝑏3

(
𝜌Fe

𝑚Fe
)
𝑏4

𝜀. 
[22] 

 419 

  420 
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 421 

III. MODEL PARAMETER IDENTIFICATION  422 

 423 

The identification of the parameter vector to predict the rate constant was carried out based on 424 

two types of least-squares cost-functions; linear and non-linear. In the linear case, the end 425 

sulfur content was predicted based on the predicted rate constant. The analysis of 426 

experimental data was carried out with multivariable regression (MLR) modeling. The MLR-427 

model is capable of revealing the magnitude and direction of interaction of the selected input 428 

variables to the output variable, and so can be applied to the analysis of the data and to 429 

selection of set of explanatory variables that explain the majority of variance of the output 430 

vector. In the analysis of the MLR-model outcome, two possible hypotheses for interactions 431 

between explanatory and output variables can be stated:
 [8]

 432 

 433 

 H0 – Null-hypothesis; the selected explanatory variable does not explain the 434 

changes in the output variable (𝑏𝑗 = 0). 435 

 Hα – Alternative hypothesis; the selected explanatory variable explains the 436 

changes in the output variable (𝑏𝑗  ≠  0). 437 

 438 

The effect of explanatory variable xi on the outcome is interpretable from the value of the 439 

corresponding modeling coefficient bi. A linear form of multivariable regression model can be 440 

expressed as a sum of weighted interactions of linearly independent explanatory variables as 441 

follows: 
[8]

 442 

 443 

𝑦̂ =  𝑏0 + 𝑏1𝑥1 + ⋯𝑏𝑗𝑥𝑗 = 𝑏0 + ∑ 𝑏𝑖 𝑥𝑖 +  𝜀
𝑗
𝑖=0 , 

 

[23] 

 444 

where 𝑦̂ is the output variable or the dependent variable, 𝑥𝑖  is the independent explanatory 445 

variable and 𝑏𝑖 is the regression coefficient, 𝑏0 is the intercept, j is the number of variables in 446 

the prediction model and 𝜀 is the error term. The Eq. 23 is applicable for prediction if and 447 

only if the sum of weighted interactions follow linear relationships between the predicted 448 

output and explanatory variables. In the case of complex process dynamics, the relationships 449 

are hardly ever linear, due to the fact that chemical reactions rarely follow zero-order kinetics. 450 
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Therefore, a multiplicative form of a regression model is assumedly more applicable approach, 451 

which can be formulated as a multivariable linear regression model: 
[31]

  452 

 453 

ln 𝑦̂ = 𝑏0ln 𝑒1 + 𝑏1 ln 𝑥1 + ⋯𝑏𝑛 ln 𝑥𝑛 = 𝑏0ln 𝑒1 + ∑ 𝑏𝑖 ln 𝑥𝑖 
𝑗
𝑖=0 + 𝜀, 

 

[24] 

where 𝑦𝑖 is the measured outcome. The multivariable linear regression model can be written 454 

in a matrix form: 
[8] 

455 

 
456 

𝑦̂𝑖 = Xb +  ε, 

 

[25] 

where X is the matrix containing the input vectors and b is the vector for regression 457 

coefficients. The input vectors in the matrix X constitute of the measurement data of 458 

independent variables. The linear independency of the design matrix can be determined by 459 

calculating rank(X). For a full rank, rank(X) = j+1, which is a sufficient criteria to establish 460 

the design matrix to be linearly independent. The regression coefficients are obtained by 461 

solving a least squares optimization problem, in which the objective function is formulated as: 462 

[27]
 463 

 464 

min∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑀

𝑖=0

, 
 

[26] 

 465 

where M is the number of outcomes. In optimization the formulation of a proper objective 466 

function is essential in order to acquire reasonable results for the parameter vector b. In the 467 

identification of the empirical weight coefficients, a linear cost-function can be considered:  468 

 469 

𝐦𝐢𝐧∑(𝒌𝒕𝒐𝒕,𝒊 − 𝒆𝒃𝟎 (
𝟔

𝒅𝒌𝒂,𝒊
)

𝒃𝟏

𝑸𝒕𝒐𝒕,𝒊
𝒃𝟐 (

𝒎̇𝒓,𝒊

𝝆𝒓
)
𝒃𝟑

(
𝝆𝐅𝐞

𝒎𝐅𝐞,𝐢
)

𝒃𝟒

)

𝟐𝑴

𝒊=𝟏

. 

 

 

[27] 

The form of the prediction equation can be converted into a linear form, and thus be expressed 470 

as follows:  471 

 472 

ln 𝑘𝑡𝑜𝑡 = 𝑏0ln 𝑒1 + 𝑏1ln
6

𝑑𝑝
+ 𝑏2 ln 𝑄tot + 𝑏3 ln

𝑚̇𝑟

𝜌𝑟
+ 𝑏4 ln  

𝜌Fe

𝑚Fe
.  

[28] 
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Now the problem is to find a solution for the vector b = [𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒], which gives an 473 

appropriate least-squares approximation of the system dynamics and succeeds to describe the 474 

changes in the output-variables (𝒌𝒕𝒐𝒕 and [𝐒]) with reasonable accuracy. It can be shown that 475 

the least-squares solution for a linear parameter identification problem can be given as the 476 

product of pseudoinverse of matrix X and the output vector y as: 
[8]

 477 

 478 

b = (X𝑇X)−1X𝑇𝑦. 

 

[29] 

It should be noted that the b0 for a regression model is obtained by inserting a vector of ones 479 

for the corresponding column of X with respect to b-vector. The main problem of the linear 480 

formulation is that the solution for the weighted time constant could be strongly biased such 481 

that the predictions for the end sulfur content can reach irregularly low values if the fitting 482 

data contains observations with extremely low sulfur concentrations. The aforementioned 483 

problem can be solved by formulating a non-linear form of a cost-function such that the 484 

analytical solution of the dynamic sulfur concentration approaches the observed values of end 485 

sulfur as a function of time. The objective function can then be expressed as: 486 

 487 

 488 

𝐦𝐢𝐧∑([𝐒]𝒕,𝒊 − [([𝐒]𝟎,𝒊−[𝐒]𝐞𝐪)𝒆
(−(𝒆𝒃𝟎(

𝟔
𝒅𝒑,𝒊

)
𝒃𝟏

𝑸𝒕𝒐𝒕,𝒊
𝒃𝟐 (

𝒎̇𝒓,𝒊
𝝆𝒓

)
𝒃𝟑

(
𝝆𝐅𝐞
𝒎𝐅𝐞,𝐢

)
𝒃𝟒

)𝒕)
+ [𝐒]𝐞𝐪])

𝟐

.

𝑴

𝒊=𝟎

  

 

 

[30] 

It is observable from the form of Eq. 30 that the cost-function is non-convertible into a linear 489 

form. For this reason, the parameter vector b has to be solved numerically. For this task, a 490 

suitable numerical solution strategy is considered. While examining form of the non-linear 491 

cost-function and inspection of the data, it can be seen that as the sulfur contents in the hot 492 

metal are in ppm-level, a local optima for a least-squares solution is 𝒚̂ =  [𝐒]⃗⃗⃗⃗  ⃗
𝒆𝒒., which is the 493 

steady-state solution of the mass-transfer controlled desulfurization reaction. The 494 

aforementioned solution can be found with very high values of the modeling coefficients 495 

b1…b4, if the b0 is in physically relevant order of magnitude. This makes it evident that the 496 

efficiency of the iterative search is highly dependent on the initial value of b.  497 

 498 
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 499 

 500 

A. Genetic algorithm 501 

 502 

To obtain the least-squares solution for the non-linear cost function, a genetic algorithm (GA) 503 

was applied. GA belongs to the family of evolutionary search methods, as it mimics the 504 

natural selection in the iterative process.
[49]

 GA is a robust numerical solution strategy, which 505 

has been applied successfully to multivariable optimization and parameter identification 506 

problems in various fields, including metallurgy, signal processing, electrical engineering, 507 

energy systems, hydrodynamics, automation engineering, and many more. 
[28, 29, 32-36, 38, 40, 47, 48, 

508 

50] 
 509 

 510 

GA can be implemented with various structures. A simple genetic algorithm is composed of 511 

three basic operators: reproduction, crossover and mutation. 
[49] 

The nature of the problem 512 

defines the suitable combination of different genetic operations, some of which performance 513 

is dependent on the computational parameters, ergo size of the population, maximum number 514 

of generations, crossover probability and mutation probability. 
[32-36, 48, 49]

 In this study, a non-515 

adaptive GA was applied, which means that the computational parameters are selected 516 

manually based on trial and error procedure by applying some rules of thumb summarized in 517 

the literature.  518 

 519 

In this study, a binary coded genetic algorithm was applied. The initial population is 520 

generated by tossing a non-biased coin, ergo generating a random number between 0 and 1 521 

following a uniform distribution. 
[49]

 If the random number is smaller than 0.5, the bit is 522 

assigned with 0, and with 1 otherwise. A chromosome population constitutes of parameter 523 

vectors b coded in binary digits such that each member of a population is a l x k+1 –524 

dimensional matrix, where l is the number of binary digits in a single chromosomes and k is 525 

the number of variables and the bias-term. The first digit of the chromosome determines 526 

whether the chromosome is assigned with a negative value; if the first digit is equal to one, 527 

then the chromosome is coded negative.  528 

 529 

The task of selecting a suitable population size is highly dependent on the system under 530 

study.
[51]

 If the target system is high dimensional or otherwise complex, a large population 531 

often gives more desirable results than a small population. However, an excessively large 532 
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population demands higher computational resources and does not necessarily provide a higher 533 

accuracy 
[50]

, and in some cases can result even as deteriorated performance of the algorithm. 534 

[51]
 Consequently, a feasible size of the population is to some extent a compromise between 535 

the computational resources and the desired accuracy.  536 

 537 

The convergence of a population towards the solution of the problem is achieved with a 538 

crossover. In this study, a single-point crossover was applied. The basic idea of a crossover is 539 

that two selected parent chromosomes produce two offspring chromosomes. The reproduction 540 

of a new individual is conducted by swapping n number of bits between the parent 541 

chromosomes. In a single-point crossover, the number of bits swapped is n = l – r, where r is 542 

the randomly selected crossover point. The rate of crossover is regulated with a crossover 543 

probability. The crossover is performed if the random number between 0 and 1, generated 544 

from a uniform distribution is below the crossover probability. Otherwise, the individuals are 545 

moved to the next generation. 
[49]

 546 

 547 

The selection of an individual for crossover is based on the roulette-wheel selection, in which 548 

the probability for an individual to be selected is directly proportional to its fitness. 
[49]

 In a 549 

minimization problem, the evaluation of fitness of the individuals is based on the inverse of 550 

the objective function. To avoid the convergence towards the steady-state solution, the 551 

aforementioned is combined with a penalty condition. The penalty condition is a simple 552 

scaling, in which the fitness of the individual is reduced, as proposed by Goldberg 
[49]

. As was 553 

proposed by Gharahbagh and Abolghasemi 
[42]

, the number of parents selected to produce a 554 

new offspring is npop/2. 
[42]

 The penalty is given for a member of a population if the predicted 555 

end sulfur content is below the thermodynamic equilibrium content.  556 

 557 

Similar to e.g. Sattarpour et al. 
[41]

, the mutation operator is implemented after the crossover, 558 

but such that every gene of a selected individual are treated by a bitwise inversion with a 559 

certain mutation probability. 
[42]

 Even though the mutation operator is considered as a 560 

secondary operator in a genetic algorithm, the mutation often leads more reliable convergence 561 

towards the extreme of the objective function, which can be further associated to increased 562 

diversity of the generations. 
[49] 

The suitable value for mutation probability is dependent on 563 

both the properties of the individuals and the formulated problem. For example some studies 564 

have achieved good results with low mutation rates pmut = 0.01 
[36]

, and in some studies a 565 
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mutation probability as high as pmut = 0.8 
[32]

 is applied successfully in parameter 566 

identification.  567 

 568 

Bäck and Schütz 
[48]

 studied different control mechanisms for a mutation probability. In their 569 

study, it was established that a deterministic mutation rate schedule gives desirable results for 570 

convergence. 
[48]

 Although, when inspecting the limit of the deterministic schedule proposed 571 

by the authors it is seen that the limit for the rate of mutation is dependent on the length of the 572 

chromosome, hence 𝒑𝐦𝐮𝐭(𝑻 − 𝟏) =  𝒍−𝟏 [48]
, which results that the rate of mutation is 573 

relatively large during the last generations with a small length of a chromosome, which could 574 

cause a loss of valuable information. This being so, in this study the rate of mutation proposed 575 

by Bäck and Schütz 
[48] 

is modified such that pmut → 0, when k → 𝑻. Thus, the mutation 576 

probability is given by:  577 

 578 

𝒑𝐦𝐮𝐭(𝒌) =  (𝟐 + 
𝒍 − 𝟐

𝑻 − 𝟏
𝒌)

−𝟏

− 𝒍−𝟏, 

 

[31] 

where 𝒑𝐦𝐮𝐭 is the mutation probability, k is the generation, n is the length of the chromosome 579 

and T is the maximum number of generations. The chosen structure of the genetic algorithm 580 

for this study is illustrated in Figure 1.  581 

 582 

 583 

 584 

 585 

 586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 

 594 

 595 

 596 
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Fig. 1 – Structure of the implemented algorithm. 597 

 598 

 599 

 600 

B. Nelder-Mead algorithm 601 

 602 

The Nelder-Mead algorithm is a computational algorithm, which is suitable for minimizing a 603 

non-linear multivariable cost-function.
[45]

 Nelder-Mead falls under a category of direct search 604 

methods as the implementation does not require a knowledge of the objective function 605 

derivatives. 
[43]

 Nelder-Mead is often claimed to be robust for noisy or discontinuous 606 

objective functions, and thus it is widely popular in several fields of research. 
[39]

 In various 607 

studies, Nelder-Mead algorithm is successfully applied for solving multivariable optimization 608 

problems. 
[39, 40, 43-46]

 The principal idea of the Nelder-Mead algorithm is based on the 609 

adaptive simplex, of which number of dimensions corresponds to j+1. In this study, a 610 

commercial Nelder-Mead algorithm (Matlab: fminsearch)
 [46]

 was applied to evaluate the 611 

consistency of the results provided by the GA, and thus a more detailed description of the 612 

algorithm and its convergence properties is provided in the literature.
[44,45]

  613 

 614 

 615 

C. Evaluation of fit 616 

 617 

The evaluation of the solution vector provided by a parameter identifying strategy often 618 

demands external knowledge of the system functioning and an external validation of the 619 

obtained type of the model. For example, the best solution found based on the fitting data is 620 

not necessarily the physically most feasible solution, as it is rather typical that the data is 621 

over-fitted. This is often faced when the prediction model contains an excessively large 622 

number of variables compared to observations, or when the data set is noisy or collinear. 623 

 624 

The cross-validation process is mandatory especially in preventing the over fit of the data. 625 

The cross-validation process consists of two parts; fitting and external validation, also referred 626 

as testing. When there are multiple set of parameters that produce almost an identical outcome 627 

for the minimization problem, the evaluation of the model performance is recommended to be 628 

conducted with cross-validation. 
[37] 

Thus, it is obvious that a reliable result is the one that 629 

explains the variance both in the fitting and external validation data. Prior to fit, the applied 630 
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data-set is split such that the data applied in the external validation contains no data that is 631 

applied in the fit a priori to external validation. In this study, 67.5% of the data was applied to 632 

fit and 32.5% for external validation. A flowchart of the cross-validation process is shown in 633 

Figure 2.  634 

 635 

636 
Fig. 2 – Flowchart of the cross-validation process. 637 

 638 

The performance of the prediction models was evaluated to obtain a quantitative measure for 639 

the prediction accuracy for each of the model types. Evaluation of the statistical significance 640 

of the prediction models was based on two-tailed t-test, analysis of p-value as reported in 
[10, 

641 

30]
, coefficient of determination (R

2
), sum of squared error (SOS) and mean absolute error of 642 

prediction (MAE). The linear interaction between the measured input and output can be 643 

quantified by the so-called Pearson correlation coefficient (R). The correlation coefficient 644 

describes the linear dependency between the two variables. The value of the correlation 645 

coefficient varies between -1 and 1, of which R = -1 indicates perfect inverse linear 646 

dependency and R = 1 indicates perfect linear dependency. The square of the correlation 647 

coefficient R
2
 measures the percentage of the output variable variation, which can be 648 

explained by the fitted MLR model. 
[31] 

649 

  650 
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IV. EXPERIMENTAL DATA 651 

 652 

The experiments at the desulfurization site were carried out by applying five lime-based 653 

desulfurization reagents with varying particle size distributions and amounts of limestone in 654 

the reagent mix. The experiments were conducted in 80 t ladles with an average processing 655 

time of 8 minutes. The average hot metal composition at the primary hot metal desulfurization 656 

site is C = 4.5 wt-%, Si = 0.45 wt-%, S = 0.045 wt-% and Mn = 0.172 wt-%, whereas the 657 

average temperature is around 1623 K (1350 °C).The particle size distributions for the 658 

reagents were determined prior to experiments by laser-diffraction analysis. The volume-659 

based characteristic particle size distributions of lime mixed with the limestone, with 660 

corresponding average diameters based volume, surface area and formulation based on the 661 

mass-transfer law are presented in Table I. It should be noted that the particle size 662 

distribution of the limestone was approximately constant during the experiments. 663 

 664 

The analysis of the hot metal samples was carried out by C-S-combustion method and by X-665 

Ray Fluorescence (XRF). The hot metal samples were taken instantly before and after 666 

desulfurization treatments to obtain a representable set of samples, and to minimize the effect 667 

of sulfur pick-up assumedly originating from the inverse permanent contact reaction. During 668 

the injections, the carrier gas flow rate and  immersion depth of the injection lance were held 669 

constant, which is why the value of Qtot can be considered as a pure function of temperature 670 

and injection rate of limestone at constant pressure. The data-set consists of 40 data-points 671 

overall. The full data-set is presented in Table II. 672 

 673 

 674 

 675 

  676 
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V. RESULTS AND DISCUSSION 677 

 678 

The calculations based on the theoretical expression for the rate constant were carried out 679 

prior to variable selection for the parameterized prediction models. The predictions were 680 

conducted by applying different expressions for a reagent particle size distribution. To inspect 681 

in what extend does the gas-forming additives increase the predictive power of the theoretical 682 

model, the corresponding regression coefficient was identified by applying MLR.  683 

 684 

A. System identification and variable selection 685 

 686 

According to the results of the simulations, the variables, which explain a majority of variance 687 

of the desulfurization kinetics are the particle size distribution, mass flow rate of the reagent, 688 

carrier-gas flow rate and mass of the hot metal. This is in consistence with the principal 689 

component analysis, which reveals that 92 % of the variance in the data can be captured 690 

within four principal components. The design matrix determined for such set of explanatory 691 

variables full-fills the presumed criteria for linear independency, as the rank(X) = 5. The 692 

criteria for independency is full-filled due to the fact that the amount of CaCO3 mixed within 693 

the reagent varies between the experiments. Thus, the particle size distribution, the mass flow 694 

rate and the total gas flow rate can be applied in the predictions without the problem of 695 

multicollinearity. 696 

 697 

The surface area-based approximation presents that when applying an extensively fine-grade 698 

particle size distribution, the average residence times to achieve a decent prediction accuracy 699 

are relatively short. Also as the model assumes that the thermodynamic extraction capacity of 700 

a single size class is practically infinite, which thus ignores the solid-state diffusion controlled 701 

phase. The surface-area approximation also ignores the fact that as a single particle is in 702 

equilibrium with the melt, there are no advantages achievable with longer residence times. For 703 

this reason, the predictions conducted with a surface area approximation tend to reach the 704 

state of thermodynamic equilibrium, which is in practice non-achievable with decent material 705 

consumption.  706 

 707 

A major factor that increases the prediction accuracy of the model is the defined criteria for 708 

particle-metal-control. In example when comparing the reagents B and E, it is observable 709 

from the simulation results that the finer gradation results in approximately 10 %-point drop 710 
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in the fraction of particles that get into contact with the metal phase. This is due to the fact 711 

that Weber number is both a function of surface tension and diameter of the penetrated 712 

particle. The smaller particle size class results as a higher minimum penetration velocity, and 713 

so the probability for particle contact is smaller, but highly dependent on the expected value 714 

of a single particle velocity at the tip of the lance. The result is in qualitative accordance with 715 

the results obtained by Jin et al. 
[26]

, although they employed a coarser particle size 716 

distribution in the simulations, which resulted in a larger number of contacted particles. 
[26]

 717 

 718 

The calculations suggest that in order to maximize the desulfurization efficiency of the 719 

reagent, the particle size of lime cannot be decreased endlessly. In the case of a full particle 720 

size distribution, the existence of particles with a very low contact probability potentially 721 

decreases the extraction capacity of the overall distribution. The predictions show that the 722 

non-contacted reagent fraction can be compensated with a finer gradation, because the 723 

extraction capacity for a fine-grade reagent particle size-class is significantly higher than the 724 

corresponding value for coarse size-classes. The aforementioned factors indicate that rate 725 

constant cannot be linearly dependent on the mass flow rate and reciprocal of the particle 726 

diameter, but should rather follow a logistic growth, and also that the corresponding modeling 727 

coefficients for the variables should be smaller than 1 in the case of operational variables.  728 

 729 

B. A static approach in parameter identification 730 

 731 

Based on the whole data, the MLR-model that explains a majority of variance in the 732 

stoichiometric yield of the injected reagent can be expressed as a linear combination of four 733 

explanatory variables; Henrian activity of sulfur, particle size distribution parameter d80, 734 

amount of limestone in the reagent mix and the measured mass-flow rate of the reagent. The 735 

variables were chosen with a forward-selection procedure. The Henrian activity of sulfur was 736 

calculated based on WLE-formalism, for which the interaction coefficients were extracted 737 

from the literature. 
[20]

 The predictive power of the model can be considered relatively 738 

accurate, even though the gathered data-set is relatively small. This is due to the fact that the 739 

coefficient of determination gives a high value (R
2
 = 0.92) and the averaged absolute 740 

prediction error is small (MAE = 0.5). In the test-statistic point of view, the variables selected 741 

in the prediction model explain the changes of the stoichiometric efficiency, as the 742 

quantitative measure of evidence against acceptation of null hypothesis is in order of 743 

magnitude of 10
-4

-10
-16

, which fulfills the presumed criteria for the p-value < 0.01.  744 
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 745 

The coefficient of determination for the whole data set is R
2
 = 0.94. When inspecting the 746 

reliability factors for independent predictors it can be clearly seen that selected set of 747 

variables gives statistically significant results due to the fact that the probability to make a 748 

false interpretation based on the regression coefficient is very low, which can be deduced 749 

from the fact that p-value is significantly lower than the stated confidence level. However, it 750 

can be interpreted that the desulfurization efficiency and the stoichiometric yield of the 751 

reagent described well with simple linear interactions only within a certain operational area. 752 

Based on the values of the regression coefficients, it can be interpreted that the stoichiometric 753 

yield of the injected reagent can be increased by increasing the activity of sulfur in the hot 754 

metal before the treatment, applying a finer-grade reagent and by injecting gas-forming 755 

additives within the lime. Based on the statistical prediction, by decreasing the mass flow rate 756 

of the reagent, which results as an increased treatment time and decreased solid/gas load with 757 

a constant carrier gas flow rate, the yield of the reagent can be improved.  758 

 759 

The more detailed analysis of the model reveals that the solid surface area in the reaction 760 

system potentially controls the material efficiency of the process, as the reagent yield has a 761 

dependency on both particle size distribution and injected amount of limestone. This is due to 762 

the fact that the surface area provided by the injected material is inversely proportional to 763 

single particle diameter. However, the static prediction model is applicable only in limited 764 

number of cases, as the molar efficiency of solid CaO follows the 1
st
 order kinetics. Therefore, 765 

the regression coefficients are highly a function of target sulfur content, which practically 766 

rules out the possibility of applying static linear prediction models for hot metal 767 

desulfurization, which is further confirmed as a poor predictive power of the model for end 768 

sulfur content. It is also reported in the literature that the MLR method fails in the parameter 769 

identification problem, when the applied data for the fit is noisy or collinear. However, the 770 

static approach identifies the most significant single factors, and thus creates a baseline for the 771 

further inspection of dynamic model forms.  772 

 773 

C. Parameter identification for dynamic models 774 

 775 

The identified modeling coefficients for 67.5% of the data are presented in Table III. An 776 

illustration of the fit is provided in Figure 3. It can be seen that all of the identifying methods 777 

give reasonably consistent results for the model parameters, especially in view of the effect of 778 
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particle size distribution on the rate constant. It is also evident from Figure 3 that the solved 779 

coefficients are capable of predicting changes in the sulfur content based on the fitting data 780 

with sufficient accuracy. The main uncertainty is related to the cross-correlation of the 781 

exponential bias term b0 and to the coefficient related to the volume of the hot metal phase. 782 

Nevertheless, all of the fitted bias terms are in accordance with the theoretical considerations 783 

as it is expected that tresβ[S] < 1 even with relatively long residence times. It is worth noticing 784 

that the actual values of mass transfer coefficient and the residence time of single size class 785 

are collinear, as both of the variables are a function of particle Reynolds number through the 786 

ascending velocity of the particles in the hot metal. The dynamic model proposed for the rate 787 

of desulfurization agrees well with the static reagent efficiency model. Unlike in the case of 788 

static linear model, the evolution of stoichiometric yield and desulfurization efficiency are 789 

actually a function of sulfur concentration gradient, which implies the time dependency of the 790 

aforementioned model. This indicates that a linearized static model formulation, which apply 791 

the stoichiometric yield, or the desulfurization efficiency as dependent variables are not 792 

applicable for predicting the end sulfur content as precisely as a dynamic non-linear approach.  793 

 794 

 795 

 796 

 797 

Fig. 3 – Prediction results for the fitting data. Model parameters are identified with GA. 798 

 799 

 800 

 801 

 802 
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D. Analysis of the modeling results 803 

 804 

The prediction error of the surface area approximation can be drastically improved by 805 

applying the RRS distribution and the derived contact criteria. Applying a full particle size 806 

distribution does not provide any additional benefits compared to a single particle model, 807 

apart from a slightly smaller average error of prediction. The prediction ability of the surface 808 

area approximation is drastically increased when the limited contact criteria and the effect of 809 

gas-forming compounds identified with MLR is added to formulation of the rate constant.  810 

 811 

In Table IV, the modeling results are summarized for each of the studied model types. The 812 

surface area approximation was found to predict too high desulphurization rates; this is 813 

highlighted by the fact that in many cases the sulfur content reached its equilibrium value. It 814 

can be seen that the surface area approximation provides accurate results in a few of the cases, 815 

and in the others the results are merely suggestive.  816 

 817 

Nevertheless, the parameterized expression of the rate constant gives more accurate results 818 

regardless of the method of identifying the parameters. The result can be explained well by 819 

the fact that the effective surface area in hot metal desulfurization differs significantly from 820 

the nominal surface area of the particles. This is mainly due to the fact that the surface area 821 

approximation does not take the internal mass-transfer resistances of the lime particles into 822 

account, and so gives adequate results only in limited cases.  823 

 824 

In the case of the parameterized solutions, the effect of particle size distribution on the rate of 825 

desulfurization is obvious: a finer particle size distribution improves the reaction kinetics. 826 

However, the accuracy of the parametrized rate constant is on some extend dependent on the 827 

applied distribution parameter. For example, when solving the coefficient vector b by 828 

applying the mass transfer averaged mean diameter, the formulated model tends to 829 

underestimate the model coefficient related to surface area, although the corresponding 830 

modeling coefficient is in the same order of magnitude (b1 ≈ 0.5) as in the case of distribution 831 

parameter d80. This is interpretable from Table I and from the differential particle size 832 

distribution of reagent D, which contains a relatively large volume fraction of particles with a 833 

diameter less than 1 µm. The contact probability of the particles of such a small size class is 834 

very low, and so both the surface area and mass transfer averaged diameters do not properly 835 
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describe the changes in the effective solid surface area (Asolid) in Eqs. 19 and 22, as the 836 

theoretical surface area differs significantly from the nominal surface area of the particles.  837 

 838 

Eq. 22 suggests that, for instance, in the case of surface area term, the effect of particle size 839 

distribution is inversely proportional to the rate constant, but the order of magnitude is 840 

dependent on the parameter b1. In practice this implies that the interfacial area for the reaction 841 

can be increased by decreasing the average particle size, but the certain phenomena, namely 842 

the limited extraction capacity and residence time of a single particle and the fraction of 843 

particles that get into contact with the melt can potentially limit the rate constant. For example, 844 

decreasing the d80 particle size from 250 µm to 70 µm increases the rate constant by 0.13 845 

1/min (between 30 and 50% depending on the gas flow rate), but as the corresponding 846 

regression coefficient b1 << 1, it is evident that the whole injected solid surface area is not 847 

used in the extraction of sulfur. In view of the reasoning above, and of earlier studies on the 848 

subject,
[1, 3, 18]

 this result can be partially explained with the combined effect internal mass 849 

transfer resistances, and thus by limited extraction capacity, and by the formation of 850 

2CaO∙SiO2, which prevents the diffusion of S
2– 

and Ca
2+

 ions to the core of a single particle. It 851 

should be noted that the formulation of the multiplicative model form presented in Section 852 

II.F also concerns the fraction of entrapped particles such that regression coefficients b1…b3 853 

are in fact in some extend a function of the contribution of these particles on the overall 854 

kinetics. These considerations highlight the significance of the accurate determination of the 855 

particle size distribution for the prediction of transitory reaction kinetics. 856 

 857 

The effect of surface area on the system kinetics becomes evident from the values of the 858 

coefficients b2 and b3. On the other hand, the injection of gas-forming compounds assumedly 859 

spreads the particles more efficiently to the melt (b3 > 0), or can contribute on the scattering 860 

of large carrier gas bubbles in the smaller swarms of bubbles, rather than by increasing the 861 

stirring of the hot metal bath. This finding and deduction are somewhat consistent with the 862 

results provided by Irons 
[5]

 and Lindström et al. 
[14]

 As the studied process operates very far 863 

from thermodynamic equilibrium, it is reasonable to assume that the reduce in the 864 

thermodynamic driving force due to formation of CO2 is negligible.  865 

 866 

If the flow rate is increased by 10 kg/min, the time constant is increased by a magnitude of 867 

0.03 1/min, which is between 15 and 30% depending on the gas flow rate. The rate of change 868 

in the rate constant due to the change in the mass flow rate is slightly above the theoretical 869 
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value of the rate of change, because by increasing the mass flow rate, the flow rate of the 870 

gaseous compounds increases as the limestone is mixed within the lime. However, the rate of 871 

change of the rate constant decreases within the increase of the mass flow rate, which results 872 

as that for excessively high flow rates no additional benefits are achieved by increasing the 873 

flow rate of the reagent. Due to the increase in the mass flow rate, the material efficiency of 874 

the reagent decreases due to the fact that the concentration gradient acts as the main driving 875 

force for a mass transfer controlled reaction. The effect of mass of the hot metal is further 876 

discussed in the next section. 877 

 878 

The volumetric amount of reagent particles injected in the melt is found to be a less 879 

significant factor than the particle size distribution, although the two factors are interrelated, 880 

are related also to the total flow rate of the gaseous compounds. Nonetheless, the kinetics of 881 

desulfurization seem to be directly proportional to the mass flow rate, although the rate of 882 

change in the effect of mass flow rate decreases while increasing the flow rate to excessively 883 

high values. This is due to the fact that with high sulfur concentrations, the overall rate of 884 

reaction is limited by the solid-state diffusion controlled phase. The kinetics can be further 885 

improved by introducing fresh reaction surface to the melt, but at a certain point the solid/gas 886 

load can affect to penetration behavior of particles and to carrier gas momentum, which 887 

contributes to proper spread of the particles to the metal phase. The model formulation and 888 

the solved coefficients are thus in agreement with the earlier studies. 
[1, 7, 9] 

 889 

 890 

E. External validation and sensitivity analysis of the dynamic parameterized models 891 

 892 

The external validation was carried out by predicting the end sulfur contents by applying 893 

32.5% of the original data set. The external validation data set was chosen randomly such that 894 

it contains at least 3 data points for each of reagents A–E. The external validation results are 895 

presented in Table V. It can be seen in the table that GA gives the best modeling results based 896 

on the cross-validation process. It is seen that MLR and the Nelder-Mead algorithm provide 897 

equally good results for the fitting data, as does the genetic algorithm, but it is evident that the 898 

parameters obtained with these strategies do not explain the changes in the external validation 899 

data as well as does the solution of the GA.  900 

 901 

Although MLR and GA provide results with equivalent statistical accuracy, the parameters 902 

identified with MLR are not physically feasible. This is interpretable from the coefficient 903 
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corresponding to the mass of the hot metal. MLR suggests that b4 < 1, which practically 904 

means that the molar efficiency of the reagent increases within the mass of the hot metal. This 905 

result is physically irrelevant for two reasons. First, the increased residence time resulting 906 

from the increased height of the metal bath does not provide a further increase in material 907 

efficiency after the reagent particles are in equilibrium with the hot metal. Second, the relative 908 

variation in the height of the metal bath is rather low in typical operation. 909 

 910 

The results of the external validation of the parameters obtained with GA are presented in 911 

Figure 4. The validation result can be considered sufficient as the residuals are equally spread 912 

within the diagonal line. Both the coefficient of determination for the fit and external 913 

validation is high, R
2
 = 0.91 and R

2
 = 0.91, respectively. The mean absolute prediction error 914 

of the end sulfur content is very small (MAE = 0.0010-0.0012 [wt-%]), which can be 915 

considered sufficient in view of the measurement error of the C-S-analyzing device (0–5 ppm).  916 

 917 

 918 

Fig. 4 – Prediction results for the external validation data. Model parameters are identified 919 

with GA. 920 

 921 

 922 

However, the external validation results are highly dependent on the size of the population; 923 

typically a small population tends to find a feasible accuracy for the fit, but the solution does 924 

not explain well the changes in the external validation data. This is mainly due to the fact that 925 

the initialization of the small population does not contain initial guesses with significantly 926 

high fitness values with very high probability, and thus the algorithm tends to converge 927 

towards a weak solution. A notable difference between the numerical solution strategies is 928 
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that unlike the GA, the Nelder-Mead tends to converge towards the steady-state solution. 929 

Thus, it is evident that the penalty condition is fundamental to ensure a physically feasible 930 

solution under the conditions of this study. 931 

 932 

As for the GA approach, the computationally optimal convergence and the best results were 933 

achieved with a population size of 200 individuals. Although the number of individuals is 934 

high, it has to be noted that the optimization problem is complex in nature, as there are a 935 

numerous pseudo-feasible solutions for the parameter vector b, which on the other hand 936 

provide excessively good results for the fit but fail to predict the changes in the external 937 

validation data. This finding is in a qualitative accordance with Deo and Srivastava 
[48]

. Based 938 

on the results of the sensitivity analysis and external validation, it can be said that GA, in 939 

which the mutation probability follows a deterministic schedule, is a suitable numerical 940 

solution strategy for parameter identification. However, the results provided by the GA need 941 

to be validated with an external data set and the identification process has to be repeated for a 942 

number of times for sufficient results.  943 

 944 

Generally, while comparing the results of the fitting and validation process it is observable 945 

that the genetic algorithm tends to over fit the coefficients for the data, which results as a poor 946 

external validation result. Still, the GA tends to find the solution for the problem with 947 

significantly higher probability than the other identification methods applied in the study.  For 948 

an excessively large search space, the algorithm does not obtain feasible results in decent 949 

amount of iterations, and thus the search space is necessary to be constrained such that bj = [-4 950 

4].  951 

 952 

The calculation time for one iteration loop of GA is in order of 0.01 seconds. For a sufficient 953 

convergence, the maximum calculation time for a single parameter identification trial is in 954 

order of 30 seconds, but is highly dependent on the success of the initialization, desired 955 

accuracy and the maximum number of iterations. The initialization can be further improved 956 

by applying a non-random initial guesses. In the case of the GA the solution can be found in 957 

approximately 15–30 iterations, which corresponds to 0.15–0.3 seconds of computational time. 958 

Unlike the commercial Nelder-Mead, the GA identifies the parameters with sufficient 959 

accuracy with a high probability. The performance of both algorithms was evaluated based on 960 

500 repetitions. In the case of a GA, a decent accuracy for both fit and validation is achieved 961 

with a probabilities of P(R
2
 ≥ 0.85) = 0.58 and P(MAE ≤ 0.0016) = 0.82 , whereas the 962 
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corresponding values for the Nelder-Mead algorithm are P(R
2
 ≥ 0.85) = 0 and P(MAE ≤963 

0.0016) = 0.39. The summary of the test statistics is presented in Table VI. 964 

 965 

VI. CONCLUSIONS 966 

 967 

The main findings of this study can be summarized as follows:  968 

 969 

1) The prediction accuracy of the surface area approximation can be increased by 970 

substituting the mass-transfer coefficient and the average residence time of the 971 

particles with a pre-exponential bias term. The parameterized approach for the rate 972 

constant provides the most accurate results in the viewpoint of process control 973 

purposes. 974 

 975 

2) The accurate determination of solid surface area and the volumetric amount of 976 

injected reagent increase the predictive power of all model types. Without 977 

adequate information of the reagent properties and the injection parameters, the 978 

accurate prediction of the hot metal desulfurization kinetics is not possible. The 979 

analysis also reveals that the effective surface area of the transitory reaction differs 980 

greatly from the nominal surface area of injected particles. Based on the results it 981 

can be said that applying a finer grade particle size distribution of lime in the 982 

injection can be realized in increased reaction kinetics, but certain phenomena, 983 

namely the fraction of non-contacted particles limit the reaction kinetics in case of 984 

excessively fine-grade particles. However, there is no quantitative measure of the 985 

minimum particle size in the injection, even though the probability for reagent 986 

metal contact decreases when applying an excessively fine-grade particle size 987 

distribution.  988 

 989 

3) A non-linear form of a cost function provides physically relevant results, provided 990 

that the employed numerical solution strategy is sufficiently robust. The best 991 

external validation results are also acquired by applying the evolutionary search 992 

method. Under conditions of this study, a modified genetic algorithm is a feasible 993 

alternative for parameter identification.  994 

 995 
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4) When the hot metal desulfurization operates far away from thermodynamic 996 

equilibrium, the kinetics of the transitory reaction improved by adding limestone 997 

within the reagent. The effect of limestone could be attributed to increased 998 

effective solid surface area by scattering of the reagent particles due to gas-999 

forming decomposition reaction.  1000 

 1001 

5) By optimizing the mass flow rate of the reagent, the total consumption of the 1002 

reagent can be decreased, if the rate constant is of feasible order of magnitude. The 1003 

decrease in the material consumption is associated with the thermodynamic 1004 

driving force. It appears that there is an optimum time instant t at which the flow 1005 

rate should be decreased to minimize the overall costs of injection. The cost wise 1006 

optimization of the injection trajectory demands additional research. 1007 

 1008 
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NOMENCLATURE 1017 

 1018 

SYMBOLS AND ABBREVIATIONS 1019 

 1020 

 1021 

A Area m
2
 

bi Regression coefficient for a variable i - 

Cd Drag coefficient - 

d Diameter  µm 

dka Average particle size by means of mass-transfer µm 

d32 Sauter mean diameter µm 

dA Area-based mean diameter µm 

dmean Volume-based mean diameter µm 

g Gas - 

ktot Rate constant of the transitory reaction 1/s 

M Molar mass g/mol 

𝑚̇ Reagent feed rate kg/s 

N Normal distribution - 

p Particle - 

Q Carrier-gas flow rate m
3
/s 

R Weight-fraction of particles - 

R Universal gas constant 8.3145 J/(K·mol) 

R
2
 Squared Pearson correlation coefficient - 

t Time  s 

tres Residence time  s 

ut Terminal velocity  m/s 

V Volume m
3
 

xi Input variable i - 

yi Volume fraction  - 

y Output variable - 

𝑦̂ Predicted output variable - 

w Mass fraction - 

X Data-matrix - 

β Mass transfer coefficient m/s 

ρ Density kg/m
3
 



  

37 

 

Ω Fraction of contacted particles - 

θ Contact angle ͦ 

[ ] Species dissolved in hot metal - 

( ) Species in slag phase - 

{ } Species in gas phase - 

< > Solid species - 

MAE Mean absolute error of prediction - 

SOS Sum of squared errors - 

  1022 
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 1125 

 1126 

Appendix 1: Tables  1127 

 1128 

Table I. Particle size distributions of applied reagents. 1129 

 1130 

  1131 

 Particle diameters [µm]     

Reagent dka d32 dA,mean dV,mean d90 d80 d50 d25 d10 CaCO3 (wt %) [S]0 [wt %] [S]t [wt%] k (1/min) 

A 55.5 6.7 6.2 67.5 240.0 135.0 26.5 6.2 2.8 9 0.066 0.008 0.22 

B 68.6 7.2 6.8 120.4 428.5 223.6 33.8 6.4 3.0 5 0.038 0.014 0.15 

C 75.2 7.4 7.4 124.4 410.1 233.6 43.7 7.2 3.2 0 0.047 0.015 0.12 

D 18.4 4.3 3.9 37.4 97.9 73.3 24.2 4.1 1.2 0 0.057 0.011 0.18 

E 42.1 5.6 5.4 33.8 117.1 69.9 10.4 4.4 2.2 10 0.047 0.007 0.24 
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Table   II.  Data-set applied to fitting of the models.  1132 

 1133 

 1134 

Reagent T (K)  mFe (t) t (min) Reagent (kg) [S]0 [S]t 

A 1623 60.1 5.6 450.4 0.017 0.005 

A 1616 81.4 12.3 703.2 0.104 0.005 

A 1634 81.4 10.7 773.1 0.103 0.008 

A 1654 78.6 5.6 848.7 0.022 0.011 

A 1659 75.7 6.6 578.5 0.034 0.007 

A 1606 80.1 8.7 818.0 0.033 0.006 

A 1676 72.4 7.8 720.2 0.043 0.008 

A 1611 81.7 9.3 634.5 0.078 0.012 

B 1693 86.0 5.3 712.8 0.017 0.007 

B 1668 84.0 7.7 987.5 0.039 0.014 

B 1629 82.3 4.5 740.5 0.030 0.016 

B 1673 89.1 5.8 651.5 0.029 0.012 

B 1649 83.7 6.6 698.9 0.046 0.020 

B 1669 80.0 6.5 624.5 0.034 0.013 

B 1618 81.8 4.8 612.0 0.030 0.013 

B 1640 91.5 9.6 1030.0 0.063 0.017 

C 1649 93.7 7.2 930.0 0.021 0.010 

C 1667 79.7 9.4 635.2 0.027 0.009 

C 1622 87.3 5.9 908.0 0.027 0.019 

C 1635 80.7 12.1 563.3 0.061 0.015 

C 1636 87.9 9.4 1357.0 0.060 0.021 

C 1623 83.9 9.4 1239.9 0.053 0.018 

C 1624 87.1 10.7 638.8 0.061 0.019 

D 1649 89.0 9.7 1012.9 0.062 0.010 

D 1634 77.7 9.1 1121.0 0.057 0.008 

D 1637 88.7 9.8 983.0 0.066 0.013 

D 1664 87.5 7.7 564.6 0.046 0.014 

D 1674 86.0 9.9 787.0 0.050 0.007 

D 1624 77.4 9.5 990.3 0.055 0.009 

D 1650 79.0 6.6 1001.3 0.036 0.013 

D 1632 81.2 8.2 560.3 0.053 0.013 

E 1669 81.3 11.1 727.7 0.047 0.001 

E 1649 88.8 10.1 698.5 0.049 0.013 

E 1686 80.1 14.0 514.6 0.077 0.005 

E 1650 74.4 8.2 867.8 0.041 0.005 

E 1660 77.7 6.9 929.0 0.038 0.006 

E 1695 82.9 7.2 836.0 0.037 0.007 

E 1654 87.9 10.8 711.4 0.048 0.007 

E 1711 90.1 9.6 867.0 0.037 0.009 

E 1637 81.4 9.1 457.5 0.039 0.007 

  1135 
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 1136 

Table III. Identified modeling coefficients. 1137 

Method Cost function b0 b1 b2 b3 b4 R2 MAE SOS 

MLR – Best solution Linear -1.40 0.52 0.70 0.97 0.63 0.90 0.0012 6.01∙10-5 

GA – Best solution Non-linear -1.34 0.51 0.52 0.81 1.23 0.91 0.0010 5.81∙10-5
 

Nelder-Mead – Best solution Non-linear -2.00 0.39 0.48 0.62 1.07 0.91 0.0011 5.60∙10-5 

 1138 
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 1140 

Table IV. Comparison of prediction approaches for end sulfur content for all the data. 1141 

 1142 

  1143 

Model R2 MAE  tres 

Surface area approach (RRS) 0.29 0.0039 2.5 

Surface area approach (Sauter) 0.29 0.0057 1.5 

Surface area approach (RRS, Limited contact, Qtot) 0.76 0.0020 23 

Parameterized rate constant (d80)  0.88-0.91 0.0010-0.0012 - 
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 1144 

Table V. Results of the external validation. 1145 

Method Cost function R2 SOS MAE [wt-%] 

MLR – Best solution Linear 0.89 4.2∙10-5 0.0012 

GA – Best solution Non-linear 0.91 3.7∙10-5 0.0011 

Nelder-Mead – Best solution Non-linear 0.83 5.9∙10-5 0.0016 

 1146 
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Table VI. Summary of the test statistics for 500 repetitions. 1148 

Method Measure Mean Median Best Worst Mode 

GA – Fit R2  0.92 0.92 0.93 0.82 0.92 

GA – Fit  MAE  0.0012 0.0012 0.0009 0.0016 0.0012 

GA – Validation R2 0.85 0.86 0.91 0.68 0.88 

GA – Validation  MAE  0.0014 0.0014 0.0010 0.0022 0.0013 

       Nelder-Mead – Fit R2  0.38 0 0.93 0 0 

Nelder-Mead – Fit MAE  0.0072 0.0116 0.0010 0.0116 0.0116 

Nelder-Mead – Validation R2 0.39 0.29 0.90 0.00 0.83 

Nelder-Mead – Validation MAE  0.0062 0.0095 0.0011 0.0095 0.0095 

 1149 
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Fig. 1 – Structure of the implemented algorithm. 

 

Fig. 2 – Flowchart of the cross-validation process. 

 

Fig. 3 – Prediction results for the fitting data. Model parameters are identified with GA. 

 

Fig. 4 – Prediction results for the external validation data. Model parameters are identified 

with GA. 

 

 


