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ABSTRACT    

This paper studies learning effect as a resource utilization technique that can model improvement in worker’s ability 

as a result of repeating similar tasks. By considering learning of workers while performing setup times, a schedule can 

be determined to place jobs that share similar tools and fixtures next to each other. The purpose of this paper is to 

schedule a set of jobs in a hybrid flow shop (HFS) environment with learning effect while minimizing two objectives 

that are in conflict: namely maximum completion time (makespan) and total tardiness. Minimizing makespan is 

desirable from an internal efficiency viewpoint, but may result in individual jobs being scheduled past their due date, 

causing customer dissatisfaction and penalty costs. A bi-objective mixed integer programming model is developed, 

and the complexity of the developed bi-objective model is compared against the bi-criteria one through numerical 

examples. The effect of worker learning on the structure of assigned jobs to machines and their sequences is analyzed. 

Two solution methods based on the hybrid water flow like algorithm and non-dominated sorting and ranking concepts 

are proposed to solve the problem. The quality of the approximated sets of Pareto solutions is evaluated using several 

performance criteria. The results show that the proposed algorithms with learning effect perform well in reducing 

setup times and eliminate the need for setups itself through proper scheduling. 

Keywords: Bi-objective scheduling; hybrid flow shop; learning effect; meta-heuristic. 

1.  Introduction   

Scheduling is a methodology that optimizes the use of resources by ordering a sequence of jobs assigned to each 

resource. It plays a fundamental role in production planning of manufacturing systems, and it is an important success 

factor in the modern competitive marketplace (Yue and Wan, 2017). The hybrid flow shop (HFS) is one of the most 

recognized scheduling problems, and has attracted much attention given its complexity and practical relevance. The 

topic is intensively studied in all kinds of real world scenarios including the electronics, paper and textile industries 

(Ruiz and Rodriguez, 2010). A HFS consists of a series of production stages, each of which has several identical 

machines operating in parallel. Some stages may have only one machine, but at least one stage must have multiple 

machines to be qualified as a hybrid flow shop. In a HFS environment, a set of n jobs is to be processed optimizing a 

given objective function. A job must pass through all stages and must be processed by exactly one machine at every 

stage. The layout of a g-stage hybrid flow shop environment is illustrated in Figure 1. 

 

Figure 1. The structure of a typical hybrid flow shop environment. 
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Two decisions are taken at once to solve HFS scheduling problems: determining the assignment of jobs to the parallel 

machines and the sequence of the jobs allocated to each machine. Between the processing of two successive jobs in 

each machine a sequence-dependent setup time (SDST) such as cleaning up, changing tools and removal of failures 

occurs. Setup time is a significant factor for production scheduling, and it may easily consume more than 20% of 

available machine capacity if not well handled (Pinedo, 2015). The human factor has a significant effect on setup 

times, and it can be considered that by repeating a similar setup task the worker is able to perform it at an increasing 

pace. This phenomenon, in which the actual setup time of a job is shorter if it is scheduled later rather than earlier in 

the sequence is known as the “learning effect” in the literature (e.g. Biskup (1999), Wang et al. (2000)). This effect 

has been proven to exist by many empirical studies (see the examples in Biskup (2008)), and accounting for it is of 

importance in today's manufacturing and service organizations where reliable and low-cost products/services should 

be delivered on time (Soroush, 2015). 

An inherent characteristic of scheduling tasks is a high level of human activities, so the number of activities subject 

to learning is great. Hence, different approaches for modeling learning in scheduling environments have been 

suggested in the literature (e.g. Cheng and Wang (2000), Kuo and Yang (2006)). The way learning should be modeled 

depends on the production environment. In this paper, a position-based learning approach is used which means that 

learning is effected by the pure number of jobs being processed on machines. The position-based approach assumes 

that the actual processing of the job is machine-driven and has near to none human intervention (Biskup, 1999). 

Practical examples of the position-based learning approach include the processing of circuit boards and memory chips. 

Recently there has been a growing research interest in multi-objective scheduling problems (e.g. Yenisey and 

Yagmahan (2014), Karimi and Davoudpour (2016)). This paper addresses a bi-objective hybrid flow shop scheduling 

problem to represent the manufacturers’ and the consumers’ real world concerns by minimizing makespan and total 

tardiness. Makespan is a measure to calculate the total length of the schedule and total tardiness is a measure to 

calculate lateness of jobs which are completed after their due dates. Minimizing the tardiness causes external efficiency 

and reduces the penalties incurred for late jobs while minimizing the makespan causes internal efficiency and keeps 

the work-in-process inventory at a low level. Minimization of makespan and total tardiness are in conflict because a 

single optimal solution may not exist with respect to the two objectives. A sub-schedule which minimizes the total 

tardiness for the first r jobs may retain a relatively large makespan which worsens the total tardiness for the 

remaining n−r jobs. Therefore, there is a need for multi-objective scheduling approach to and achieve the objectives 

simultaneously. The bi-objective HFS problem is NP-hard, since even its simpler version with a single criterion, one 

machine in the first stage, two machines in the second and no learning effect is already NP-hard (Gupta, 1998). 

Therefore, it is tough to solve the proposed problem in a reasonable computational time while using traditional 

approaches (exact methods). This limitation has prompted researchers to develop a variety of heuristics and meta-

heuristics to solve these problems quickly with reasonable solution quality. Heuristics are usually problem-specific 

methods, while meta-heuristics are nature-inspired algorithms for solving tough optimization problems. They are 

guided random search methods, which mimic the principles of evolution. Meta-heuristics are powerful problem-

independent methods that can be applied to a wide range of problems. 

According to the best of our knowledge, this study is the first work which examines the impact of worker learning on 

the structure of assigned jobs to machines and their sequences in bi-objective hybrid flow shop systems. Previous 

studies on learning effect in the scheduling field have mainly focused on different approaches to modeling learning in 

various shop environments (e.g. Cheng et al. (2014), Wu and Wang (2016)). This paper presents several illustrative 

examples to show the potential time reductions that the modeling of learning effect may result in, both through 

reducing setup times and even through changing the job schedule. The impact of the problem’s characteristics, such 

as the optimization criteria and the learning rates, on the structure of optimal schedule of jobs is visualized. In this 

paper, the bi-objective and bi-criteria (single objective) versions of the proposed problem are compared to illustrate 

the complexity of bi-objective optimization. This bi-objective HFS problem with learning effect and SDSTs is 

formulated as a mixed integer optimization model, and two hybrid meta-heuristic algorithms are developed for solving 

it. 

The rest of the paper is organized as follows: In Section 2, we present a literature review related to hybrid flow shop 

scheduling and learning effect. The problem formulation and the notation used is given in detail in Section 3. Section 

4 deals with the algorithms offered for solving the proposed multi-objective problem. The computational analysis of 

the developed model and algorithms are given in Section 5. The impact of learning effect on the schedule of jobs and 

the complexity of the developed bi-objective HFS model are also discussed. Subsequently, non-dominated solutions 

of the algorithms are evaluated with different performance metrics. Finally, the conclusions and future work are laid 

out in Section 6. 



                    Accepted in J Syst Sci Syst Eng 

3 
 

2. Literature review  

In this section, we first survey the literature on the HFS scheduling problem and then continue with the literature on 

scheduling problem with learning effect. Finally, we review the solution approaches for solving the multi-objective 

HFS problems.  

2.1. Hybrid flow shop scheduling   

In the past four decades, extensive work has been done in the field of HFS scheduling approach. The literature on the 

hybrid flow shop scheduling is abundant, for example, a comprehensive literature review in hybrid flow shop can be 

found in Quadt and Kuhn, (2007), Ruiz and Vázquez-Rodríguez (2010), and Ribas et al. (2010). Hybrid flow shop as 

a common manufacturing environment has a “standard” form which can be found in Ruiz and Vázquez-Rodríguez 

(2010). The modification, removal or addition of assumptions and/or constraints to the standard problem described 

above leads to different HFS variants. In accordance with Graham et al. (1979), scheduling problems can be described 

with a triplet α|β|γ. The considered problem in this research which is a m-machine g-stage flexible (hybrid) flowshop 

scheduling problem to minimize makespan and total tardiness with sequence-dependent setup times and learning effect 

will be noted as FHg, ((𝑃𝑀(𝑡))
𝑡=1

𝑔
)| Ssd, LE |{ Cmax, ∑Tj } where P indicates parallel machines (identical). Here, 

we only focus on g-stage cases of HFS scheduling problems. 

One of the most prevailing assumptions by many researchers is the integration of sequence-dependent setup times into 

different shop scheduling environments. Scheduling problems with SDSTs are among the most difficult classes of 

scheduling problems. A one-machine scheduling problem with SDST is NP-hard (Zandieh et al., 2006).  Kurz and 

Askin (2003) introduced the mathematical model of the HFS problem with sequence-dependent setup times. A 

comprehensive review of the literature on scheduling problems involving setup times can be found in Allahverdi 

(2015).  

Ruiz & Vázquez-Rodriguez (2010) reviewed about 200 HFS papers. According to their study, around 55% of the 

reviewed papers consider g stage with the identical parallel machine. This shop configuration has attracted a lot of 

attention given its complexity and practical relevance. They also showed that the literature is heavily biased towards 

the makespan criterion with a 60% of the references studying this single objective. Ruiz & Vázquez-Rodriguez (2010) 

specifically state about the importance of tardiness criterion in the HFS problems: “It is striking to see that from all 

surveyed papers, only a total of 1% deal with the earliness–tardiness criterion, which is so important for real 

problems.” 

2.2. Learning effect and scheduling problems  

Learning and its effect on productivity are well recognized in different industrial settings. Although the learning effect 

has been applied to industry for more than sixty years, it has been adopted in the scheduling field just in the recent 

years (Cheng et al., 2014). There exist a growing interest in the literature to study scheduling problems with learning 

effect. Biskup (1999) and Cheng and Wang (2000) were pioneers that introduced the concept of learning to the 

scheduling problems. Biskup (1999) considered a single-machine scheduling problem with a position-based learning 

effect and assumed the two objectives of minimizing the weighted sum of completion time deviations from a common 

due date and the sum of job completion times. Cheng and Wang (2000) considered a single machine scheduling 

problem to minimize the maximum lateness by using a piecewise linear processing time function to model the learning 

effect. Eren and Güner (2008) considered learning effect in a two-machine flow shop scheduling. They analyzed the 

bi-criteria flow shop problem to minimize a linear combination of the makespan and the total completion time. Eren 

and Güner (2009) considered learning effect in a bi-criteria parallel machine scheduling problem to minimize the 

weighted sum of total completion time and total tardiness.  

The HFS problem with learning effects has been also investigated in several studies. Pargar and Zandieh (2012) 

introduced the learning effect into hybrid flow shop scheduling problems with the objective of minimization of the 

weighted sum of makespan and total tardiness. Behnamian and Zandieh (2013) considered a position-based learning 

effects to solve HFS with the consideration of tardiness and earliness penalties as the objective function. Mousavi et 

al. (2016) considered a position-based learning effect to solve re-entrant HFS problem with the objective of 

minimizing makespan and total tardiness. A comprehensive review of scheduling problems with learning effects can 

be found in Biskup (2008) and Agnetis et al. (2014). 
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2.3. Solution approaches  

Researchers have proposed many different approaches to solving the HFS problems. Exact methods, heuristics, and 

meta-heuristics are the three important solution approaches addressed in the literature (Govindan et al., 2017). Meta-

heuristics have attracted significant research effort during the past twenty years to solve multi-objective problems, and 

they are still one of the popular research topics in the field of evolutionary computation (Zhou et al., 2011). The main 

reason for metaheuristics popularity for solving multi-objective problems can be can be described by their population-

based nature and ability to find multiple optimal simultaneously. Multi-objective meta-heuristics can approximate the 

Pareto front in a single optimization run. Various meta-heuristic algorithms have ever been derived for multi-objective 

optimization problems. Multi-objective meta-heuristics differ by their fitness assignment procedure, elitism, or 

diversification approaches. A summary of basic definitions of multi-objective optimization problem can be found in 

(Tavakkoli-Moghaddam et al., 2008). Choong et al. (2011) review different meta-heuristic methods used in hybrid 

flow shop scheduling problem.  

The first method for solving multi-objective problems by modifying the GA was vector evaluated genetic algorithm 

proposed by Schaffer, (1985). Murata, Ishibuchi, & Tanaka, (1996) proposed a multi-objective genetic algorithm to 

transform the multiple objectives into single objective by using dynamic weighting which randomly assigns different 

weight values to different objectives. Non-dominated sorting genetic algorithm version 2 (NSGA-II) was developed 

by Deb et al. (2002) to alleviate difficulties of NSGA algorithm which was developed by Srinivas and Deb (1995). 

Jadaan et al. (2008) developed a non-dominated sorting genetic algorithm (NRGA) to combine the new ranked based 

roulette wheel selection algorithm with Pareto-based population ranking algorithm. Rashidi et al. (2010) proposed a 

hybrid multi-objective parallel genetic algorithm (GA) for the HFS problem with sequence-dependent setup times, 

unrelated parallel machines and processor blocking to minimize the maximum tardiness and makespan. Mousavi et 

al. (2012) reviewed several kinds of evolutionary algorithms based on the GA which are applied for scheduling multi-

objective HFS models.  

Multi-objective meta-heuristics differ by their fitness assignment procedure, elitism, or diversification approaches. In 

the recent past, several nature-inspired multi-objective meta-heuristics such as the differential evolution, particle 

swarm optimization, and bacterial foraging optimization have been applied to solve the multi-objective problems. 

Comprehensive surveys of multi-objective meta-heuristics can be found in Jones et al. (2002), Coello et al. (2007) and 

Zhou et al. (2011). 

3. Mixed integer linear programming formulation   

The bi-objective HFS problem presented in this paper is formulated as a mixed integer programming model. Our 

proposed model considers position-based learning effect in a static and deterministic environment. All jobs are always 

available and processed with no breakdowns or scheduled/unscheduled maintenance. All other assumptions in the 

standard form of the HFS problem are considered in this study. The notation used for problem formulation is 

summarized in Table 1.  

Table 1. The notation used for mathematical modeling. 

Sets  
I Set of jobs, with its elements numbered for convenience from 0 to |n| 
J Set of jobs, with its elements numbered for convenience from 1 to |n| 
M Set of machines, with its elements numbered for convenience from 1 to |mt| 
R Set of positions, with its elements numbered for convenience from 1 to |n| 
T Set of stages, with its elements numbered for convenience from 1 to |g| 

  

Parameters  
n Number of jobs to be scheduled 
g Number of stages in sequence 

𝑚𝑡 Number of parallel machines in stage t 
𝑝𝑗𝑡 Processing time for job j at stage t,    𝑝𝑗𝑡 = 𝑝𝑗𝑚𝑡 (parallel machines are identical) 
𝑠𝑖𝑗𝑡 Machine setup time for job i to job j at stage t,   𝑠𝑖𝑗𝑡 = 𝑠𝑖𝑗𝑚𝑡 
𝑑𝑗 The due date of job j 
LR Learning rate 

a Learning index (a = log
2

𝐿𝑅, negative parameter) 

𝑟a Learning effect on rth position, r =1,…,𝑛𝑚, (𝑛𝑚is the number of jobs assigned to machines in stages)  
  

Decision variables  
𝑥𝑖𝑗𝑚𝑟𝑡 1, if job i scheduled immediately before job j on machine m in position r at stage t; otherwise= 0 
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𝑇𝑗 Tardiness of job j 
𝐶𝑗𝑡 Completion time of job j at stage t 

𝐶𝑚𝑎𝑥 Makespan (𝐶𝑚𝑎𝑥 = max
𝑗∈{1,…,𝑛}

{𝐶𝑗𝑔}) 

𝑆𝑖𝑗𝑟𝑡 Setup time of job i to job j, scheduled in position r at stage t 

Due dates of all n jobs are generated based on the Equations (1)-(3). In Equation (1) total processing times of each job 

on all g stages are computed. Equation (2) computes average setup times for all possible subsequent jobs and sum it 

for all g stages. Finally, Equation (3) determines a due date for each job. Where random is a random number over the 

range (0, 1). 

1

g

j jt

t

p p


  ,     jn     
 

   (1) 

1,

1 1

n
g

ijti i j

j

t

s
s

n

 







   ,      jn    

( ) (1 3)j j jd p s random    
 
 ,     jn 

 

 (2) 

 

     (3) 

The objective functions of our study are formulated as follows. The objective (4) minimizes makespan, and the 

objective (5) minimizes the total sum of tardiness.  

Minimize 𝐶𝑚𝑎𝑥 

Minimize   ∑ 𝑇𝑗 
 (4) 

     (5) 

Constraint sets (6) and (7) ensure that each job is scheduled exactly once in one of the positions of machines available 

at every stage. They also ensure each job is processed once at each stage in the successor of another job. 

1 1 0,

1
tm n n

ijrmt

m r i i j

x
   

    ,    t,j 
 

(6) 

0 1,

1
n n

ijrmt

i j i j

x
  

    ,    r,m,t 
 

(7) 

Constraint set (8) ensures that position on each machine should be filled in sequence. Constraint set (9), which is 

complementary to constrain (8), is a flow balance constraint that guarantees jobs are performed in well-defined 

sequence and ensures each job has a predecessor and a successor on the machine where the job is processed. In fact, 

if job j is processed directly after job i on machine m in position r at stage t, job k that is the successor of the job j, 

should be processed in position r+1 on the machine m at stage t.  

( 1)

0 1, 0 1,

n n n n

ijrmt ij r mt

i j i j i j i j

x x 

     

     ,     r  2, m, t  
 

(8) 

( 1)

0 1,

n n

ij r mt jkrmt

i k k j

x x

  

    ,     j, r  2, m, t 
 

(9) 

Learning effect of workers on the processing of similar setups is modeled by using the Equation (10), where 𝑠𝑖𝑗𝑡 is the 

input parameter for setup time from job i to job j at stage t, and 𝑠𝑖𝑗𝑟𝑡  is the updated setup time (by considering learning 

effect) for job j if it is performed after job i on rth position of the machine in stage t. Learning effect on rth position 

on a machine is shown by 𝑟a, where a is the learning index and can be calculated by the logarithm to the base 2 of the 

learning rate (LR). The lower the learning rate the higher the effects from learning.  

𝑆𝑖𝑗𝑟𝑡 = 𝑠𝑖𝑗𝑡 × 𝑟a   ,     a = log2 𝐿𝑅    i,j,t,r    (10) 

 

Constraint set (11) forces job j to follow job i by at least i’s processing time plus the setup time from i to j. The value 

M is an upper bound on the completion of processing time at stage t.  

(1 )jt it ijrmt jt ijrtC C M x p S      ,     i, j, i j, r, m, t  (11) 
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Constraint set (12) implies that the completion time of job j at stage t is larger than or equal to the sum of completion 

time of job j at stage t-1, the processing time of job j at stage t, and the setup time from its predecessor to job j.  

( 1) (1 )jt j t ijrmt jt ijrtC C M x p S       ,     i, j, i j, r, m, t>1 (12) 

 

Constraints (13) and (14) bound the objective functions and link the decision variables. 

j ig jT C d    ,     j  (13) 

max jgC C    ,     j  (14) 

 

Constraint sets (15) and (16) ensure that in the first position of each machine, nominal job 0 should be placed, and the 

rest of positions should not be filled by job 0.  

1 0ij mtx 
   ,     i  1, j, i j, m, t  (15) 

0 0jrmtx    ,    r  2, j, i j, m, t  (16) 

 

Constraints (17)-(19) represent the conditions on the decision variables. 
 

{0,1}ijrmtx    ,     i, j, i  j, r, m, t  (17) 

0jtC     ,     j, t  (18) 

0jT     ,     j  (19) 

In this paper, the learning effect of workers on the processing of similar setups is modeled by using the Equation (10). 

In accordance with Biskup (2008), learning indices were generated uniformly (and rounded) between a 70% learning 

rate (a=-0.514) and a 90% learning rate (a=-0.152). Table 2 shows the effect of different learning rates on performing 

setups in different positions on a machine. As can be seen in Table 2, by considering a lower learning rate, more 

reduction in the setup times would be expected. Lower learning rate means higher learning effect which yields to 

better performance and more reduction on job’s completion time. In Table 2, the learning rate of 100% is also 

considered which means that there would be no learning effect. In some production systems, the responsible worker 

for each machine is changed frequently and the learning effect of workers is negligible. From Equation (10), it can be 

concluded that there would be no learning effect for the first position (r=1) on machines. 

Table 2. The effect of learning rate on completion of setup activities.  

Learning rate: LR Learning index: a 

Learning effect for different positions on 

machine 

r =2 r =3 r =4 

70 % a =  log20.70 =  −0.514 ra = 2−0.514 = 0.7 0.56 0.49 

90 % a =  log20.90 =  −0.152 ra = 2−0.152 = 0.9 0.84 0.81 

100% * a =  log21 =  0 ra = 20 = 1 1 1 
* No learning     

4. Non-dominated sorting and ranking water flow-like algorithms (NSWFA and NRWFA) 

Two new hybrid meta-heuristic algorithms named NSWFA and NRWFA are offered here for solving the developed 

bi-objective optimization problem. The novelty of the developed algorithms lies in hybridizing water flow like 

algorithm (WFA) with non-dominated sorting and ranking concepts. The main reason for using this approach is that 

the problem under study is NP-hard and both non-dominated sorting concept and WFA have been demonstrated to be 

cost-effective for solving this type of problem. In addition, multiple and dynamic number of solution agents in WFA 

can be used to conduct an efficient and effective solution search in multi-objective optimization.  

The proposed algorithms are somewhat similar to the NSGA-II. NSGA-II is an elitist multi-objective evolutionary 

algorithm which approximates the Pareto front based on the non-dominance concept (Deb et al., 2002). In NSGA-II, 

a ranking procedure is performed at each generation to achieve different Pareto fronts. The main stages of the NSGA-
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II are the creation of an initial population, the selection of parents, the creation of children and the finding of non-

dominated solutions. In the following, we extensively describe the key steps of the proposed algorithms.  

Step 1: Encoding and decoding of solutions  

In NSWFA and NRWFA, each solution is represented as a water flow, and the objective function surface on the 

solution space is modeled as the terrain traversed by the flows. The sub-flows in water flow-like algorithm are like 

the offspring in the genetic algorithm. We can split our randomly generated solutions iteratively into sub-flows to 

move toward the optimal solution. A 1×n array is applied to display a solution which n denotes the number of jobs 

that should be scheduled in each stage. To represent both assignment and sequence of jobs simultaneously, we use the 

random-key representation method to generate initial solutions. In this method, we assign a real number to each job 

whose integer part is the machine number to which the job is allocated and the fractional part is used to sort the jobs 

allocated to each machine. The fractional part of the numbers determines the sequence of jobs. For example, Figure 2 

below shows a solution for an HFS model with six jobs, single stage, and three machines with the use of random-key 

representation method. 

 
Figure 2. Representation method of solutions. 

This solution presents a schedule where machine 1 has jobs 2 and 5 in that order; machine 2 has jobs 1, 3 and 6 in that 

order, and machine 3 has job 4. This information, when combined with the other problem data, is used to determine 

the objective function values for each solution. This representation method is used in the first stage, and the schedule 

of jobs in the subsequent stages follows the method used in Shortest Processing Time Cyclic Heuristic (SPTCH) (Kurz 

and Askin, 2004). In SPTCH, jobs are ordered at stage 1 in increasing order of the modified processing times 𝑝𝑗𝑡 (𝑝𝑗𝑡 

for job j in stage t is defined as 𝑝𝑗𝑡 =  𝑝𝑗𝑡 + 𝑚𝑖𝑛𝑖  𝑠𝑖𝑗𝑡). This time represents the minimum time t that job j should elapse 

at a stage to be completed. At the subsequent stages, jobs are assigned to a machine that allows it to complete at the 

earliest time as measured in a greedy fashion (Kurz and Askin, 2004). 

Step 2: Initialization 

In this step, we set the algorithm parameters such as the number of initial population (N), minimum number of flows 

(k), maximum number of sub-flows (nf), number of neighborhood searches (ns), threshold for job assignment operator 

(r), and threshold for precipitation and evaporation (u). Then, we generate the initial population of flows randomly 

Step 3: Non-dominated sorting and ranking procedure 

In this step, we use a fast non-dominated sorting approach to classifying the solutions into successive non-dominated 

fronts (Deb et al., 2002). We assign each solution of the same Pareto layer, a fitness value equal to its non-domination 

level. Obviously, the first front solutions dominate solutions of all other fronts, and they have more chance to 

reproduce the next generation.  

To rank the solutions in each layer, the crowding distance of each solution with respect to every other solution on the 

same front will be computed. The crowding distance operator is used to maintain sustainable diversity in a population. 

The crowding distance, which is calculated front wise, is a measure of how close an individual is to its neighbors. For 

computing crowding-distance, we should sort the solutions according to each objective function value in ascending 

order. After that, for each objective function, the solutions with smallest and largest function values are assigned a big 

number as a distance value, and the distance value of all other intermediate solutions are determined based on the 

absolute normalized difference in the function values of two adjacent solutions. This quantity serves as an estimate of 

the perimeter of the cuboid formed by using the nearest neighbors as the vertices. Larger values of the crowding 
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distance indicate more diversity of the solutions. Figure 3 shows a schematic view of the computation procedure of 

the crowding distance for ith individual in the first frontier of solutions.  

 

Figure 3. The calculation of crowding-distance for solutions on the same Pareto fronts. 

Step 4: Selection scheme 

In this step, first we count the number of solutions in the first frontier (q) and then select h solutions (h=max [k, q]) 

out of N solutions in the population to act as main flows. The flows in water flow-like algorithm are like the parents 

in genetic algorithm. The tournament selection is used for non-dominated sorting algorithm to reproduce the next 

generation. The roulette wheel selection is used for non-dominated ranking algorithm to reproduce the next generation. 

In non-dominated sorting algorithms, we assign each solution of the same Pareto layer equal fitness value (equal to 

its non-domination level). However, in non-dominated ranking algorithms, each solution is assigned a fitness value 

equal to its rank in the population. In fact, fronts are ranked based on the non-dominated rank and individuals in a 

front are ranked based on their crowding distance. The selection probability for non-dominated ranking algorithm is 

calculated as given in Equation (20). 

                                                                

2

( 1)
i

Rank
p

N N




 
                                                                (20) 

It is good to note that we combine the population of flows and sub flows in each iteration of the algorithm. Then, we 

perform non-dominated sorting and ranking to create the next population of size N. 

Step 5. Generating sub-flows 

An advantage of the NSWFA and NRWFA is that the number of sub-flows forked from a flow at each iteration is not 

constant. Three operators are used for generating the dynamic population of sub-flows, which are: flow splitting and 

moving operation, water evaporation and precipitation operation, and flow-merging operation. The mission of flow 

splitting and moving operations is to search for better neighborhood solutions and ultimately select the best solution 

for the current flow. Water evaporation and precipitation operation is used to avoid being trapped and explore more 

solution spaces. The flow-merging operation is used to reduce the number of solution agents. These operators are 

designed based on the properties of water flow such as movement from higher to lower areas and spreading on the 

ground.  

The locations of the split sub-flows (offsprings) are derived from the neighboring locations of the original flow. The 

number of sub-flows for each flow is randomly generated in this interval: [N/2k , nf], where nf is a parameter called a 

maximum number of sub-flows. Two steps have been used for splitting and moving flows, namely, job assignment 

and job sequencing.  

In the first step (job assignment), we find a rough direction for moving flow to the neighborhoods of the current 

solution by reassigning a job to any machine other than the current one based on a predefined probability r, which is 

set to a comparatively low value (e.g. 0.3). For example, for each job in the current solution, a random number over 

the range (0, 1) is first selected. If the value is greater than r, then the job is assigned to another machine randomly; 

otherwise, it processed on the current machine.  
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In the second step (job sequencing), we find the best sequence of jobs allocated to each machine, by introducing a 

parameter called the number of neighborhood search (ns). The neighborhood of a solution is a set of feasible solutions 

which are reachable by a single move of jobs on each machine. For example, for the neighborhood search with the 

value of five, we should change the sequence of two jobs assigned to that machine five times, and choose the best 

sequence (out of five sequences) that maximizes the sum of improvement in both of objective functions.  

Since job sequencing uses the result of job assignment, the job assignment plays an important role in the goodness of 

the final solution. In Figure 4, we demonstrate the splitting and moving operations proposed for searching 

neighborhood solutions on the HFS problem. It is assumed that the minimum number of flows is equal to six, and we 

are going to generate two sub-flows per each flow. 

 
Figure 4. Searching neighborhood solutions with flow splitting and moving operation. 

In this study, water evaporation and precipitation operators are used to avoid being trapped when there is no 

improvement in the flow splitting and moving. We propose a probabilistic mechanism to simulate the behavior of 

water in evaporation and precipitation by defining a predefined probability u, which is set to a comparatively high 

value (e.g. 0.7). Each time we generate a random number from (0, 1) and we exchange the stopped flow with another 

one if the generated number is greater than the defined threshold. The flow-merging operator is used to avoiding 

redundant searches. It eliminates the redundant flows when multiple agents result in the same objective value. 

Step 6. Stopping rule  

The stopping criterion is set to a CPU time limit fixed to 𝑆𝑇𝑚𝑎𝑥 = (𝑛2 × ∑ 𝑚𝑡
𝑔
𝑡=1 /𝑔) × 3 milliseconds. This stopping 

rule is responsive to the number of jobs, stages, and the number of machines at each stage. If the stopping criterion is 

met then stop; otherwise, go to Step 3.  

Figure 5 presents the flowchart of the proposed algorithms for solving the bi-objective HFS problem. The algorithm 

step of NRWFA is the same as NSWFA, and the only difference is in fitness assignment procedure (see Step 4). 
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Figure 5. Flowchart for the NSWFA and NRWFA algorithms. 

Although the proposed hybrid algorithms follow some of the elementary structure of NSGA-II (e.g., non-dominated 

sorting, and crowding distance), they benefit from using the operators of the WFA algorithm which are adapted for 

the bi-objective HFS problem. The main advantages of the proposed hybrid algorithms are: (1) multiple and non-fixed 

number of flows dependent on the first Pareto layer, (2) dynamic size of sub-flows by considering the possibility of 

generating new flows, and (3) efficient multi-direction search along with the objective space. 

5. Computational results  

In this section, the impact of learning on the schedule of jobs and the complexity of the developed bi-objective model 

are analyzed. The efficiency of the proposed algorithms is also evaluated by comparing their results against those 

obtained from NSGA-II and NRGA, which are more commonly used in solving similar problems. This section also 

contains the method of generating test problems, performance metrics, the parameter settings of the algorithms, and 

explains the experimental results for comparing the efficiency of the algorithms. Extensive experimentations have 

been conducted to assess the effectiveness of different algorithms proposed in Section 4. All the algorithms are 

implemented in Java and ran on a PC with a 2.50 GHz Intel Core 2 Duo processor and 4.00 GB of RAM memory. 

5.1. Impact of learning on scheduling jobs 

Several experiments were conducted to show the significance of the learning effect on the schedule of jobs in hybrid 

flow shop systems. An example including six jobs and two stages with two machines in each is used as the basis for 

illustration. The data set relevant to this example is shown below in Table 3. Processing times of jobs in stage 1 and 2 

are shown by  

𝑝𝑗1 and 𝑝𝑗2, respectively. Due date of each jobs is shown by dj. 
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Table 3. Sample problem data for HFS scheduling problem. 

Job 1 2 3 4 5 6 

pj1 90 54 99 59 69 118 
pj2 61 55 75 64 60 65 
dj 254 192 286 218 224 296 
Sequence-dependent setup times between jobs on stage 1 

From/to 1 2 3 4 5 6 

0 26 35 55 31 55 24 
1 33 32 37 40 48 30 
2 61 44 61 57 47 56 
3 32 51 61 55 21 24 
4 43 49 32 61 39 47 
5 25 50 57 58 45 47 
6 41 28 43 36 61 32 
Sequence-dependent setup times between jobs on stage 2 
From/to 1 2 3 4 5 6 

0 50 20 63 49 56 20 
1 30 42 30 46 57 39 
2 30 46 22 48 41 47 
3 56 43 43 43 24 31 
4 39 45 34 47 54 27 
5 56 42 60 36 29 58 
6 47 20 48 40 45 55 

Here, four scenarios are evaluated to show the significance of the learning effect and the coefficient of optimization 

criteria on the assignment of jobs to machines and their sequence. The weights for makespan and total tardiness are 

respectively shown by α and β. The above example is solved with IBM ILOG CPLEX Optimization Studio 12.6. We 

used the bi-criteria version of the proposed mathematical model in Section 3 while considering two different learning 

rates (LR=70% and LR=100%) and two different weight vectors for the optimization criteria (α=0.75, β=0.25, and 

α=0.25, β=0.75). Figure 6 below shows the optimum schedule of the proposed four scenarios.  
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Figure 6. The impact of learning effect and objective coefficients on the (optimum) schedule of jobs for an individual problem. 

Figure 6 aims to visually evaluate the impact of learning effect and the objective coefficients on the (optimum) 

schedule of jobs. As can be seen in Figure 6 (a1 and a2), the weight vectors are identical and considering the lower 

learning rate leads to reducing the makespan, total tardiness and total setup time. Figure 6 shows that learning effect 

not only reduces the optimization criteria but also changes the optimal schedule of jobs. In Figure 6 (b1 and b2), the 

weight vector is changed to (0.25, 0.75) and by lowering the learning rates, the optimum schedule remains the same 

and the optimization criteria are reduced as a result of a reduction in setup times. It is good to note that all the data 

parameters such as processing time of jobs and their due dates remained the same in all the scenarios. The above 

example illustrates that the learning effect performs well in reducing setup times through proper scheduling. Further 

analyses on the structure of optimum job scheduling show that the makespan criterion has more dependency on the 

learning effect (see Table 5).  

5.2. Complexity of the developed bi-objective model 

A comprehensive numerical example is presented in this section to verify the behavior of the bi-objective proposed 

model and evaluate its complexity. First, we combine the two objectives into a single objective (bi-criteria) by using 

the weighted sum method. The weighted sum approach takes its basic premise from conventional multi-objective 

optimizations (Tabucanon, 1988). Then, we analyze the complexity of the bi-objective HFS problem (minimize: 

𝐶𝑚𝑎𝑥  and ∑ 𝑇𝑗) against the bi-criteria one (minimize:𝛼𝐶𝑚𝑎𝑥 + 𝛽 ∑ 𝑇𝑗) through numerical examples.  

Here, four small problems are considered to verify the behavior of the bi-criteria model on changing the learning rate 

and objective coefficient. The processing time of jobs is from a uniform distribution between 40 and 120 and integer 

setup times selected from a uniform distribution between 20 and 64. The parameters of small-sized problems and 

additional problem characteristics are given in Table 4. The second problem of Table 4 is the same example which 

was discussed in Section 5.1. 

 
Table 4. Characteristics of four small problems. 

Problem Number (#) of jobs # of stages # of machines # of variables # of constraints 

1 6 2 1 331 575 

2 6 2 2 643 1125 

3 10 2 1 1671 2719 

4 10 2 2 3311 5397 

The developed mixed integer programming model is used to find the optimal solutions of the above problems with 

IBM ILOG CPLEX Optimization Studio 12.6. Since the process of finding an optimal solution can take a long time, 

each problem was allowed a maximum of 7200 seconds (two hours) runtime. We used three different weight factors 

(for α and β) and three different learning rates for the problems in Table 4. The best-obtained makespan and total 

tardiness within the two-hour time limit are given in Table 5.   
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Table 5. Problem solutions based on different learning rates and weights. The solutions marked with an asterisk indicate obtaining a 

solution with a distinct schedule of jobs in comparison with solving the same problem with other learning rates. 

(α,β) Problem LR Makespan  Total tardiness   Cplex results 

(0.25,0.75) 1 100 % 753 1463.7 Optimal 

  90 % 751.79 1338.87 Optimal  

  70 % 691.63 1130.74 Optimal  

 2 100 % 459 470.5 Optimal 

  90 % 447.34 426.28 Optimal 

  70 % 425.67 341.96 Optimal 

 3 100 % 1426 5744.48 Gap a: 99.07% 

  90 % 1294.86 4988.74 Gap: 99.02%* 

  70 % 1154.91 4486.48 Gap: 99.06%* 

 4 100 % 720 2316.42 Gap: 96.70%* 

  90 % 754.14 2217.61 Gap: 97.97% 

  70 % 692.55 1930.92 Gap: 97.53% 
      

(0.75,0.25) 1 100 % 753 1463.7 Optimal 

  90 % 722.07 1367.91 Optimal* 

  70 % 691.63 1130.74 Optimal*  

 2 100 % 431 531.1 Optimal 

  90 % 421.26 497.48 Optimal* 

  70 % 418.25 359.04 Optimal* 

 3 100 % 1304 5534.5 Gap: 94.70%* 

  90 % 1317.74 5257.86 Gap: 94.21% 

  70 % 1135.91 4389.48 Gap: 94.36% 

 4 100 % 747 2340.88 Gap: 83.43% 

  90 % 716.89 2170.96 Gap: 89.99% 

  70 % 654.46 1695.87 Gap: 82.27%* 
a Gap = |bestbound-bestinteger|/|bestinteger|. 

In general, optimization methods for scheduling problems are only applicable to relatively small problems (Naderi et 

al., 2009). The problem studied in this paper is NP-hard, and it is not time efficient to solve this type of problems using 

a MIP-solver. Due to complexity of the developed MIP model, increasing the problem size would result in higher 

gaps, highlighting the need to use heuristics or meta-heuristics as solution methods. As can be seen in Table 5, only 

problem 1 and 2 were solved optimally in the two-hour time limit. They have been solved on average after 10 and 13 

seconds, respectively. The other problems were stopped due to the time limit before finding the optimal solution. As 

discussed in Section 5.1, lower learning rate yields to more reduction in the optimization criteria. This impact of 

learning rates on the objective criteria is summarized in Figure 7.    

 
Figure 7. Mean plot of optimization criteria for different learning rates. 

Here, the complexity of the bi-objective model against the bi-criteria is shown by solving test problems 1 and 3 from 

Table 4 by using exact and meta-heuristic algorithms. NSWFA and WFA are the two meta-heuristic algorithms for 

solving the bi-objective and bi-criteria versions of the problem, respectively. Branch and bound as an exact method is 

used for solving the bi-criteria problem. Eleven weights vectors (α, β) are used to combine the two objectives into a 
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single objective, which are: (0, 1), (0.1, 0.9), (0.2, 0.8), (0.3, 0.7), (0.4, 0.6), (0.5, 0.5), (0.6, 0.4), (0.7, 0.3), (0.2, 0.8), 

(0.9, 0.1), (1, 0). These weights present the preference information of a decision-maker to each criterion. The solutions 

of solving both the bi-objective model and the bi-criteria model are shown in Figure 8. Due to the complexity of the 

proposed model, the problems were run up to two hours for the exact method and up to five minutes for the 

metaheuristics.  

        
(O) shows the solutions of the bi-criteria problem with the exact method, (  ) shows the solutions of the bi-criteria problem with metaheuristic 
algorithm (WFA algorithm), and (×) shows the solutions of the bi-objective problem with metaheuristic algorithm (NSWFA hybrid algorithm).  

For the problem with ten jobs and two stages, solutions of the bi-criteria problem with the exact method are not optimal (solution procedure was 

stopped due to the two-hour time limit). 

 

Figure 8. The complexity of the bi-objective model and the inability of weighted sum method on finding the Pareto solutions. 

As can be seen in Figure 8, NSWFA performs best in approximating the Pareto-optimal front. The number of solutions 

and the diversity of solutions found by solving the bi-objective problem with NSWFA is higher than those of solving 

the bi-criteria problems.  WFA works better than the exact method for solving the bi-criteria problem. However, by 

considering the proposed (eleven) weight vectors for solving the bi-criteria problem, just a few solutions are found. 

The results of analysis also show that the proposed bi-objective model is a computationally intensive problem and 

multi-objective meta-heuristic methods should be used even for small-sized problems to find good Pareto solutions.  

5.3. Test problems 

Data required for generating test problems consist of the number of jobs (n), the number of stages (g), the number of 

machines per stage (𝑚𝑡), the range of processing times of jobs in stages (𝑝𝑗𝑡) and the range of sequence dependent 

setup times of jobs in stages (𝑠𝑖𝑗𝑡). Due dates need not to be generated and should be calculated based on Equations 

(17)-(19). 

We categorize our test problems into large, medium, and small problems. These categories are defined based on the 

number of jobs (n) and stages (g). The number of machines in each stage can be generated uniformly between interval 

[1, 5] or [2, 8] based on the size of the problem. The processing times and setup times are generated by the uniform 

distribution over the range [40,120] and [20, 64], respectively. We defined 16 problem sets comprising combinations 

of n and g and generated two instances for each problem set. Therefore, 32 problem instances were generated and each 

instance is tackled five times to yield more reliable information. We have used the same stopping rule which is 

explained in Section 4 for all the algorithms. Stopping criterion for all the algorithms is a CPU time limit which is 

dependent on the size of the test problem. When the stopping criterion is met then the algorithm will stop and we can 

register the values of both objective functions for the obtained non-dominated solutions. 

  

5.4. Performance metrics  

The concept of performance metrics is used for comparison amongst algorithms. Since no single metric can entirely 

capture the performance of multi-objective meta-heuristics, we use the following five performance criteria to measure 

the quality of the approximated sets of Pareto solutions in a quantitative way:  

 The number of Pareto solution (NPS): The more the number of non-dominated solutions, the more 

alternatives for decision makers to decide through.  
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 The spread of non-dominance solution (SNS): First, we should calculate mean ideal distance of each non-

dominated solution (where k is the number of non-dominated sets) by ideal point (0, 0) and then SNS 

expressed by the following equation:  

 

 ,  (21) 

 

      (22)  

The higher the value of SNS, the better solution quality we have (more diversity in the obtained solution).  

 Diversification metric (D): The diversification metric measures the spread of the solution set. Its definition 

is the following: 

                                                  
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D x y


                                                        (23) 

Where 
i ix y   is the Euclidean distance between the non-dominated solution ix and the non-dominated 

solution iy . 

 The rate of achievement to two objectives simultaneously (RAS): The balance in reaching to objective 

functions. 
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Where iF = min { 1if , 2if }. The lower value of RAS, the better of solution quality we have. 

 Set coverage (SC): set coverage compares the percentage of the final solutions found by one algorithm 

covered by the solutions found by another algorithm (domination of two populations in a pair-wise manner). 

SC is defined as the mapping of the ordered pair ( , )X X  to the interval [0, 1], as follows:  

 
; :

( , )
a X a X a a

SC X X
X

        
  


   (25) 

 Where 𝑥′, 𝑥′′are two sets of decision vectors. If all points in 𝑥′dominate or are equal to all points in 𝑥′′, then 

by definition SC = 1. In general, both ( , )SC X X  and ( , )SC X X   have to be considered due to set 

intersections not being empty. 
 

5.5. Experimental results  

In this section, we compare the proposed NSWFA and NRWFA with NSGA-II and NRGA in different test problems. 

In general, the performance of evolutionary algorithms is sensitive to its parameters. Therefore, we conduct a series 

of experiments to determine the optimal parameter combinations before conducting actual runs to collect the results. 

The crossover probability (Pc) is selected between 0.75 and 0.90, in steps of 0.01 and for each Pc performance is 

analyzed. It is found that Pc = 0.79, produces the best results. Other parameters such as mutation probability (Pm) is 

selected as 1/n (where n is the number of variables), as recommended by Deb et al. 2002. The parameters for the 

algorithms are given in Table 6. 
 

Table 6. Parameters for multi-objective evolutionary algorithms. 

Parameters  Parameter values 

Population size, N 100 

Minimum number of flows, k 5 

Maximum number of sub-flows, nf 15 

Number of neighborhood searches, ns 10 

Threshold for job assignment operator, r 0.25 

Threshold for precipitation and evaporation, u 0.75 

Crossover probability, Pc   0.79 

Mutation probability, Pm   1/n (where n is the number of variables) 
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The performance of the algorithms was evaluated by comparing the quality of non-dominated solutions obtained by 

each algorithm. Table 7 represents a comparison of performances of the algorithms with respect to NPS, SNS, D, and 

RAS metrics. As it can be seen in the average row, the NRWFA is superior to the other algorithms with regard to NPS, 

SNS, and D. However, NSWFA provides a better result than others with regard to RAS index. 
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Table 7. Evaluation of non-dominated solutions of the algorithms with different performance metrics. 

 

 

 

 

 

 

  NPS SNS D RAS 

Problem 

sets 
n×g 

NSGA-

II NRGA NSWFA NRWFA 

NSGA-

II NRGA NSWFA NRWFA 

NSGA-

II NRGA NSWFA NRWFA 

NSGA-

II NRGA NSWFA NRWFA 

S
m

al
l 

6×4 3 3.3 2 2 18.44 14.86 32.59 33.20 98.60 85.27 125.01 125.31 0.484 0.461 0.408 0.409 

6×8 3.3 3.3 1 2 36.19 37.83 0 69.43 121.36 132.45 0 129.50 0.176 0.167 0.121 0.1632 

10×4 2.3 5.6 2.3 3 80.23 59.97 162.99 97.37 143.47 251.11 317.09 242.35 1.449 1.371 1.239 1.299 

10×8 3.3 4 4 2.3 186.34 98.21 138.54 143.23 428.38 281.08 450.753 339.66 0.752 0.688 0.718 0.685 

M
ed

iu
m

 

20×2 8.3 6.6 6 5.6 220.43 131.73 110.00 295.68 674.69 386.36 313.01 631.70 5.66 5.705 4.715 5.151 

20×4 8.3 5 6 3.6 181.54 242.38 151.46 205.51 604.36 552.49 453.14 500.42 5.773 5.760 5.373 4.9264 

20×8 5.3 4.6 3.3 3 92.24 80.41 171.32 615.33 255.21 210.59 295.80 907.95 4.314 4.323 4.029 4.2 

40×2 4.6 4.6 6 6.3 100.99 137.77 234.08 217.60 284.93 375.68 650.66 526.84 10.588 10.725 9.954 9.9806 

40×4 5.6 4 5.3 10 354.94 271.27 832.03 848.52 902.44 572.20 1744.25 2266.68 14.64 14.491 13.982 14.253 

40×8 4 4.6 6.3 6.6 447.50 375.22 618.42 771.77 1208.85 890.54 1543.06 1909.47 13.09 13.109 12.615 12.773 

L
ar

g
e 

80×2 4.6 3.6 4.3 5.6 1475.95 765.18 3279.8 2999.5 3378.30 1290.19 7851.77 7756.42 35.38 35.197 34.319 34.321 

80×4 2.6 3 5.6 6.6 1209.26 1478.18 2102.38 1911.77 2340.58 2157.85 5562.11 5225.99 33.300 33.310 31.450 31.969 

80×8 3 2 7.3 4.3 1000.04 256.05 1839.76 2767.33 1947.55 471.74 5259.40 4554.88 29.785 29.793 28.893 29.344 

100×2 6.6 5 7.3 9 996.10 858.73 3012.27 2865.13 2729.48 1999.42 8154.62 7133.51 43.100 43.241 40.980 41.315 

100×4 4 3.3 6 5.6 952.65 831.39 1823.22 3180.66 2316.50 1928.35 4539.66 7713.02 41.544 41.471 38.979 40.022 

100×8 6 4.3 8 11 2465.25 1395.65 2826.70 3815.49 6092.78 3278.61 7869.88 11844.0 41.784 41.762 40.234 40.847 

Average 4.67 4.17 5.04 5.40 613.63 439.67 1083.48 1302.3 1470.46 928.99 2820.64 3237.98 17.615 17.598 16.751 16.978  
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All the criteria used in Table 7 have some disadvantages. For example, NSWFA only obtained one non-dominated 

solution in solving the second problem of Table 7. This single non-dominated solution of NSWFA dominate all the 

non-dominated solutions of the other algorithms.  On the other hand, SNS and D would be equal to zero for NSWFA 

and this decreases the average diversity of NSWFA algorithm. It can be concluded that the performance criteria shown 

in Table 7, cannot be solely used to compare the efficiency of the algorithms. For further analysis of the results, the 

means plot and least significant difference (LSD) intervals of the algorithms for different performance criteria are 

shown in Figure 9. We set a 95% confidence interval for the Tukey tests. Obviously, the less the limits obtained for 

an algorithm is overlapping with that of other algorithms, the more statistically significant difference between their 

performances are deemed to be. Although solution obtained by NSWFA are superior to those by other algorithms, the 

benchmark results in Figure 9 do not reveal a significant difference (at least) between the NSWFA and NRWFA. 

 
Figure 9. Diagram of means and LSD intervals (at the 95% confident level) for NPS, SNS, RAS, and D of different algorithms (relevant 

to large-sized problems). 

Among the discussed performance criteria, set coverage has a better illustration of how two algorithms dominate each 

other, and it produces a comprehensive comparison index. In performance evaluation of bi-objective meta-heuristic 

algorithms, comparing measures such as SNS, D, and RAS is useful when the non-dominated solutions of algorithms 

have almost equal set coverage values.  

To obtain reliable results in the calculation of the set coverage index, first, non-dominated solutions of each algorithm 

should be updated after five replications and then compared together. As can be seen in Table 8, the results of set 

coverage criteria demonstrate the high performance of NSWFA, NRWFA against NSGA-II and NRGA. The results 

show that the Pareto solutions obtained by NSGA-II and NRGA cannot dominate those by NSWFA and NRWFA. 
 

 

Table 8. Average value of the set coverage criteria for paired comparison of the algorithms {SC(X',X")}. 

     X   

X   
 NSGA-II NRGA NSWFA NRWFA 

NSGA-II  - 0.37 0.04 0.04 

NRGA  0.83 - 0.1 0.05 

NSWFA  1 1 - 0.76 

NRWFA  1 1 0.36 - 
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To visually evaluate the quality of solutions on the Pareto-optimal front, Figure 10 represents the non-dominated 

solutions of the proposed algorithms after five replications for solving small, medium and large problems.  

 

 
  

Figure 10. Non-dominated solutions of different algorithms for small, medium and large problems. 

As can be seen in Figure 10, NSWFA performs best by increasing the problem size. The results shown in Figure 10 

confirm the results of SC index. The computational results show that the proposed NSWFA works effectively for 

scheduling jobs in bi-objective HFS scheduling problem with learning effect.  
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6. Conclusion    

In this paper, we have studied a hybrid flow shop scheduling problem with a learning effect of workers performing 

sequence-dependent setup times. Our objective was to determine a schedule that minimizes both total tardiness and 

makespan simultaneously. A bi-objective mixed integer linear programming formulation was presented to formulate 

the problem. Several experiments were conducted to show the significance of the learning effect on minimizing the 

optimization criteria and its impact on the structure of assigned jobs to machines and their sequences. It has been 

shown that the learning effect not only reduces the setup times but also results in schedules in which jobs that share 

similar tools and fixtures are placed adjacent to each other. 

In order to solve this bi-objective problem, two hybrid meta-heuristic algorithms, NSWFA and NRWFA, were 

developed. These hybrid algorithms combine elements such as non-dominated sorting, and crowding distance from 

NSGA-II with operators of the WFA. The main advantages of these algorithms are in multiple and dynamic number 

of solution agents with efficient multi-direction search along with the objective space. The performance of these 

algorithms is compared with two commonly used multi-objective genetic algorithms using sixteen sets of test 

problems. We used five different performance criteria, namely the number of Pareto solutions, the spread of non-

dominance solutions, the rate of achievement to the objectives, diversification metric and set coverage. The results 

illustrate that the set coverage is the most comprehensive performance metric for mutual comparison of algorithms in 

bi-objective optimization. The computational analysis demonstrates the superiority of NSWFA to approximate the 

efficient set of solutions.  

The complexity of the developed bi-objective model with learning effect was also analyzed. We combined the two 

objectives into a single objective by using the weighted sum method and compared its performance with the developed 

bi-objective model. The results show that several runs of solving the bi-criteria problem with different weight vectors 

could not cover the solutions obtained from a single run of the proposed hybrid algorithms.  

As a future research direction, it is interesting to work on the problem considering other representation methods of 

learning effects such as time-based and experience-based learning. An analysis of the impact of the objective 

coefficients on the complexity of the problem could also be interesting. Another direction for future research is to 

extend the assumptions of the proposed model and consider other objectives or even presenting other performance 

metrics. Moreover, an extension of the proposed hybrid meta-heuristic algorithms for other fields of scheduling such 

as open shop and job shop could be effective. 
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