Skip to main content
Log in

Liquid-liquid phase transition in water

  • Review
  • Special Topic: Water Science
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Water shows anomalies different from most of other materials. Different sceniaros have been proposed to explain water anomalies, among which the liquid-liquid phase transition (LLPT) is the most discussed one. It attributes water anomalies to the existence of a hypothesized liquid-liquid critical point (LLCP) buried deep in the supercooled region. We briefly review the recent experimental and theoretical progresses on the study of the LLPT in water. These studies include the discussion on the existence of the first order LLPT in supercooled water and the detection of liquid-liquid critical point. Simulational results of different water models for LLPT and the experimental evidence in confined water are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bellissent-Funel M-C. Hydration Processes in Biology: Theoretical and Experimental Approaches. Amsterdam: ISO Press, 1999

    Google Scholar 

  2. Robinson G W, Zhu S B, Singh S, et al. Water in Biology, Chemistry, and Physics: Experimental Overviews and Computational Methodologies. Singerpore: World Scientific, 1996

    Google Scholar 

  3. Stanley H E, Blumberg R L, Geiger A, et al. Structure and dynamics of the hydrogen bond network in water by computer simulations. In: Proceedings of International Workshop on Structure and Dynamics of Water and Aqueous Solutions: Anomalies and the Possible Implications in Biology. Grenoble: Proc of Inst Laue-Langevin, 1984. 13–30

    Google Scholar 

  4. Debenedetti P G. Metastable Liquids: Concepts and Principles. Princeton: Princeton University Press, 1996

    Google Scholar 

  5. Angell C A. Water and Aqueous Solutions at Subzero Temperatures. New York: Plenum, 1982

    Google Scholar 

  6. Ball P. Water as an active constituent in cell biology. Chem Rev, 2008, 108: 74–108

    Article  Google Scholar 

  7. Franks F. Water: A Matrix of Life. Cambridge: Royal Society of Chemistry, 2000

    Google Scholar 

  8. Debenedetti P G. Supercooled and glassy water. J Phys-Condens Matter, 2003, 15: R1669–R1726

    Article  ADS  Google Scholar 

  9. Debenedetti P G, Stanley H E. Supercooled and glassy water. Phys Today, 2003, 56: 40–46

    Article  Google Scholar 

  10. Angell C A. Amorphous water. Ann Rev Phys Chem, 2004, 55: 559–583

    Article  ADS  Google Scholar 

  11. Zheligovskaya E A, Malenkov G G. Crystalline water ices. Russ Chem Rev, 2006, 75: 57–76

    Article  ADS  Google Scholar 

  12. Ball P. Life’s Matrix. A Biography of Water. New York: Farrar, Strauss and Giroux, 1999

    Google Scholar 

  13. Angell C A, Shuppert J, Tucker J C. Anomalous properties of supercooled water. Heat capacity, expansivity, and proton magnetic resonance chemical shift from 0 to −38%. J Phys Chem, 1973, 77: 3092–3099

    Google Scholar 

  14. Speedy R J, Angell C A. Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at 45C. J Chem Phys, 1976, 65: 851–858

    Article  ADS  Google Scholar 

  15. Stanley H E. Introduction to Phase Transitions and Cirtical Phenomena. New York: Oxford University Press, 1971

    Google Scholar 

  16. Kumar P, Stanley H E. Thermal conductivity minimum: A new water anomaly. J Phys Chem B, 2011, 115: 14269–14273

    Article  Google Scholar 

  17. Angell C A, Oguni M, Sichina WJ. Heat capacity of water at extremes of supercooling and superheating. J Phys Chem, 1982, 86: 998–1002

    Google Scholar 

  18. Sato H, Watanabe K, Levelt-Sengers J M H, et al. Sixteen thousand evaluated experimental thermodynamic property data for water and steam. J Phys Chem Ref Data, 1991, 20: 1023–1044

    Article  ADS  Google Scholar 

  19. Conde O, Teixeira J, Papon P. Analysis of sound velocity in supercoled H2O, D2O, and waterethanol mixtures. J Chem Phys, 1982, 76: 3747–3753

    Article  ADS  Google Scholar 

  20. Kanno H, Angell C A. Water: Anomalous compressibilities to 1.9 kbar and correlation with supercooling limits. J Chem Phys, 1979, 70: 4008–4016

    Article  ADS  Google Scholar 

  21. Sastry S, Debenedetti P G, Sciortino F, et al. Singularity-free interpretation of the thermodynamics of supercooled water. Phys Rev E, 1996, 53: 6144–6154

    Article  ADS  Google Scholar 

  22. Angell C A. Insights into liquid water phases from study of its unusual glass-forming properties. Science, 2008, 319: 582–587

    Article  Google Scholar 

  23. Poole P H, Sciortino F, Essmann U, et al. Phase behavior of metastable water. Nature, 1992, 360: 324–328

    Article  ADS  Google Scholar 

  24. Poole P H, Sciortino F, Essmann U, et al. The spinodal of liquid water. Phys Rev E, 1993, 48: 3799–3817; Poole P H, Sciortino F, Essmann U, et al. Phase diagram for amorphous solid water. Phys Rev E, 1993, 48: 4605–4610; Poole P H, Sciortino F, Essmann U, et al. Line of compressibility maxima in the phase diagram of supercooled water. Phys Rev E, 1997, 55: 727–737

    Article  ADS  Google Scholar 

  25. Mishima O, Stanley H E. Decompression-induced melting of ice IV and the liquid-liquid transition in water. Nature, 1998, 392: 164–168

    Article  ADS  Google Scholar 

  26. Mishima O, Stanley H E. The relationship between liquid, supercooled and glassy water. Nature, 1998, 396: 329–335

    Article  ADS  Google Scholar 

  27. Sciortino F, Nave L E, Tartaglia P. Physics of the liquid-liquid critical point. Phys Rev Lett, 2003, 91: 155701

    Article  ADS  Google Scholar 

  28. Jara D A C, Michelon M F, Antonelli A, et al. Theoretical evidence for a first-order liquid-liquid phase transition in gallium. J Chem Phys, 2009, 130: 221101

    Article  ADS  Google Scholar 

  29. Sastry S, Angell C A. Liquid-liquid phase transition in supercooled silicon. Nat Mater, 2003, 2: 739–743

    Article  ADS  Google Scholar 

  30. Ashwin S S, Waghmare U V, Sastry S. Metal-to-semimetal transition in supercooled liquid silicon. Phys Rev Lett, 2004, 92: 175701

    Article  ADS  Google Scholar 

  31. Vasisht V V, Saw S, Sastry S. Liquidliquid critical point in supercooled silicon. Nat Phys, 2011, 7: 549–553

    Article  Google Scholar 

  32. Katayama Y, Mizutani T, Tsumi K, et al. A first-order liquid-liquid phase transition in phosphorus. Nature, 2000, 403: 170–173

    Article  ADS  Google Scholar 

  33. Monaco G, Falconi S, Crichton W A, et al. Nature of the first-order phase transition in fluid phosphorus at high temperature and pressure. Phys Rev Lett, 2003, 90: 255701

    Article  ADS  Google Scholar 

  34. Morales M A, Pierleoni C, Schwegler E, et al. Evidence for a firstorder liquid-liquid transition in high-pressure hydrogen from ab initio simulations. Proc Natl Acad Sci USA, 2010, 107: 12799–12803

    Article  ADS  Google Scholar 

  35. Cadient A, Hu Q Y, Meng Y, et al. First-order liquid-liquid phase transition in Cerium. Phys Rev Lett, 2013, 110: 125503

    Article  ADS  Google Scholar 

  36. Greaves G N, Wilding M C, Fearn S, et al. Detection of first-order liquid/liquid phase transitions in yttrium oxide-aluminum oxide melts. Science, 2008, 322: 566–570

    Article  ADS  Google Scholar 

  37. Mishima O, Calvert L D, Whalley E. ‘Melting ice’ I at 77 K and 10 kbar: A new method of making amorphous solids. Nature, 1984, 310: 393–395

    Article  ADS  Google Scholar 

  38. Mishima O, Calvert L D, Whalley E. An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature, 1985, 314: 76–78

    Article  ADS  Google Scholar 

  39. Mishima O, Takemura K, Aoki K. Visual observations of the amorphous-amorphous transition in H2O under pressure. Science, 1991, 254: 406–408

    Article  ADS  Google Scholar 

  40. Mishima O. Reversible first-order transition between two H2O amorphs at ∼ 0.2 GPa and ∼ 135 K. J Chem Phys, 1994, 100: 5910–5912

    Article  ADS  Google Scholar 

  41. Bellissent-Funel M C, Bosio L, Halbrucker A, et al. Xray and neutron scattering studies of the structure of hyperquenched glassy water. J Chem Phys, 1992, 97: 1282–1286

    Article  ADS  Google Scholar 

  42. Bellissent-Funel M C, Bosio L. A neutron scattering study of liquid D2O under pressure and at various temperatures. J Chem Phys, 1995, 102: 3727–3735

    Article  ADS  Google Scholar 

  43. Stanley H E, Kumar P, Franzese G, et al. Liquid polyamorphism: Possible relation to the anomalous behavior of water. Eur Phys J Spec Top, 2008, 161: 1–17

    Article  Google Scholar 

  44. Andersson O. Glassliquid transition of water at high pressure. Proc Natl Acad Sci USA, 2011, 108: 11013–11016

    Article  Google Scholar 

  45. Harrington S, Poole P H, Sciortino F, et al. Equation of state of supercooled SPC/E water. J Chem Phys, 1997, 107: 7443–7450

    Article  ADS  Google Scholar 

  46. Yamada M, Mossa S, Stanley H E, et al. Interplay between timetemperature-transformation and the liquid-liquid phase transition in water. Phys Rev Lett, 2002, 88: 195701

    Article  ADS  Google Scholar 

  47. Poole P H, Saika-Voivod I, Sciortino F. Density minimum and liquidliquid phase transition. J Phys-Condens Matter, 2005, 17: L431–L437

    Article  ADS  Google Scholar 

  48. Brovchenko I, Geiger A, Oleinikova A. Liquid-liquid phase transitions in supercooled water studied by computer simulations of various water models. J Chem Phys, 2005, 123: 044515

    Article  ADS  Google Scholar 

  49. Paschek D. How the liquid-liquid transition affects hydrophobic hydration in deeply supercooled water. Phys Rev Lett, 2004, 94: 217802

    Article  ADS  Google Scholar 

  50. Paschek D, Ruppert A, Geiger A, et al. Thermodynamic and structural characterization of the transformation from a metastable low-density to a very high-density form of supercooled TIP4P-Ew model water. Chem Phys Chem, 2008, 18: 2737–2741

    Article  Google Scholar 

  51. Liu Y, Panagiotopoulos A Z, Debenedetti P G. Low-temperature fluidphase behavior of ST2 water. J Chem Phys, 2009, 131: 104508

    Article  ADS  Google Scholar 

  52. Abascal J L F, Vega C. Widom line and the liquid-liquid critical point for the TIP4P/2005 water model. J Chem Phys, 2010, 133: 234502

    Article  ADS  Google Scholar 

  53. Meyer M, Stanley H E. Liquid-liquid phase transition in confined water: A Monte-Carlo study. J Chem Phys B, 1999, 103: 9728–9730

    Article  Google Scholar 

  54. Stokely K, Mazza M G, Stanley H E, et al. Effect of hydrogen bond cooperativity on the behavior of water. Proc Natl Acad Sci USA, 2010, 107: 1301–1306

    Article  ADS  Google Scholar 

  55. Li Y, Li J, Wang F. Liquid-liquid transition in supercooled water suggested by microsecond simulations. Proc Natl Acad Sci USA, 2013, 110: 12209–12212

    Article  ADS  Google Scholar 

  56. Corsetti F, Artacho E, Soler J M, et al. Room temperature compressibility and the diffusivity anomaly of liquid water from first principles. arXiv:1307.1645

  57. Jeffery C A, Aunstin P H. A new analytic equation of state for liquid water. J Chem Phys, 1999, 110: 484–496

    Article  ADS  Google Scholar 

  58. Kiselev S B. Physical limit of stability in supercooled liquids. Int J Thermophys, 2001, 22: 1421–1433

    Article  MathSciNet  Google Scholar 

  59. Kiselev S B, Ely J F. Parametric crossover model and physical limit of stability in supercooled water. J Chem Phys, 2002, 116: 5657–5665

    Article  ADS  Google Scholar 

  60. Kalová J, Mares R. Crossover equation and the vapor pressure of supercooled water. Int J Thermophys, 2010, 31: 756–765

    Article  ADS  Google Scholar 

  61. Fuentevilla D A, Anisimov M A. Scaled equation of state for supercooled water near the liquid-liquid critical point. Phys Rev Lett. 2006, 97: 195702

    Article  ADS  Google Scholar 

  62. Bertrand C E, Anisimov M A. Peculiar thermodynamics of the second critical point in supercooled water. J Phys Chem B, 2011, 115: 14099–14111

    Article  Google Scholar 

  63. Franzese G, Malescio G, Skibinsky G, et al. Generic mechanism for generating a liquid-liquid phase transition. Nature, 2001, 409: 692–695

    Article  ADS  Google Scholar 

  64. Moore E B, Molinero V. Structural transformation in supercooled water controls the crystallization rate of ice. Nature, 2011, 479: 506–509

    Article  ADS  Google Scholar 

  65. Holten V, Limmer D T, Molinero V, et al. Nature of the anomalies in supercooled liquid state of the mW model of water. J Chem Phys, 2013, 138: 174501

    Article  Google Scholar 

  66. Soper A K, Ricci M A. Structures of high-density and low-density water. Phys Rev Lett, 2000, 84: 2881–2884

    Article  ADS  Google Scholar 

  67. Wernet P, Nordlund D, Bergmann U, et al. The sturcture of the first coordination shell in liquid water. Science, 2004, 304: 995–999

    Article  ADS  Google Scholar 

  68. Tokushima T, Harada Y, Takahashi O, et al. High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifs. Chem Phys Lett, 2008, 460: 387–400

    Article  ADS  Google Scholar 

  69. Huang C, Wikfeldt K T, Tokushima T, et al. The inhomogeneous structure of water at ambient conditions. Proc Natl Acad Sci USA, 2009, 106: 15214–15218

    Article  ADS  Google Scholar 

  70. Huang C, Weiss T M, Nordlund D, et al. Increasing correlation length in bulk supercooled HO, DO, and NaCl solution determined from small angle X-ray and neutron diffraction data. J Chem Phys, 2010, 133: 134504

    Article  ADS  Google Scholar 

  71. Nilsson A, Pettersson L G M. Perspective on the structure of liquid water. Chem Phys, 2011, 389: 1–34

    Article  ADS  Google Scholar 

  72. Nilsson A, Huang C, Pettersson L G M. Fluctuations in ambient water. J Mol Liq, 2012, 176: 2–16

    Article  Google Scholar 

  73. Loerting T, Giovambattista N. Amorphous ices: Experiments and numerical simulations. J Phys-Condens Matter, 2006, 18: R919–R977

    Article  ADS  Google Scholar 

  74. Amann-Winkel K, Elsaesser M S, Mayer E, et al. Water polyamorphism: Reversibility and (dis)continuity. J Chem Phys, 2008, 128: 044510

    Article  ADS  Google Scholar 

  75. Amann-Winkel K, Mayer E, Loerting T. Equilibrated high-density amorphous ice and its first-order transition to the low-density form. J Phys Chem B, 2011, 115: 14141–14148

    Article  Google Scholar 

  76. Loerting T, Salzmann C, Kohl I, et al. A second distinct structural “state” of high-density amorphous ice at 77 K and 1 bar. Phys Chem Chem Phys, 2001, 3: 5355–5357

    Article  Google Scholar 

  77. Finney J L, Bowron D T, Soper A K, et al. Structure of a new dense amorphous ice. Phys Rev Lett, 2002, 89: 205503

    Article  ADS  Google Scholar 

  78. Andersson O. Relaxation time of water’s high-density amorphous ice phase. Phys Rev Lett, 2005, 95: 205503

    Article  ADS  Google Scholar 

  79. Andersson O. Dielectric relaxation of the amorphous ices. J Phys-Condens Matter, 2008, 20: 244115

    Article  ADS  Google Scholar 

  80. Xu L, Giovambattista N, Buldyrev S, et al. Waterlike glass polyamorphism in a monoatomic isotropic Jagla model. J Chem Phys, 2011, 134: 064507

    Article  ADS  Google Scholar 

  81. Giovambattista N, Loerting T, Lukanov B R, et al. Interplay of the glass transition and the liquid-liquid phase transition in water. Sci Rep, 2012, 2: 1–8

    Article  Google Scholar 

  82. Buldyrev S V, Stanley H E. A system with multiple liquidliquid critical points. Phys A, 2003, 330: 124–129

    Article  MathSciNet  Google Scholar 

  83. Brovchenko I, Geiger A, Oleinikova A. Multiple liquidliquid transitions in supercooled water. J Chem Phys, 2003, 118: 9473–9476

    Article  ADS  Google Scholar 

  84. Loerting T, Schustereder W, Amann-Winkel K. Amorphous ice: Stepwise formation of very-high-density amorphous ice from low-density amorphous ice at 125 K. Phys Rev Lett, 2006, 96: 025702

    Article  ADS  Google Scholar 

  85. Loerting T, Salzmann C G, Amann-Winkel K, et al. The relation between high-density and very-high-density amorphous ice. Phys Chem Chem Phys, 2006, 8: 2810–2818

    Article  Google Scholar 

  86. Amann-Winkel K, Gainaru C, Handle P H. Water’s second glass transition. Proc Natl Acad Sci USA, 2013, 110: 17720–17725

    Article  Google Scholar 

  87. Stanley H E. Liquid Polymorphism: Advances in Chemical Physics. Hoboken: John Wiley & Sons, 2013. 152

    Book  Google Scholar 

  88. Bellissent-Funel M C, Krongauz M V. Negative velocity correlation in hard sphere fluid. J Chem Phys, 1995, 102: 2881–2884

    Article  ADS  Google Scholar 

  89. Bartell L S, Huang J. Supercooling of water below the anomalous range near 226 K. J Phys Chem 1994, 98: 7455–7457

    Google Scholar 

  90. Maruyama S, Wakabayashi K, Oguni M. Thermal properties of supercooled water confined within silica gel pores. Amer Inst Phys Confer Proc, 2004, 708: 675–676

    ADS  Google Scholar 

  91. Xu L, Kumar P, Buldyrev S V, et al. Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition. Proc Natl Acad Sci USA, 2005, 102: 16558–16562

    Article  ADS  Google Scholar 

  92. Xu L, Buldyrev S V, Angell C A, et al. Thermodynamics and dynamics of the two-scale spherically symmetric Jagla ramp model of anomalous liquids. Phys Rev E, 2006, 74: 031108

    Article  ADS  Google Scholar 

  93. Xu L, Ehrenberg I, Buldyrev S V, et al. Relationship between the liquidliquid phase transition and dynamic behaviour in the Jagla model. J Phys-Condens Matter, 2006, 18: S2239–S2246

    Article  ADS  Google Scholar 

  94. Xu L, Buldyrev S V, Giovambattista N, et al. A monatomic system with a liquid-liquid critical point and two distinct glassy states. J Chem Phys, 2009, 130: 054505

    Article  ADS  Google Scholar 

  95. Anisimov M A, Sengers J V, Levelt-Sengers J M H. Aqueous System at Elevated Temperatures and Pressures: Physical Chemistry in Water, Stream and Hydrothermal Solutions. Amsterdam: Elsevier, 2004

    Google Scholar 

  96. Levelt J M H. Measurements of the Compressibility of Argon in the Gaseous and Liquid Phase. Dissertation for Doctoral Degree. Assen: University of Amsterdam, 1958

    Google Scholar 

  97. Michels A, Levelt J M, Wolkers G J. Thermodynamics properties of argon at temperature between 0°C and −140°C and at densities up to 640 amagat (pressures up to 1050 atm). Physica, 1958, 24: 769–794

    Article  ADS  Google Scholar 

  98. Michels A, Levelt J M, De Graaff W. Compressibility isotherms of argon at temperatures between −25°C and −155°C, and at densities up to 640 amagat (pressure up to 1050 atmospheres). Physica, 1958, 24: 659–671

    Article  ADS  Google Scholar 

  99. Mishima O. Volume of supercooled water under pressure and the liquid-liquid critical point. J Chem Phys, 2010, 133: 144503

    Article  ADS  Google Scholar 

  100. Xu LM, Mallamace F, Yan Z, et al. Appearance of a fractional Stokes-Einstein relation in water and a structural interpretation of its onset. Nat Phys, 2009, 5: 565–569

    Article  Google Scholar 

  101. Chen S H, Mallamace F, Mou C Y, et al. The violation of the Stokes-Einstein relation in supercooled water. Proc Natl Acad Sci USA, 2006, 103: 12974–12978

    Article  ADS  Google Scholar 

  102. Mallamace F, Broccio M, Corsaro C, et al. Evidence of the low-density liquid phase in supercooled water. Proc Natl Acad Sci USA, 2007, 104: 424–428

    Article  ADS  Google Scholar 

  103. Wikfeldt K T, Nilsson A, Pettersson L G M. Spatially inhomogeneous bimodal inherent structure of simulated liquid water. Phys Chem Chem Phys, 2011, 13: 19918–19924

    Article  Google Scholar 

  104. Wikfeldt K T, Huang C, Nilsson A, et al. Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water. J Chem Phys, 2011, 134: 214506

    Article  ADS  Google Scholar 

  105. Bergman R, Swenson J. Dynamics of supercooled water in confined geometry. Nature, 2000, 403: 283–285

    Article  ADS  Google Scholar 

  106. Faraone A, Liu L, Mou C Y, et al. Fragile-to-strong liquid transition in deeply supercooled confined water. J Chem Phys, 2004, 121: 10843–10846

    Article  ADS  Google Scholar 

  107. Liu L, Chen S H, Faraone A, et al. Pressure dependence of fragileto-strong transition and a possible second critical point in supercooled confined water. Phys Rev Lett, 2005, 95: 117802

    Article  ADS  Google Scholar 

  108. Liu D Z, Zhang Y, Chen C C, et al. Observation of the density minimum in deeply supercooled confined water. Proc Natl Acad Sci USA, 2007, 104: 9570–9574

    Article  ADS  Google Scholar 

  109. Mallamace F, Broccio M, Corsaro C, et al. The fragile-to-strong dynamic crossover transition in confined water: Nuclear magnetic resonance results. J Chem Phys, 2006, 124: 161102

    Article  ADS  Google Scholar 

  110. Mallamace F, Broccio M, Corsaro C, et al. Dynamical properties of confined supercooled water: An NMR study. J Phys-Condens Matter, 2006, 18: S2285–S2297

    Article  ADS  Google Scholar 

  111. Mallamace F, Corsaro C, Broccio M, et al. NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water. Proc Natl Acad Sci USA, 2008, 105: 12725–12729

    Article  ADS  Google Scholar 

  112. Alba-Simionesco C, Coasne B, Dosseh G, et al. Effects of confinement on freezing and melting. J Phys-Condes Matter, 2006, 18: R15–R68

    Article  ADS  Google Scholar 

  113. Angell C A. Water II is a “strong” liquid. J Phys Chem, 1993, 97: 6339–6341

    Google Scholar 

  114. Ito K, Moynihan C T, Angell C A. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature, 1999, 398: 492–495

    Article  ADS  Google Scholar 

  115. Starr F W, Angell C A, Stanley H E. Prediction of entropy and dynamic properties of water below the homogeneous nucleation temperature. Phys A, 2003, 323: 51–66

    Article  Google Scholar 

  116. Poole P H, Sciortino F, Grande T, et al. Effect of hydrogen bonds on the thermodynamic behavior of liquid water. Phys Rev Lett, 1994, 73: 1632–1635

    Article  ADS  Google Scholar 

  117. Tanaka H. A new scenario of the apparent fragile-to-strong transition in tetrahedral liquids: Water as an example. J Phys-Condens Matter, 2003, 15: L703–L711

    Article  ADS  Google Scholar 

  118. Kumar P, Han S, Stanley H E. Anomalies of water and hydrogen bond dynamics in hydrophobic nanoconfinement. J Phys-Condens Matter, 2009, 21: 504108

    Article  Google Scholar 

  119. Gallo P, Rovere M, Chen S H. Dynamic crossover in supercooled confined water: Understanding bulk properties through confinement. Phys Chem Lett, 2010, 1: 729–733

    Google Scholar 

  120. Solvetra E G, de la Llave E, Scherlis D A, et al. Melting and crystallization of ice in partially filled nanopores. J Phys Chem B, 2011, 115: 14196–14204

    Google Scholar 

  121. Koga K, Tanaka H, Zeng X C. First-order transition in confined water between high-density liquid and low-density amorphous phases. Nature, 2000, 408: 564–567

    Article  ADS  Google Scholar 

  122. Koga K. Freezing in one-dimensional liquids. J Chem Phys, 2003, 118: 7973–7980

    Article  ADS  Google Scholar 

  123. Brovchenko I, Oleinikova A. Interfacial and Confined Water. Amsterdam: Elsevier, 2008

    Google Scholar 

  124. Zangi R. Water confined to a slab geometry: A review of recent computer simulation studies. J Phys-Condens Matter, 2004, 16: S5371–S5388

    Article  ADS  Google Scholar 

  125. Kumar P, Buldyrev S V, Starr F W, et al. Thermodynamics, structure, and dynamics of water confined between hydrophobic plates. Phys Rev E, 2005, 72: 051503

    Article  ADS  Google Scholar 

  126. Giovambattista N, Rossky P J, Debenedetti P G. Phase transitions induced by nanoconfinement in liquid water. Phys Rev Lett, 2009, 102: 050603

    Article  ADS  Google Scholar 

  127. Giovambattista N, Debenedetti P G, Rossky P J. Hydration behavior under confinement by nanoscale surfaces with patterned hydrophobicity and hydrophilicity. J Phys Chem C, 2007, 111: 1323–1332

    Article  Google Scholar 

  128. Bellissent-Funel M C, Sridi-Dorbez R, Bosio L. X-ray and neutron scattering studies of the structure of water at a hydrophobic surface. J Chem Phys, 1996, 104: 10023–10029

    Article  ADS  Google Scholar 

  129. Gallo P, Rovere M. Double dynamical regime of confined water. J Phys-Condens Matter, 2002, 15: 1521–1529

    Article  ADS  Google Scholar 

  130. Spohr E, Hartnig C, Gallo P, et al. Water in porous glasses. J Mol Liq, 1999, 80: 165–178

    Article  Google Scholar 

  131. Hartnig C, Witschel W, Spohr E, et al. Modifications of the hydrogen bond network of liquid water in a cylindrical SiO2 pore. J Mol Liq, 2000, 85: 127–137

    Article  Google Scholar 

  132. Mazza M G, Stokely K, Pagnotta S E, et al. More than one dynamic crossover in protein hydration water. Proc Natl Acad Sci USA, 2011, 108: 19873–19878

    Article  ADS  Google Scholar 

  133. Xu L M, Molinero V. Is there a liquid-liquid transition in confined water? J Phys Chem B, 2011, 115: 14210–14216

    Article  Google Scholar 

  134. Limmer D T, Chandler D. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. J Chem Phys, 2011, 135: 134503

    Article  ADS  Google Scholar 

  135. Steinhardt P J, Nelson D R, Ronchetti M. Bond-orientational order in liquids and glasses. Phys Rev B, 1983, 28: 784–805

    Article  ADS  Google Scholar 

  136. Sciortino F, Saika-Voivod I, Poole P H. Study of the ST2 model of water close to the liquid-liquid critical point. Phys Chem Chem Phys, 2011, 13: 19759–19764

    Article  Google Scholar 

  137. Liu Y, Palmer J C, Panagiotopoulos A Z, et al. Liquid-liquid transition in ST2 water. J Chem Phys, 2012, 137: 214505

    Article  ADS  Google Scholar 

  138. Poole P H, Bowles R K, Saika-Voivod I, et al. Free energy surface of ST2 water near the liquid-liquid phase transition. J Chem Phys, 2013, 138: 034505

    Article  ADS  Google Scholar 

  139. Palmer J C, Car R, Debenedetti P G. The liquid-liquid transition in supercooled ST2 water: A comparison between umbrella sampling and well-tempered metadynamics. Faraday Discuss, 2013, 167: 77–94

    Article  Google Scholar 

  140. Barducci A, Bussi G, Parrinello M. Well-tempered metadynamics: A smoothly converging and tunable free-energy method. Phys Rev Lett, 2008, 100: 020603

    Article  ADS  Google Scholar 

  141. Kesselring T A, Franzese G, Buldyrev S V, et al. Nanoscale dynamics of phase flipping in water near its hypothesized liquid-liquid critical point. Sci Rep, 2012, 2: 474

    Article  ADS  Google Scholar 

  142. Kesselring T A, Lascaris E, Franzese G, et al. Finite-size scaling investigation of the liquid-liquid critical point in ST2 water and its stability with respect to crystallization. J Chem Phys, 2013, 138: 244506–244518

    Article  ADS  Google Scholar 

  143. Kim C U, Barstow B, Tate M W, et al. Evidence for liquid water during the high-density to low-density amorphous ice transition. Proc Natl Acad Sci USA, 2009, 106: 4596–4600

    Article  ADS  Google Scholar 

  144. Mallamace F, Corsaro C, Stanley H E. Possible relation of water structural relaxation to water anomalies. Proc Natl Acad Sci USA, 2013, 110: 4899–4904

    Article  ADS  Google Scholar 

  145. Taschin A, Bartolini P, Eramo R, et al. Evidence of two distinct local structures of water from ambient to supercooled conditions. Nat Commun, 2013, 4: 2401

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiMei Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Sun, G., Chen, Y. et al. Liquid-liquid phase transition in water. Sci. China Phys. Mech. Astron. 57, 810–818 (2014). https://doi.org/10.1007/s11433-014-5451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5451-z

Keywords

Navigation