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Abstract: The Heihe River Basin is the second largest inland river basin in Northwest China 
and it is also a hotspot in arid hydrology, water resources and other aspects of researches in 
cold regions. In addition, the Heihe River Basin has complete landscape, moderate water-
shed size, and typical social ecological environmental problems. So far, there has been no 
detailed assessment of glaciers change information of the whole river basin. 1:50,000 to-
pographic map data, Landsat TM/ETM+ remote sensing images and digital elevation model 
data were used in this research. Through integrated computer automatic interpretation and 
visual interpretation methods, the object-oriented image feature extraction method was ap-
plied to extract glacier outline information. Glaciers change data were derived from analysis, 
and the glacier variation and its response to climate change in the period 1956/1963–2007/ 
2011 were also analyzed. The results show that: (1) In the period 1956/1963–2007/2011, the 
Heihe River Basin’s glaciers had an evident retreat trend, the total area of glaciers decreased 
from 361.69 km2 to 231.17 km2; shrinking at a rate of 36.08%, with average single glacier 
area decrease 0.14 km2; the total number of the glaciers decreased from 967 to 800. (2) 
Glaciers in this basin are mainly distributed at elevations of 4300–4400 m, 4400–4500 m and 
4500–4600 m; and there are significant regional differences in glaciers distribution and 
glaciers change. (3) Compared with other western mountain glaciers, glaciers retreat in the 
Heihe River Basin has a higher rate. (4) Analysis of the six meteorological stations’ annual 
average temperature and precipitation data from 1960 to 2010 suggests that the mean annual 
temperature increased significantly and the annual precipitation also showed an increasing 
trend. It is concluded that glacier shrinkage is closely related with temperature rising, besides, 
glacier melting caused by rising temperatures greater than glacier mass supply by increased 
precipitation to some extent. 

Keywords: remote sensing detection; glacier; object-oriented extraction method; shrinkage; Landsat TM/ ETM+; 
Heihe River Basin 
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1  Introduction 

With global warming and rapid shrinkage of glaciers in recent decades (IPCC, 2001), the 
cryosphere system has gained an unprecedented attention for scientific research (Haeberli et 
al., 2000; Wang et al., 2014). Cryospheric science is considered to be one of the most active 
sections of current global change investigation, which is critical for regional and global sus-
tainable development. Glaciers, as an important part of the cryosphere system, are solid res-
ervoir of freshwater resources (Wang et al., 2003). Impacted by global warming, glaciers 
shrinking is a common trend especially for the mountain glaciers in the High Asia, and 
China’s glaciers were predicted to reduce by 27.20% in the first half of the 21st century (Qin 
et al., 2006). Many studies show that the indicative role of glaciers change in global climate 
change in this century is more obvious (Shi et al., 2000; Houghton et al., 2001; Yao et al., 
2004). River runoff and other water resources are significantly influenced by glaciers change, 
especially in the arid and semi-arid regions in Northwest China (Shi, 2001). Timely and 
correct assessment of glaciers change and revealing effects of glaciers change on Northwest 
China’s river runoff are also important. The Heihe River Basin is the second largest inland 
river basin in Northwest China. Due to its typical natural landscapes and complex man-land 
relationship, this drainage basin is widely considered to be a representative region of inland 
river basin (Ning et al., 2008). A comprehensive observation system has been established in 
this river basin in the recent 30 years, and many researches focused on the regional water 
resources influenced by the mountain glaciers. In the Heihe River Basin, the annual glaciers 
melt water from high-altitude glacier in Qilian Mountains is approximately 2.98×108 m3, 
accounting for 8% of the total river runoff (Yang, 1991; Feng et al., 2002). 

During the past decades, remote sensing (RS) and geographic information systems (GIS) 
have become widely-used technologies to monitor the dynamic changes of glaciers (Paul et 
al., 2000; Shangguan et al., 2004). Besides, RS and GIS are also an effective solution to ob-
taining high mountain glaciers vector data in the study of modern glaciers. Artificial visual 
interpretation method and computer-assisted classification method are the main steps in ex-
tracting glaciers boundary information from the remote sensing images (Serandre et al., 
1999; Bolch et al., 2007; Hall et al., 2001). Traditional image analysis methods usually ig-
nore the interrelated information of spatial characteristics within the images; thereby reduce 
the accuracy of information extraction. In the traditional process, complex shape, texture and 
other information in images are easy to be considered as noise, which may lead to wrong 
judgments in image interpretation and misclassification (Huai et al., 2013; Sidjak et al., 
1999; Zhang et al., 2011b; Zhang, 2005). Basically, the above-mentioned phenomena in 
pixel-based image analysis methods is caused by the spectral characteristics for each pixel 
itself, and internal message within pixel-based image analysis is limited (Wei et al., 2007). 
Object-oriented extraction method (Nie et al., 2010; Blaschke et al., 2001; Benz et al., 2004; 
Baatz et al., 2000) provides strong technical support to avoid or reduce the disadvantage of 
the traditional method only using spectral characteristics. In the new method, remote sensing 
image can be segmented, and then various features of the divided units were extracted, rec-
ognized and identified in the feature space, which means that the classification is completed 
(Laliberte et al., 2004; Schiewe et al., 2001). This paper applied this method in the glaciers 
information extraction of the Heihe River Basin. Detailed investigations were done for gla-
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ciers change under climate warming in this river basin. 

2  Study area 

The Heihe River Basin (38°N–42°N, 98°E–101°30'E) lies on the west of Shiyang River 
Basin, and on the east to Shule River Basin (Figure 1). The total length of the Heihe River is 
821 km from headstream in Qilian Mountains to Juyan Lake. The upstream watershed of the 
Heihe River is defined as drainage basin above Yingluoxia (a debouchure out of Qilian 
Mountains), and the catchment area and average altitude of upstream watershed is 10,009 
km2 and 3738 m, respectively. The total surface runoff of the upstream watershed is 
25.11×108 m3 (Yellow River Conservancy Committee, 2010; http://www.yellowriver.gov.cn). 
The Heihe River Basin includes three main landform types, i.e., Qilian Mountains 
(upstream), Hexi Corridor plains (midstream) and Alxa Highland (downstream). Modern 
glaciers are widely distributed at the high-altitude mountains of the upstream watershed. 
Based on the aerial photographs taken in 1956 and 1963 (painted in 1964 and 1972), the first 
Glacier Inventory of China (GIC) of Qilian Mountains was completed by the former 
Lanzhou Institute of Glaciology and Cryopedology (LIGG), Chinese Academy of Sciences 
(CAS) in 1981 (Wang et al., 1981). According to the first GIC, there are 1078 glaciers in the 
Heihe River Basin with a total area and an ice volume being 420.55 km2 and 13.67 km3, 
respectively. The average area of single glacier is 0.39 km2, and the average snow line is 
4410–4850 m. 

It should be noted that the boundary of the Heihe River Basin is not completely consistent 
in different researches. According to the map of the Heihe River Basin drawn in 1985–1986, 
the whole basin is composed of three hydrologic balance units, namely, Heihe River, Beida 
River and Maying-Fengle Mountain Front, respectively. In general, this boundary includes 
Heihe River and Beida River. However, according to the first GIC, glaciers in the Heihe 
River and Beida River are listed separately. In this study, the generalized glaciers located in 
the Heihe River and Beida River are all included for analyzing distribution and variation of 
glaciers. 

 

Figure 1  Location of the Heihe River Basin 



996  Journal of Geographical Sciences 

 

3  Data processing and method 

3.1  Data sources 

The glacier vector boundary in the 1960s was derived from topographic maps using aerial 
photographs. The glaciers of the Heihe River Basin involve 16 topographic maps at a scale 
of 1:50,000 and 14 topographic maps of 1:100,000. The original aerial photographs were 
taken in 1956 and 1963 and then painted in 1964 and 1972, respectively. In 1973, the first 
edition of these maps was published. The coordinates system is Beijing 1954, and the 
elevation system is Yellow Sea system 1956. In this study, the topographic maps were 
scanned with a resolution of 300 dpi. 

A total of 4 scenes of Landsat TM/ETM+ digital images were also used in this work, and 
the data are acquired from U.S. Geological Survey (USGS, http://www.usgs.gov) data 
sharing platform (Table 1). Digital elevation model (DEM) is derived from Shuttle Radar 
Topography Mission (SRTM), which is jointly measured by National Aeronautics and Space 
Administration of USA (NASA) and the Department of Defense National Mapping Agency 
of USA (NIMA). The revision V4.1 with a horizontal resolution of 90 m was used in this 
study. This version data was obtained with new interpolation algorithm by International 
Center for Tropical Agriculture (CIAT), which was considered to be better than the previous 
versions by filling the void SRTM90 data. The nominal absolute elevation data accuracy is 
±16 m, and the absolute accuracy of plane surface is ±20 m. 
 

Table 1  Remote sensing images of the Heihe River Basin used in this study 

ID Receive date Sensor Resolution (m) Path 

L5135033_03320070601 2007-06-01 TM 28.5 135/033 

L5133034_03420090928 2009-09-28 TM 28.5 133/034 

L71133033_03320110809 2011-08-09 ETM+ 28.5/15 133/033 

L5134033_03320100805 2010-08-05 TM 28.5 134/033 

 
The first GIC data was also applied in interpreting the vector data of glaciers in the 1960s 

as a consult. The data was provided by the Cold and Arid Regions Environmental and 
Engineering Research Institute (CAREERI), Chinese Academy of Sciences. Besides, 
boundary vector data of the Heihe River Basin was provided by the Cold and Arid Regions 
Science Data Center at Lanzhou (http://westdc.westgis.ac.cn). Meteorological data from six 
stations (Tuole, Yeniugou, Qilian, Zhangye, Gaotai, Jiuquan) were supplied by the Chinese 
Meteorological Science Data Sharing Service Network (http: //cdc.cma.gov.cn). 

3.2  Data preprocessing 

Preprocessing of topographic map data included scanning, registration and mosaicing. The 
topographic maps were scanned into digitized products, and then were corrected using grid. 
Root mean square error (RMSE) of geometric correction is less than one pixel. 
Preprocessing of image data included accurate geometric correction and image enhancement. 
All the data were presented in a Universal Transverse Mercator (UTM) coordinate system 
and World Geodetic System 1984 (WGS84) referenced to the topographic maps.  
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3.3  Method 

Glacier boundary vector data in the 1960s were digitized from topographic maps in the 
Heihe River Basin using ArcGIS10. Recent glaciers boundary vector data in 2007/2011 were 
extracted through object-oriented classification method, besides, computer automatic 
interpretation and visual interpretation methods were also used as a consult. Above all, we 
referred to the expert guidance to further revise glaciers boundaries in 2007/2011. To sum up, 
glaciers area, average length and other attributes such as latitude and longitude information 
of the two periods were obtained by ArcGIS10. Moreover, through the use of SRTM-DEM 
V4, glaciers terminus elevation, glaciers average elevation, slope, orientations and other 
attribute information were also calculated. Eventually, overlay analysis of topographic maps 
glaciers vector data in the 1960s and recent glaciers vector data in 2007/2011 were carried 
out by ArcGIS10 spatial module to obtain glaciers change information and also to obtain 
glaciers area variation rules (Figure 2a). 

By collecting objects near the pixel, these objects were used for identifying interest spec- 
tral features by object-oriented classification. This classification is divided into two proc- 
esses (Wei et al., 2007): image objects construction and image objects classification (Figure 
2b). Firstly, specifically segmentation method was used for remote sensing image segmenta-
tion. Then, the various features of dividing cells were extracted. Finally, objects in the fea-
ture space were recognized and identified, thus the classification was completed. Compared 
with pixel-based image classification methods, the object-oriented classification can effec-
tively restrain the ‘salt and pepper’ effect and improve classification accuracy by segmenta-
tion and establishing homogeneous regions (Nie et al., 2010; Blaschke et al., 2001; Benz et 
al., 2004). 

 
(a) Glacier change flowchart                         (b) Object-oriented method flowchart 

Figure 2  Technical flowchart of derived glaciers 
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3.3.1  Image segmentation 

As a first step, spectral features and shape features of Landsat image were integrated to 
compute comprehensive values of spectral heterogeneity and shape heterogeneity of each 
band with multi-scale segmentation algorithm. As a second step, all the bands’ integrated 
weight values were calculated according to the share weight of each band. Then, if the di-
vided objects’ integrated weight values were less than a specified threshold value; repeat the 
iteration calculation until all the segmented objects’ integrated weight value greater than the 
specified threshold value. Finally, the image multi-scale segmentation operation was com-
pleted (Guo et al., 2008). In order to achieve the multi-scale segmentation process and the 
original image objects extraction, we use ENVI EX performs for the calculation. In the 
process of image segmentation, continuous tests for different scale parameters were exe-
cuted based on artificial visual effects for the accuracy of information extraction. Eventually, 
the appropriate scale parameters were chosen. Through trial and error again and again, fi-
nally we determine the segmentation scale parameter and the combined scale parameter of 
pure ice were 70% and 80%, respectively (Figure 3). 

 
(a) Segmentation scale 50%, combination scale 70%   (b) Segmentation scale 70%, combination scale 80% 

Figure 3  Different scales of segmentation and combination image in the Heihe River Basin 
 

3.3.2  Build knowledge rules 

In this section, the most important thing is to find the threshold value of each related band 
manually. Certainly, spectral characteristics of each band, correlative index of spatial struc-
ture and histogram of images were referred to for the process of finding the threshold value. 
Indexes with target objects and other objects differing obviously are selected to set thresh-
olds of target objects and other objects respectively, then the threshold of the index test was 
repeatedly set according to visual preview. Finally, all the thresholds of correlative index 
were integrated to determine the boundary of the target objects. The various types of 
knowledge rules used were as follows (Blaschke, 2010; Lahousse et al., 2011): (1) The 
Normalized Difference Snow/Ice Index (NDSII) was used to distinguish glaciers and other 
landform types. The formula is NDSI = (CH (2) – CH (5)) / (CH(2) + CH(5)). Due to ice in 
the visible band has a high spectral reflectance value and has a lower spectral reflectance in 
short wave infrared spectral band, the combination of the two bands can effectively extract 
ice and snow (Xiao et al., 2001; Willmes et al., 2009). (2) Band ratio method is not obvious 
when distinguishing and enhancing spectral brightness value, but effect is obvious when 
band ratio value of different types of landscape with larger differences. Selecting TM3 and 
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TM5 band ratio as threshold value of 2 to extract the glacier boundary. (3) In addition, gla-
ciers elevation, area size and other characteristics were used to take a certain threshold. The 
defined threshold is extremely important for extracting glaciers. Definitive knowledge of 
glacier boundary extraction rules are as follows: TM3/TM5 > 2.0, & 0.46 < NDSI <0.58, & 
DEM > 4200 m, & (TM4–TM1) / (TM4+TM1) > –0.44, & 0.01 km2 < area < 6 km2. 

3.3.3  Glacier ridgeline extraction 

For automatic extraction of glaciers from Landsat images, the extraction of ridgeline is es-
sentially the extraction of watershed lines. This ridgeline automatic extraction method is 
based on regular grid of SRTM-DEM V4 data, using the plane curvature and slope-shaped 
combination algorithms to achieve (Tang et al., 2006). The purpose of extracting the plane 
curvature and positive terrain is that the maximum plane curvature of the positive terrain is 
just the ridgeline. However, problems arose as the plane curvature is relatively cumbersome 
to extract. To achieve this, aspect variability which to some extent can be a good characteri-
zation of plane curvature is obtained to replace the plane curvature in ArcGIS10. Ob-
ject-oriented automated extraction process is shown in Figure 4.  
 

 

 
 

Figure 4  Object-oriented extraction process 
(a) Glaciers boundary by object-oriented method; (b) Glaciers boundary by manual correction and smoothing; (c) Ridge-
lines of glacier region; (d) Ridgelines cutting glaciers 
 

3.3.4  Accuracy assessment 

Errors in the linear uncertainty from remote sensing image interpretation were affected by 
the image resolution and co-registration error. This study evaluated object-oriented method 
extraction errors by two ways: (1) Image resolution and co-registration errors. Remote sens-
ing images spatial resolution (28.5 m for TM or ETM+ data) and RMSE of co-registration 
affect the accuracy of measurement. The uncertainty of each position can be calculated by 
the following formulas (Hall et al., 2003; Silverio et al., 2005; Ye et al., 2006): 
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TU      (1) 

 2 22A TU U      (2) 

where UT is the uncertainty of glacier length; λ is the image resolution;  is the 
co-registration errors; UA is the uncertainty of glacier area. Result of single glacier area un-
certainty is ±0.002 km2. (2) Glaciers extraction errors affected by debris. The greatest diffi-
culty in mapping glaciers using remote sensing automatic classification is the presence of 
debris cover on glaciers. Currently, computer automatic classification method is not able to 
fully resolve same object with different spectral and different objects with same spectral 
phenomena. For debris-covered glaciers, as computer automatic extraction method is still in 
constant exploration, object-oriented extraction method did not consider this part of glaciers. 
This research used artificially visual interpretation for its accurate correction.  

4  Results and discussion 

4.1  Spatial characteristics of recent glaciers change in the Heihe River Basin 

Due to the quality problem of Landsat images, part of the glaciers covered with snow or 
clouds, so just 967 glaciers(464 glaciers in Heihe River and 503 glaciers in Beida River) 
were focused on in this basin (total number of glaciers is 1078 in the Heihe River Basin) in 

this study. The results show 
that: 967 glaciers were de-
creased to 800 in the Heihe 
River Basin from the 1960s to 
2007/2011, and the rate of 
recession in the number of 
glaciers was 17.27%, showing 
obvious shrinkage trends 
(Figure 5). The glaciers area 
was decreased from 361.69 
km2 to 231.17 km2 which 
means a total area of 130.51 
km2 was lost, shrinking rate 
was 36.08%. Apparently, the 
average reduction of each 
glacier was 0.14 km2 from the 
1960s to 2007/2011. The 

magnitude of glaciers change, regional difference, and climate background in the past 50 
years and so on will be presented as follows. 

4.1.1  Glacier area and number change 

Glaciers were divided into nine grades because the sizes of glaciers area in the Heihe River 

Basin are generally small (most glaciers is less than 1 km2): ① <0.1 km2; ② 0.1–0.2 km2; ③ 

0.2–0.3 km2; ④ 0.3–0.4 km2; ⑤ 0.4–0.5 km2; ⑥ 0.5–1 km2; ⑦ 1–2 km2; ⑧ 2–5 km2; ⑨ >5 

 

Figure 5  Glacier shrinkage in the Heihe River Basin 
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km2. As shown in Figure 6: gla-
ciers which have area size <0.1 
km2 have its area and number in-
creased by 10.01% and 42.44% 
respectively; and area size 0.1–0.2 
km2 have its area and number de-
creased by 32.09%, 31.47%; 
0.2–0.3 km2 decreased by 37.32%, 
46.09% respectively; and 0.3–0.4 
km2 were 30.16%, 28.89% respec-
tively; 0.4–0.5 km2 were 48.48%, 
48.68% respectively; 0.5–1 km2 
were 45.63%, 46.09% respectively; 
1–2 km2 were 28.61% and 28.30%; 
2–5 km2 were 34.94% and 38.89%; glaciers >5 km2 were 100% and 100%. There is only one 
glacier with an area greater than 5 km2, the number of which is 5Y433B0039 and glacier 
area is 5.61 km2. This glacier was split into two glaciers (area being 4.62 km2 and 0.13 km2 

respectively) in 2011. Apparently, high recession of glaciers in the Heihe River Basin di-
rectly resulted in an increase of glaciers with area <0.1 km2 and decrease in number. 

4.1.2  Characteristics of glacier variation in different altitude ranges 

Using SRTM-DEM V4 data, vertical variations were calculated for each 100 m elevation 
gradients according to the elevation of glacier terminal. Statistical analysis was carried on 
for the two phases of the glacier data (Figure 7): glaciers termini in the Heihe River Basin 
were mainly distributed at 4300–4400 m, 4400–4500 m and 4500–4600 m, accounting for 
20%, 24.5% and 19.38% of the total number respectively, or 63.88% of the grand total.  
 

 

Figure 7  Change of terminal elevation of the Heihe River Basin 
 

From the changing trend of the glaciers, the number decreased in four elevation ranges: 
4100–4200 m, 4200–4300 m, 4300–4400 m and 4400–4500 m. The reduction rates of the 
four ranges were: 85.25%, 56.59%, 27.93% and 7.55% respectively. The most obviously 
reduction ranges are in the altitude range of 4100–4200 m and 4200–4300 m. Apparently, 

 

Figure 6  Change of glacier area and number in the Heihe River 
Basin 
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the high shrinking rate of glaciers at the altitude range of 4100–4500 m directly led to an 
increasing trend at altitude range of 4500–4800 m. Rates of glaciers number increasing at 
range of 4500–4600 m, 4600–4700 m and 4700–4800 m were 11.51%, 55.38% and 18.60% 
respectively. These facts show clearly that, as global temperatures rising generally, the 
snowline is going up with the terminal elevation of glaciers ascending in the Heihe River 
Basin. 

4.1.3  Glacier distribution and regional differences 

In this section, the differences in glaciers change between Heihe River and Beida River are 
compared, and each branch of the two subbasins are analyzed. Statistical information of 
Heihe River and Beida River are shown in Table 2. It is clear that distribution and changes 
of glaciers have significant regional differences. Glacier shrinking rate in Heihe River was 
46.07%, which is much higher than that of Beida River (29.55%). These differences were 
mainly related with glacier area. Average area of 464 glaciers in Heihe River was 0.31 km2, 
and average area of 503 glaciers of Beida River was 0.43 km2. Generally, small glaciers 
were more sensitive to climate change. In previous research (Jia et al., 2008), summer 

warming trend in the Heihe River Basin is 0.27℃ per decade during the 1960s–2005, 

greater than that in Beida River (0.21℃/10a). In this study, the rate of glacier retreat in 

Heihe River was about 16% higher than that of Beida River.  
Statistical results of glaciers distribution in Heihe River (Table 3) revealed that glaciers 

number in Dahe River (a tributary of Heihe River) remain unchanged, but with the rate of 
area change being –43.8%. Although the number of glaciers did not change in this tributary, 
area decreased significantly. Eight small glaciers disappeared completely, and 3 small 
 

Table 2  Glaciers change of Heihe River and Beida River 

Number of glaciers Area of glaciers (km2) 
Subbasin 

1960s 2007/2011 Change rate (%) 1960s 2007/2011 Change rate (%) 

Heihe River (5Y42) 464 365 –21.34 143.18 77.22 –46.07 

Beida River (5Y43) 503 435 –13.52 218.51 153.95 –29.55 

Total 967 800 –17.27 361.69 231.17 –36.08 

 
Table 3  Glaciers change of Heihe River 

Number of glaciers Area of glaciers (km2) 
Branch 

1960s 2007/2011 Change rate (%) 1960s 2007/2011 Change rate (%) 

Dahe River 61 61 0 21.04 11.82 –43.80 

Jiadao-Panjia River 18 20 11.11 5.76 3.29 –42.97 

Babao River 42 35 –16.67 12.58 5.69 –54.77 

Kekeli River 53 41 –22.64 19.46 10.01 –48.54 

Upstream of Heihe River 79 56 –29.11 20.99 11.34 –45.95 

Changqian River 41 22 –46.34 6.83 1.43 –79.14 

Liyuan River 66 51 –22.73 17.56 8.88 –49.40 

Bailang River 31 29 –6.45 16.24 12.28 –24.36 

Maying River 73 50 –31.51 22.72 12.48 –45.07 

Total 464 365 –21.34 143.18 77.22 –46.07 
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glaciers developed newly. In addition, 4 large glaciers split into 9 glaciers. Glaciers number 
in Jiadao-Panjia River increased from 18 to 20, 2 glaciers disappeared in this tributary. Three 
large glaciers split into 7 small glaciers, and no new glaciers developed. The rate of glaciers 
number recession in Changqian River was the largest, accounting for 46.34%, while Bailang 
River was smaller, 6.45%, and rate of glaciers number recession was equal in other branches. 
The largest area shrinking rate was also found in Changqian River, 79.14%; other tributary 
glaciers area recession were equal, being about 40%–50%. The statistical results in Beida 
River showed that (Table 4): compared with Fengle River and Hongshuiba River, rate of 
glaciers number and area recession in Zhulongguan River and Right bank of Beida River 
were higher. Glaciers number of Gaoya Well increased by two, but the rate of area shrinkage 
was 24.78%, similar to Dahe River. 

 

Table 4  Glaciers change of Beida River 

Number of glaciers Area of glaciers (km2) 
Branch 

1960s 2007/2011 Change rate (%) 1960s 2007/2011 Change rate (%) 

Fengle River 60 53 –11.67 24.94 18.06 –27.58 

Hongshuiba River 150 131 –12.67 79.98 56.61 –29.23 

Zhulongguan River 149 110 –26.17 62.86 41.83 –33.46 

Right bank of Beida River 23 18 –21.74 4.05 2.34 –42.12 

Gaoya Well 121 123 1.65 46.67 35.11 –24.78 

Total 503 435 –13.52 218.51 153.95 –29.55 
 

4.2  Discussion 

4.2.1  Comparative recession analysis of typical mountain glaciers 

Under the background of global warming, global mountain glaciers showed widespread 
shrinking trend (Haeberli, 2000; Shi et al., 2002). While the high resolution satellite image 
data have been widely used in glacier dynamic monitoring in recent years, studies of glaciers 
change in large area are possible to achieve. In order to further analyze characteristics of 
glaciers change in the Heihe River Basin, we choose typical mountains and basins glaciers 
in western China to compare with this study (Table 5). Considering the research period, 
combined with researches that scholars have made including Lenglong Range of Qilian 
Mountains (Zhang et al., 2010), Shulenan Range of Qilian Mountains (Zhang et al., 2011a), 
Yeniugou Watershed in Qilian Mountains (Yang et al., 2007), the statistical analysis of gla-
ciers change research in west regions of China was made. It is found that compared with 
other glaciers in western mountains, the rate of glaciers retreat was significantly higher in 
this study. Zhang et al. (2010) found that glaciers decreased by 0.67%/a in Lenglong Range 
during 1972–2007; Yang (2007) discovered that glaciers in Yeniugou Watershed showed a 
recession rate of 0.54%/a from 1956 to 2003. Our research revealed that 967 glaciers in the 
Heihe River Basin decreased by 0.60%/a from the 1960s to 2007/2011. Compared with the 
glaciers recession rate of other mountains of western China, such as Tianshan Mountains 
(Wang et al., 2011b) (0.22%/a), A’nyêmaqên Mountains (Liu et al., 2002a) (0.49%/a), Ge-
ladaindong Mountains (Lu et al., 2002) (0.05%/a), Naimona Nyi Mountains (Ye et al., 2007) 
(0.26%/a), the Heihe River Basin showed a higher retreat trend. 
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Table 5  Shrinkage of the typical mountain glaciers in China 

Study areas 
Area 

change 
(km2) 

Change 
rate %

Recession 
rate (%/a) 

Data source Method Period Author 

Lenglong 
Range of Qilian 
Mountains 

–24.29 –23.57 –0.67 
Topographic 
map, ETM 

Visual  
interpretation 

1972–2007 
Zhang et al., 

2010 

Shulennan 
Range of Qilian 
Mountains 

–55.00 –12.80 –0.36 
Topographic 
map, ETM 

Visual  
interpretation 

1970–2006 
Zhang et al., 

2011a 

Yeniugou River 
Basin of Qilian 
Mountains 

–16.22 –25.71 –0.54 
Topographic 
map, ASTER 

Visual  
interpretation 

1956–2003 
Yang et al., 

2007 

Western Qilian 
Mountains 

–124.2 –10.3 –0.29 
Aerial photo, 

ETM 
Visual  

interpretation 
1956–1990 

Liu et al., 

2002b 

Heihe River 
Basin 

–32.41 –29.6 – 
Topographic 
map, ASTER 

Visual  
interpretation 

1950s/1970
s–2003 

Wang et al., 

2011a 

Chinese Tian-
shan Mountains 

– –11.5 –0.22 – – 1960–2010 
Wang et al., 

2011b 

Urumqi River 
Basin 

–6.65 –13.8 –0.45 
Aerial photo, 

Topographic map,
Aerophoto 
grametry 

1962–1992 
Chen et al., 

1996 

Kaidu River 
Basin 

–38.5 –11.6 –0.31 
Topographic map, 

TM, ETM+ 
Visual  

interpretation 
1963–2000 Liu et al., 2006 

Gez River 
Basin 

–188.1 –10 –0.26 
Topographic map, 

TM, ETM+ 
Visual  

interpretation 
1960–1999 

 
Liu et al., 2006 

A’nyêmaqên 
Mountains 

–21.7 –17.0 –0.49 TM 
Visual  

interpretation 
1966–2000 Liu et al., 2002 

Geladaindong 
Mountains 

–14.91 –1.7 –0.05 Aerial photo, TM
Visual  

interpretation 
1969–2000 Lu et al., 2002 

Naimona Nyi 
Mountains 

–7.12 –8.44 –0.26 
MSS,TM, 
ASTER 

Unsupervised 
Classification, 
NDSI, Manual 

correction 

1976–2003 Ye et al., 2007 

Pumqu River 
Basin 

–131.24 –8.98 –0.30 
Topographic 
map, ASTER 

Visual  
interpretation 

1970s–200
0 

Jin et al., 2004 

Mt. Qomo-
langma 

–501.91 –15.63 –0.52 MSS, TM 
Object-oriented 

method 
1976–2006 Nie et al., 2010 

Heihe River 
Basin 

–130.51 –36.08 –0.60 TM, ETM 
Object-oriented 

method 
1960s–200

7/2011 
This study 

 

To investigate reasons why glaciers area reduced so fast in the Heihe River Basin, the af-
fect of regional climate change (temperature and precipitation) was the important reason, 
single glacier area size was also the main affecting factor (Jóhannesson et al., 1989). The 
area of 895 glaciers in this region was less than 1 km2, its number accounted for 92.55% in 
the whole area. Moreover, the smaller the glaciers were, the more sensitive of glaciers to 
climate change, area reducing and terminal shrinking were faster (Jóhannesson et al., 1989). 

4.2.2  Effects of climate change on glaciers change 

Water (precipitation), heat (temperature) and their combination are the main climate factors 
affecting glaciers development. Precipitation and temperature and their inter-annual change 
jointly determine glaciers nature, development and evolution (Xie et al., 2010), temperature 
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decide the melting, and precipitation affect the accumulation (Li et al., 2003). In order to  
analyze the influence of temperature and precipitation on glaciers change in this region, six  
meteorological stations were chosen according to location of the study region, i.e. Tuole,  
Yeniugou, Qilian, Zhangye, Gaotai and Jiuquan. In Figure 8, the average temperature of the  
six stations showed increasing trends. The rate of temperature increasing in Tuole, Yeniugou,  

Zhangye and Qilian was larger than 0.30℃/10a (statistically significance at the 0.001 level),  

and the increasing rate of Jiuquan and Gaotai was larger than 0.20℃/10a (significance at the  

0.001 level). The trend magnitudes were all higher than the rate of global average tempera- 

ture increasing rate (0.148℃/10a) (IPCC, 2007). And the increasing warming trend of each  

meteorological station after 1990 was generally obvious. Similar to temperature change, the 
trend of annual precipitation of each meteorological station also rose slightly. The increasing 
rate of Tuole and Yeniugou was higher than 13.0 mm/10a, and the average increasing rate of 
Jiuquan, Zhangye, Gaotai and Qilian was higher than 2.0 mm/10a. According to Kang(1996) 
about relationship between glacial equilibrium line (ELA) and summer temperature from 12 
glaciers in the High Asia, glacier equilibrium lines increased by a height of 100–160 m if  

 
Figure 8  Annual temperature and precipitation change of the last 50 years in the Heihe River Basin 
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summer temperature rose by 1℃. If keep the glacial equilibrium line unchanged, solid pre-

cipitation needed to add more than 40%, or even an increase of approximately 1 times (Kang 
et al., 1996). Obviously, under this climate change background, although precipitation in-
creased, the sensitivity of glaciers on temperature became stronger. With temperature rising, 
the supply from increased precipitation can not compensate for the loss of glaciers mass ab-
lation, and then the glaciers in the Heihe River Basin were still shrinking. 

5  Conclusions 

This paper studied the glaciers change information using object-oriented information extrac-
tion technology in the Heihe River Basin (including Heihe River and Beida River) since the 
1960s to 2007/2011. Some conclusions can be drawn as follows: 

(1) The number of 967 glaciers decreased to 800 in the Heihe River Basin from the 1960s 
to 2007/2011; glaciers area reduced from 361.69 km2 to 231.17 km2, a total of 130.51 km2 
was lost, the ratio of area shrinking was 36.08%, and the average of each glacier decreased 
by 0.14 km2. 

(2) The regional differences of glacier distribution and changes in the Heihe River Basin 
were obvious: the rate of glacier retreat in the Heihe River is 16% larger than Beida River; 
glacier terminal mainly distributed in 4300–4400 m, 4400–4500 m and 4500–4600 m; the 
number of glacier decreased significantly at 4100–4200 m and 4200–4300 m, but 
4500–4800 m showed an increasing trend. 

(3) A total of 895 glaciers were less than 1 km2 in the Heihe River Basin, accounting for 
92.55% of the whole area, due to small glaciers were more sensitive to climate change, 
compared with other glaciers in mountains of western China, recession rate of glaciers was 
higher in the Heihe River Basin. 

(4) Data from six meteorological stations showed that, with temperature rising, supply 
from increased precipitation can not compensate for the loss of glacier mass ablation, which 
is the key factor affecting glacier retreat in the Heihe River Basin. 
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