Skip to main content
Log in

Effect of precession on the Asian summer monsoon evolution: A systematic review

  • Review / Geology
  • Published:
Chinese Science Bulletin

Abstract

Geological climatic records and model simulations on the Asian summer monsoon climate change induced by insolation forcing of the Earth’s precession are systematically reviewed in this paper. The presentation of the questions on the mechanism of the Asian monsoon evolution at the precession band, currently existing debates and future research directions are discussed. Since the early 1980s, more and more observed evidence and simulated results, especially the absolute-dated stalagmite records and orbital-scale transient model runs in the last few years, have indicated that the quasi-20ka period in the Quaternary monsoon climate change is caused by precession. However, debates still exist on the dynamic mechanism how precession affects the Asian monsoon. The “zero phase” hypothesis says that the Asian monsoon is merely controlled by summer insolation in the Northern Hemisphere (NH) while the “latent heat” hypothesis emphasizes the dominant effect of latent heat transport from the Southern Hemisphere (SH) besides the role of the northern insolation. The two hypotheses have separately been supported by some evidence. Although we are cognizant of the importance of northern solar radiation and the remote effect of southern insolation, it has still a long way to go before comprehensively understanding the evolutionary mechanism of the Asian monsoon. In view of the problems existing in present researches of monsoon-dominated climate change at the precession scale, we propose that studies on the environmental significance of geological monsoon proxies, feedback processes in the long-term transient simulations and intercomparisons between observations and modeling results should be strengthened in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Milankovitch M. Canon of insolation and the ice-age problem. Royal Serbian Academy, Special Publication 1941, No. 132, translated from German by Israel Program for Scientific Translations, Jerusalem, 1969

  2. Hays J D, Imbrie J, Shackleton N J. Variations in the Earth’s Orbit: Pacemaker of the Ice Ages. Science, 1976, 194: 1121–1132

    Article  Google Scholar 

  3. Berger A. Milankovitch theory and climate. Rev Geophys, 1988, 26: 624–657

    Article  Google Scholar 

  4. Imbrie J, Boyle E A, Clemens S C, et al. On the structure and origin of major glaciation cycles. 1. Linear responses to Milankovitch forcing. Paleoceanography, 1992, 7: 701–738

    Article  Google Scholar 

  5. Ruddiman W F. Orbital changes and climate. Quat Sci Rev, 2006, 25: 3092–3112

    Article  Google Scholar 

  6. Ding Z L. The Milankovitch Theory of Pleistocene glacial cycles: challenges and chances (in Chinese). Quat Sci, 2006, 26: 710–717

    Google Scholar 

  7. Shi G Y, Liu Y Z. Progresses in the Milankovitch Theory of Earth’s Climate change (in Chinese). Adv Earth Sci, 2006, 21: 278–285

    Google Scholar 

  8. Prell W L, Niitsuma N, Emeis K, et al. ODP Leg 117: Milankovitch and Monsoons. Nature, 1988, 331: 663–664

    Article  Google Scholar 

  9. Liu T S, Ding D L, Rutter N. Comparison of Milankovitch periods between continental loess and deep sea records over the last 2.5 Ma. Quat Sci Rev, 1999, 18: 1205–1212

    Article  Google Scholar 

  10. Berger A. Long-term variations of daily insolation and Quaternary climatic changes. J Atmos Sci, 1978, 35: 2362–2467

    Article  Google Scholar 

  11. Berger A, Loutre M F. Insolation values for the climate of the last 10 million years. Quat Sci Rev, 1991, 10: 297–317

    Article  Google Scholar 

  12. Loutre M F, Paillard D, Vimeux F, et al. Does mean annual insolation have the potential to change the climate? Earth Planet Sci Lett, 2004, 221: 1–14

    Article  Google Scholar 

  13. Street F A, Grove A T. Global maps of lake-level fluctuations since 30,000 yr B. P. Quat Res, 1979, 12: 83–l18

    Article  Google Scholar 

  14. Pokras E M, Mix A C. Earth’s precession cycle and Quaternary climatic change in 2 tropical Africa. Nature, 1987, 326: 486–487

    Article  Google Scholar 

  15. Rossigno-Strick M. African monsoons, an immediate climate response to orbital insolation. Nature, 1983, 303: 46–49

    Article  Google Scholar 

  16. Hilgen F J, Langereis C G. Periodicities of CaCO3 cycles in the Mediteranean Pliocene: Discrepancies with the quasi-periods of the Earth’s orbital cycles? Terra Nova, 1989, 1: 409–415

    Article  Google Scholar 

  17. deMenocal P B, Ortiz J, Guilderson T, et al. Abrupt onset and termination of the African Humid Period: Rapid climate response to gradual insolation forcing. Quat Sci Rev, 2000, 19: 347–361

    Article  Google Scholar 

  18. deMenocal, P B. Plio-Pleistocene African climate. Science, 1995, 270: 53–59

    Article  Google Scholar 

  19. Prell W L. Variations of monsoonal upwelling: a response to changing solar radiation. In: Hansen JE, Takahashi T (eds) Climate processes and Climate sensitivity. Geophysical Monograph 29, Washington, D C.: American Geophysical Union, 1984, 48–57

    Google Scholar 

  20. Anderson D M, Prell W L. A 300 Kyr record of upwelling off Oman during the late Quaternary: evidence of the Asian Southwest Monsoon. Paleoceanography, 1993, 8: 193–208

    Article  Google Scholar 

  21. Reichart G J, Lourens L, Zachariasse W J. Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the last 225,000 years. Paleoceanography, 1998, 13: 607–621

    Article  Google Scholar 

  22. Clemens S C, Prell W L. A 350,000 year summer-monsoon multiproxy stack from the Owen Ridge, Northern Arabian Sea. Mar Geol, 2003, 201: 35–51

    Article  Google Scholar 

  23. Shen J, Xiao H F, Wang S M, et al. The orbital scale evolution of regional climate recorded in a long sedimenr core from Heqing, China. Chinese Sci Bull, 2007, 52: 1813–1819

    Article  Google Scholar 

  24. Bloemendal J, deMenocal P. Evidence for a change in the periodicity of tropical climate cycles at 2.4 Myr from whole-core magnetic susceptibility measurements. Nature, 1989, 342: 897–900

    Article  Google Scholar 

  25. Kukla G, An Z S, Melice J L, et al. Magnetic susceptibility record of Chinese loess. Trans Royal Soc Edinburgh: Earth Sci, 1990, 81: 263–288

    Google Scholar 

  26. An Z S, Wu X H, Wang P X, et al. The Chinese Paleo-monsoon in the past 130ka. II. Paleomonsoon evolution (in Chinese). Sci China Ser B, 1991, 11: 1209–1215

    Google Scholar 

  27. Sun Y B, Chen J, Clemens S C, et al. East Asian monsoon variability over the last seven glacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau. Geochemistry Geophysics Geosystems, 2006, 7: Q12Q02, doi: 10.1029/2006GC001287

    Article  Google Scholar 

  28. Xu D, Lu Y. The calcium carbonate sediments in Chinese loess sections and the orbital periods (in Chinese). Chinese Sci Bull, 1982, 11: 366–368

    Google Scholar 

  29. Wu N, Pei Y, Lü H, et al. Orbital forcing of East Asian summer and winter monsoon variations in the past 350000 years (in Chinese). Quat Sci, 2001, 21: 540–548

    Google Scholar 

  30. Ding Z, Yu Z, Rutter N, et al. Towards an orbital time scale for Chinese loess deposits. Quat Sci Rev, 1994, 13: 39–70

    Article  Google Scholar 

  31. Yu Z W, Ding Z L, Liu T S. Linear forcing of orbital parameters change of the earth to loess grain size during the last 2.5 Ma (in Chinese). Quat Sci, 1992, 2: 118–127

    Google Scholar 

  32. Lu H Y, Zhang F Q, Liu X D, Duce R A. Periodicities of palaeoclimatic variations recorded by loess-paleosol sequences in China. Quat Sci Rev, 2004, 23: 1891–1900

    Article  Google Scholar 

  33. Shi Y F, Liu X D, Li B Y, et al. Strong summer monsoon on Tibet Plateau and Precession cycle (in Chinese). Chinese Sci Bull, 1999, 44: 1475–1480

    Google Scholar 

  34. Wang P X, Clemens S, Beaufort L, et al. Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quat Sci Rev, 2005, 24: 595–629

    Article  Google Scholar 

  35. Tian J, Pak D K, Wang P X, et al. Late Pliocene monsoon linkage in the tropical South China Sea. Earth Planet Sci Lett, 2006, 252: 72–81

    Article  Google Scholar 

  36. Jian Z, Huang B, Kuhnt W, et al. Late Quaternary upwelling intensity and East Asian monsoon forcing in the South China Sea. Quat Res, 2001, 55: 363–370

    Article  Google Scholar 

  37. Wehausen R, Brumsack H J. Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments. Earth Planet Sci Lett, 2002, 201: 621–636

    Article  Google Scholar 

  38. Nakagawa T M, Okuda M, Yonenobu H, et al. Regulation of the monsoon climate by two different orbital rhythms and forcing mechanisms. Geology, 2008, 36: 491–494

    Article  Google Scholar 

  39. Morley J J, Heusser L E. Role of orbital forcing in east Asian monsoon climates during the last 350 kyr: Evidence from terrestrial and marine climate proxies from core RC14-99. Paleoceanography, 1997, 12: 483–493

    Article  Google Scholar 

  40. Wang Y J, Cheng H, Edwards R L, et al. A higher solution absolute dated late Pleistocene moosoon record from Hulu cave, China. Science, 2001, 294: 2345–2348

    Article  Google Scholar 

  41. Wang Y J, Cheng H, Edwards R L, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224000 years. Nature, 2008, 451: 1090–1093

    Article  Google Scholar 

  42. Yuan D, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian Monsoon. Science, 2004, 304: 575–578

    Article  Google Scholar 

  43. Cruz F W, Bums S J, Karmann I, et a1. Insolation-driven changes in atmospheric circulation over the past 116000 years in subtropical Brazil. Nature, 2005, 434: 63–66

    Article  Google Scholar 

  44. Thompson L G, Davis M E, Mosley-Thompson E, et al. Tropical ice core records: Evidence for asynchronous glaciation on milankovitch timescales. J Quat Sci, 2005, 20: 723–733

    Article  Google Scholar 

  45. Kutzbach J E. Monsoon climate of the early Holocene: climate experiment with the earth’s orbital parameters for 9000 years ago. Science, 1981, 214: 59–61

    Article  Google Scholar 

  46. Kutzbach J E, Geutter P J. The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years. J Atmos Sci, 1986, 43: 1726–1759

    Article  Google Scholar 

  47. Kutzbach, J E, Gallimore R G. Sensitivity of a coupled atmosphere/mixed-layer ocean model to changes in orbital forcing at 9000 yr BP. J Geophys Res, 1988, 93: 803–821

    Article  Google Scholar 

  48. Liu Z, Otto-Bliesner B, Kutzbach J E, et al. Coupled climate simulation of the evolution of the evolution of global monsoon in the Holocene. J Clim, 2003, 16: 2472–2490

    Article  Google Scholar 

  49. Kutzbach J E, Bonan G, Foley J, et al. Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature, 1996, 384: 623–626

    Article  Google Scholar 

  50. Joussaume S, Taylor K E, Braconnot P, et al. Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophys Res Lett, 1999, 26: 859–862

    Article  Google Scholar 

  51. Braconnot P, Otto-Bliesner B, Harrison S, et al. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum-Part 1: experiments and large-scale features. Clim Past, 2007, 3: 261–277

    Google Scholar 

  52. Wang H J. Role of vegetation and soil in the Holocene mega thermal climate over China. J Geophys Res, 1999, 104: 29361–29367

    Google Scholar 

  53. Chen X, Yu G, Liu J. Simulations on the mid-Holocene East Asian climate and the mechanism of temperature change (in Chinese). Sci China Ser D-Earth Sci, 2002, 32: 335–345

    Google Scholar 

  54. Harrison S P, Kutzbach J E, Prentice I C et al. The response of northern hemisphere extratropical climate and vegetation to orbitally induced changes in insolation during the last interglaciation. Quat Res, 1995, 43: 174–184

    Article  Google Scholar 

  55. de Noblet N, Braconnot P, Joussaume S, et al. Sensitivity of simulated Asian and African summer monsoons to orbitally induced variations in insolation 126, 115 and 6 kBP. Clim Dyn, 1996, 12: 589–603

    Article  Google Scholar 

  56. Texier D, de Noblet N, Harrison S P, et al. Quantifying the role of biosphere-atmosphere feedbacks in climate change: Coupled model simulations for 6000 years BP and comparison with palaeodata for northern Eurasia, and northern Africa. Clim Dyn, 1997, 13: 865–882

    Article  Google Scholar 

  57. Liu Z, Harrison S P, Kutzbach J E, et al. Global monsoon in the mid-holocene and oceanic feedback. Clim Dyn, 2004, 22: 157–182

    Article  Google Scholar 

  58. Prell W L, Kutzbach J E. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 1992, 360: 647–652

    Article  Google Scholar 

  59. Liu X D, Kutzbach J E, Liu Z, et al. The Tibetan Plateau as amplifier of orbital-scale variability of the East Asian monsoon. Geophys Res Lett, 2003, 30: 1839, doi:10.1029/2003GL017510

    Article  Google Scholar 

  60. COHMAP Members. Climatic changes of the last 18000 years: Observations and model simulations. Science, 1988, 241: 1043–1053

    Article  Google Scholar 

  61. Prell W L, Kutzbach J E. Monsoon variability over the past 150000 years. J Geophys Res, 1987, 92: 8411–8425

    Article  Google Scholar 

  62. Short D A, Mengel J G. Tropical climate phase lags and Earth’s precession cycle. Nature, 1986, 323: 48–50

    Article  Google Scholar 

  63. Crucifix M, Loutre M F. Transient simulations over the last interglacial period (126–115 kyr BP): Feedback and forcing analysis. Clim Dyn, 2002, 19: 417–433

    Article  Google Scholar 

  64. Tuenter E, Weber S L, Hilgen F J, et al. Simulation of climate phase legs in response to precession and obliquity forcing and the role of vegetation. Clim Dyn, 2005, 24: 279–295

    Article  Google Scholar 

  65. von Storch H, Zorita E, Jones J M, et al. Reconstructing past climate from Noisy data. Science, 2004, 306: 679–682

    Article  Google Scholar 

  66. Jackson C S, Broccoli A J. Orbital forcing of Arctic climate: Mechanisms of climate response and implications for continental glaciation. Clim Dyn, 2003, 21: 539–557

    Article  Google Scholar 

  67. Lorenz S J, Lohmann G. Accelerated technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model: Method and application for the Holocene. Clim Dyn, 2004, 23: 727–743

    Article  Google Scholar 

  68. Timmermann A, Lorenz S, An S I, et al. The effect of orbital forcing on the mean climate and variability of the tropical Pacific. J Clim, 2007, 15: 4147–4159

    Article  Google Scholar 

  69. Kutzbach, J E, Liu X D, Liu Z Y, et al. Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years. Clim Dyn, 2008, 30: 567–579

    Article  Google Scholar 

  70. Wang B, Clemens S C, Liu P. Contrasting the Indian and East Asian monsoons: Implications on geologic timescales. Mar Geol, 2003, 201: 5–21

    Article  Google Scholar 

  71. Ruddiman W F. What is the timing of orbital-scale monsoon changes? Quat Sci Rev, 2006, 25: 657–658

    Article  Google Scholar 

  72. Clemens S, Prell W, Murray D, et al. Forcing mechanisms of the Indian Ocean monsoon. Nature, 1991, 353: 720–725

    Article  Google Scholar 

  73. Overpeck J, Anderson D, Trumbore S, et al. The southwest Indian monsoon over the last 18 000 years. Clim Dyn, 1996, 12: 213–225

    Article  Google Scholar 

  74. Imbrie J, Hays J, Martinson D, et al. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ 18O record. In: Berger A, Imbrie J, Hays J, et al., eds. Milankovitch and Climate, Part 1. 1984, Riedel, Hingham, 269–305

    Google Scholar 

  75. Tian J, Wang P X, Cheng X R, et al. Investigating the mechanism of Pleistocene East Asian monsoon from phase difference (in Chinese). Sci China Ser D-Earth Sci, 2005, 35: 158–166

    Google Scholar 

  76. Clemens S C, Murray D W, Prell W L. Nonstationary phase of the Plio-Pleistocene Asian Monsoon. Science, 1996, 274: 943–948

    Article  Google Scholar 

  77. Tierney J E, Russell J E, Huang Y S, et al. Northern hemisphere controls on tropical southeast African climate during the past 60 000 years. Science, 2008, 322: 252–255

    Article  Google Scholar 

  78. Liu X D, Liu Z, Kutzbach J E, et al. Hemispheric Insolation forcing of the Indian ocean and Asian Monsoon: Local versus remote impact. J Clim, 2006, 19: 6159–6208

    Google Scholar 

  79. Clemens S C, Prell W L. The timing of orbital-scale Indian monsoon changes. Quat Sci Rev, 2007, 26: 275–278

    Article  Google Scholar 

  80. Ruddiman W F, Raymo M E. A methane-based time scale for Vostok ice. Quat Sci Rev, 2003, 22: 141–155

    Article  Google Scholar 

  81. Clemens S, Prell W, Sun Y. Reconciling Cave, Marine, and Loess Proxies for Summer Monsoon Strength at the Precession Band. Eos Trans. AGU, 2008, 89: 24A–06

    Google Scholar 

  82. Wang P X. Orbital forcing of the low-latitude processes (in Chinese). Quat Sci, 2006, 26: 694–701

    Google Scholar 

  83. Braconnot P, Marti O. Impact of precession on monsoon characteristics from coupled ocean atmosphere experiments: Changes in Indian monsoon and Indian ocean climatology. Mar Geol, 2003, 201: 23–34

    Article  Google Scholar 

  84. Loutre M F, Berger A. Future climatic changes: Are we entering an exceptionally long interglacial? Clim Change, 2000, 46: 61–90

    Article  Google Scholar 

  85. IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007. 1–996.

    Google Scholar 

  86. Barker S, Diz P, Vautravers M J, et al. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature, 2009, 457: 1097–1102

    Article  Google Scholar 

  87. An Z S. The history and variability of the East Asian paleomonsoon climate. Quat Sci Rev, 2000, 19: 171–187

    Article  Google Scholar 

  88. Guo Z T, Berger A, Yin Q Z, Qin L. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Clim Past, 2009, 5: 21–31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoDong Liu.

Additional information

Supported by the NSFC National Excellent Young Scientists Fund (Grant No. 40825008) and National Basic Research Program of China (Grant No. 2004CB-720208)

About this article

Cite this article

Liu, X., Shi, Z. Effect of precession on the Asian summer monsoon evolution: A systematic review. Chin. Sci. Bull. 54, 3720–3730 (2009). https://doi.org/10.1007/s11434-009-0540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0540-5

Keywords

Navigation