Skip to main content

Advertisement

Log in

Enhanced redox kinetics based on Mo2C-C/Fe3C electrocatalyst for lithium-sulfur batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Due to high energy density and theoretical capacity, lithium-sulfur (Li–S) batteries are regarded as one of the most promising candidates for next-generation secondary batteries. Nevertheless, sluggish redox reaction kinetics and irreversible capacity loss limit its commercial application. Herein, Mo2C-C/Fe3C composite with synergistic effect serving as host material for Li–S batteries is reported. The strong polar chemical adsorption capacity of Mo2C and its synergistic catalytic effect with Fe3C nanoparticles effectively inhibit the shuttle effect and improve the utilization of active substances. Meanwhile, the carbon substrate acts as a conductive network to achieve rapid charge transfer. Mo2C-C/Fe3C electrode material combining high electrical conductivity, valid catalytic activity, and strong polar chemisorption ability exhibits excellent electrochemical performance. The Mo2C-C/Fe3C cathode based on Li–S batteries delivers an initial discharge capacity of 1203.4 mAh g−1 at 0.1 C and 587.1 mAh g−1 at 2 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang S, Wang Z, Von Lim Y, Wang Y, Li Y, Zhang D, Yang HY (2021) Recent advances in heterostructure engineering for lithium–sulfur batteries. Adv Energy Mater 11:2003689

    Article  CAS  Google Scholar 

  2. Knoop JE, Ahn S (2020) Recent advances in nanomaterials for high-performance Li–S batteries. J Energy Chem 47:86–106

    Article  Google Scholar 

  3. Gu XX, Lai C (2019) One dimensional nanostructures contribute better Li–S and Li–Se batteries: Progress, challenges and perspectives. Energy Storage Materials 23:190–224

    Article  Google Scholar 

  4. Chen H, Wu Z, Zheng M, Liu T, Yan C, Lu J, Zhang S (2021) Catalytic materials for lithium-sulfur batteries: mechanisms, design strategies and future perspective. Materials Today 1369–7021

  5. Li J, Niu Z, Guo C, Li M, Bao W (2021) Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: a review. J Energy Chem 54:434–451

    Article  Google Scholar 

  6. Cheng M, Yan R, Yang Z, Tao X, Ma T, Cao S, Ran F, Li S, Yang W, Cheng C (2021) Polysulfide catalytic materials for fast-kinetic metal-sulfur batteries: principles and active centers. Adv Sci (Weinh):e2102217

  7. Li Y, Gao T, Ni D, Zhou Y, Yousaf M, Guo Z, Zhou J, Zhou P, Wang Q, Guo S (2021) Two birds with one stone: interfacial engineering of multifunctional Janus separator for lithium-sulfur batteries. Adv Mater:e2107638

  8. Cao J, Tornheim A, Glossmann T, Hintennach A, Rojas T, Meisner Q, Sahore R, Liu Q, Wang Y, Ngo A, Curtiss LA, Zhang Z (2019) Understanding the impact of a nonafluorinated ether-based electrolyte on Li-S battery. J Electrochem Soc 166(15):A3653–A3659

    Article  CAS  Google Scholar 

  9. Gu XX, Yang ZG, Qiao S, Shao CB, Ren XL, Yang JJ (2020) Exploiting methylated amino resin as a multifunctional binder for high-performance lithium–sulfur batteries. Rare Met 40(3):529–536

    Article  Google Scholar 

  10. Zhou L, Danilov DL, Eichel RA, Notten PHL (2020) Host Materials Anchoring Polysulfides in Li–S Batteries Reviewed. Advanced Energy Materials 11(15)

  11. Song C-L, Li Z-H, Li M-Z, Huang S, Hong X-J, Si L-P, Zhang M, Cai Y-P (2020) Iron carbide dispersed on nitrogen-doped graphene-like carbon nanosheets for fast conversion of polysulfides in Li–S batteries. ACS Applied Nano Materials 3(10):9686–9693

    Article  CAS  Google Scholar 

  12. Wang D, Cao Q, Jing B, Wang X, Huang T, Zeng P, Jiang S, Zhang Q, Sun J (2020) A freestanding metallic tin-modified and nitrogen-doped carbon skeleton as interlayer for lithium-sulfur battery. Chemical Engineering Journal 399:125723

    Article  CAS  Google Scholar 

  13. Huang Y, Wang W, Shan J, Zhu J, Wu S, Li F, Liu Z, Li Y (2020) High volumetric energy density Li-S batteries enabled by dense sulfur monolith cathodes with ultra-small-sized sulfur immobilizers. Chemical Engineering Journal 401:126076

    Article  CAS  Google Scholar 

  14. Gao XG, Huang Y, Sun XY, Batool S, Li TH (2022) Nanopolyhedron Co–C/Cores triggered carbon nanotube in-situ growth inside carbon aerogel shells for fast and long-lasting lithium–sulfur batteries. Journal of Power Sources 520:230913

    Article  CAS  Google Scholar 

  15. Gu XX, Kang H, Shao CB, Ren X, Liu XT (2020) A Typha Angustifolia-Like MoS2/Carbon Nanofiber Composite for High Performance Li-S Batteries. Front Chem 8:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng CS, Chung SH (2022) Nickel-plated sulfur nanocomposites for electrochemically stable high-loading sulfur cathodes in a lean-electrolyte lithium-sulfur cell. Chemical Engineering Journal 429:132257

    Article  CAS  Google Scholar 

  17. Yen YJ, Chung SH (2021) A Li2S-based catholyte/solid-state-electrolyte composite for electrochemically stable lithium-sulfur batteries. ACS Appl Mater Interfaces 13(49):58712–58722

    Article  CAS  PubMed  Google Scholar 

  18. Cao ZJ, Zhang YZ, Cui YLS, Li B, Yang SB (2020) Harnessing the unique features of Mxenes for sulfur cathodes. Tungsten 2(2):162–175

    Article  Google Scholar 

  19. Zhu Q, Xu HF, Shen K, Zhang YZ, Li B, Yang SB (2021) Efficient polysulfides conversion on Mo2CTx Mxene for high-performance lithium–sulfur batteries. Rare Met 41(1):311–318

    Article  Google Scholar 

  20. Ma Z, Liu Y, Gautam J, Liu W, Chishti AN, Gu J, Yang G, Wu Z, Xie J, Chen M, Ni L, Diao G (2021) Embedding cobalt atom clusters in CNT-wired MoS2 tube-in-tube nanostructures with enhanced sulfur immobilization and catalyzation for Li-S batteries. Small 17(39):e2102710

  21. Zhang L, Liu Y, Zhao Z, Jiang P, Zhang T, Li M, Pan S, Tang T, Wu T, Liu P, Hou Y, Lu H (2020) Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li-S batteries. ACS Nano 14(7):8495–8507

    Article  CAS  PubMed  Google Scholar 

  22. Qin G, Liu Y, Han P, Cao S, Guo X, Guo Z (2020) High performance room temperature Na-S batteries based on FCNT modified Co3C-Co nanocubes. Chemical Engineering Journal 396:125295

    Article  CAS  Google Scholar 

  23. Jin Z, Lin T, Jia H, Liu B, Zhang Q, Chen L, Zhang L, Li L, Su Z, Wang C (2020) in situ engineered ultrafine NiS2-ZnS heterostructures in micro-mesoporous carbon spheres accelerating polysulfide redox kinetics for high-performance lithium-sulfur batteries. Nanoscale 12(30):16201–16207

    Article  CAS  PubMed  Google Scholar 

  24. Waqas M, Han Y, Chen D, Ali S, Zhen C, Feng C, Yuan B, Han J, He W (2020) Molecular ‘capturing’ and ‘seizing’ MoS2/TiN interlayers suppress polysulfide shuttling and self-discharge of Li–S batteries. Energy Storage Materials 27:333–341

    Article  Google Scholar 

  25. Hussain S, Yang X, Aslam MK, Shaheen A, Javed MS, Aslam N, Aslam B, Liu G, Qiao G (2020) Robust TiN nanoparticles polysulfide anchor for Li–S storage and diffusion pathways using first principle calculations. Chemical Engineering Journal 391:123595

    Article  CAS  Google Scholar 

  26. Zuo JH, Gong YJ (2020) Applications of transition-metal sulfides in the cathodes of lithium–sulfur batteries. Tungsten 2(2):134–146

    Article  Google Scholar 

  27. Zhao CX, Li XY, Zhao M, Chen ZX, Song YW, Chen WJ, Liu JN, Wang B, Zhang XQ, Chen CM, Li BQ, Huang JQ, Zhang Q (2021) Semi-immobilized molecular electrocatalysts for high-performance lithium-sulfur batteries. J Am Chem Soc 143(47):19865–19872

    Article  CAS  PubMed  Google Scholar 

  28. Qi C, Li Z, Wang G, Yuan H, Chen C, Jin J, Wen Z (2021) Microregion welding strategy prevents the formation of inactive sulfur species for high-performance Li–S battery. Adv Energy Mater 11(39):2102024

    Article  CAS  Google Scholar 

  29. Yu Y, Zhou J, Sun Z (2020) Novel 2D Transition-metal carbides: ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction. Adv Func Mater 30(47):2000570

    Article  CAS  Google Scholar 

  30. Zhang H, Jin H, Yang Y, Sun F, Liu Y, Du X, Zhang S, Song F, Wang J, Wang Y, Jiang Z (2019) Understanding the synergetic interaction within α-MoC/β-Mo2C heterostructured electrocatalyst. J Energy Chem 35:66–70

    Article  CAS  Google Scholar 

  31. Dai H, Wang L, Zhao Y, Xue J, Zhou R, Yu C, An J, Zhou J, Chen Q, Sun G, Huang W (2021) Recent advances in molybdenum-based materials for lithium-sulfur batteries. Research (Wash D C) 2021:5130420

    CAS  Google Scholar 

  32. Meng X, Liu X, Fan X, Chen X, Chen S, Meng Y, Wang M, Zhou J, Hong S, Zheng L, Shi G, Bielawski CW, Geng J (2021) Single-atom catalyst aggregates: size-matching is critical to electrocatalytic performance in sulfur cathodes. Adv Sci (Weinh):e2103773

  33. Zhao M, Liu X, Zhang Q, Tian G, Huang J, Zhu W, Wei F (2012) Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li–S batteries. ACS Nano 6(12):10759–10769

    Article  CAS  PubMed  Google Scholar 

  34. Wang S, Liu X, Duan H, Deng Y, Chen G (2021) Fe3C/Fe nanoparticles embedded in N-doped porous carbon nanosheets and graphene: a thin functional interlayer for PP separator to boost performance of Li-S batteries. Chemical Engineering Journal 415:129001

    Article  CAS  Google Scholar 

  35. Wang M, Yang H, Shen K, Xu H, Wang W, Yang Z, Zhang L, Chen J, Huang Y, Chen M, Mitlin D, Li X (2020) Stable lithium sulfur battery based on in situ electrocatalytically formed Li2S on metallic MoS2–carbon cloth support. Small Methods 4(9):2000353

    Article  CAS  Google Scholar 

  36. Sun M, Wang Z, Li X, Li H, Jia H, Xue X, Jin M, Li J, Xie Y, Feng M (2020) Rational understanding of the catalytic mechanism of molybdenum carbide in polysulfide conversion in lithium–sulfur batteries. Journal of Materials Chemistry A 8(23):11818–11823

    Article  CAS  Google Scholar 

  37. Wang W, Zhao Y, Zhang Y, Wang J, Cui G, Li M, Bakenov Z, Wang X (2020) Defect-rich multishelled Fe-doped Co3O4 hollow microspheres with multiple spatial confinements to facilitate catalytic conversion of polysulfides for high-performance Li-S batteries. ACS Appl Mater Interfaces 12(11):12763–12773

    Article  CAS  PubMed  Google Scholar 

  38. Chen G, Li Y, Zhong W, Zheng F, Hu J, Ji X, Liu W, Yang C, Lin Z, Liu M (2020) MOFs-derived porous Mo2C–C nano-octahedrons enable high-performance lithium–sulfur batteries. Energy Storage Materials 25:547–554

    Article  Google Scholar 

  39. Li J, Liu M, An J, Tian P, Tang C, Jia T, Butt FK, Yu D, Bai W, Cao C, Feng X (2020) The synergism of nanoplates with habit-tuned crystal and substitution of cobalt with titanium in Ni-rich LiNi0.80Co0.15Al0.05O2 cathode for lithium-ion batteries. Journal of Alloys and Compounds 829:154555

  40. Mou J, Liu T, Li Y, Zhang W, Li M, Xu Y, Huang J, Liu M (2020) Hierarchical porous carbon sheets for high-performance room temperature sodium–sulfur batteries: integration of nitrogen-self-doping and space confinement. Journal of Materials Chemistry A 8(46):24590–24597

    Article  CAS  Google Scholar 

  41. Wang J, Zhao Y, Li G, Luo D, Liu J, Zhang Y, Wang X, Shui L, Chen Z (2021) Aligned sulfur-deficient ZnS1x nanotube arrays as efficient catalyzer for high-performance lithium/sulfur batteries. Nano Energy 84:105891

    Article  CAS  Google Scholar 

  42. Shi Z, Sun Z, Cai J, Fan Z, Jin J, Wang M, Sun J (2020) Boosting dual-directional polysulfide electrocatalysis via bimetallic alloying for printable Li–S batteries. Adv Func Mater 31(4):2006798

    Article  Google Scholar 

  43. Li F, Liu Q, Hu J, Feng Y, He P, Ma J (2019) Recent advances in cathode materials for rechargeable lithium-sulfur batteries. Nanoscale 11(33):15418–15439

    Article  CAS  PubMed  Google Scholar 

  44. Li Y, Xu P, Chen G, Mou J, Xue S, Li K, Zheng F, Dong Q, Hu J, Yang C, Liu M (2020) Enhancing Li-S redox kinetics by fabrication of a three dimensional Co/CoP@nitrogen-doped carbon electrocatalyst. Chemical Engineering Journal 380:122595

    Article  CAS  Google Scholar 

  45. Zeng P, Yuan C, An J, Yang X, Cheng C, Yan T, Liu G, Chan T-S, Kang J, Zhang L, Sun X (2022) Achieving reversible precipitation-decomposition of reactive Li2S towards high-areal-capacity lithium-sulfur batteries with a wide-temperature range. Energy Storage Materials 44:425–432

    Article  Google Scholar 

  46. Zhang Y, Zhang P, Li B, Zhang S, Liu K, Hou R, Zhang X, Silva SRP, Shao G (2020) Vertically aligned graphene nanosheets on multi-yolk/shell structured TiC@C nanofibers for stable Li–S batteries. Energy Storage Materials 27:159–168

    Article  Google Scholar 

  47. Wang S, Feng S, Liang J, Su Q, Zhao F, Song H, Zheng M, Sun Q, Song Z, Jia X, Yang J, Li Y, Liao J, Li R, Sun X (2021) Insight into MoS2–MoN heterostructure to accelerate polysulfide conversion toward high-energy-density lithium–sulfur batteries. Adv Energy Mater 11(11):2003314

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (Grant No. 61774022, 61574021), Department of Science and technology of Jilin Province (20210101077JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lü.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 994 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Dang, R., Yu, L. et al. Enhanced redox kinetics based on Mo2C-C/Fe3C electrocatalyst for lithium-sulfur batteries. Ionics 28, 1607–1616 (2022). https://doi.org/10.1007/s11581-022-04452-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04452-3

Keywords

Navigation