Skip to main content
Log in

Design of an all-day electrical power generator based on thermoradiative devices

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Energy harvesting from sun and outer space using thermoradiative devices (TRDs), despite being promising renewable energy sources, is limited only to daytime and nighttime period, respectively. Such a system with 24-hour continuous electric power generation remains an open question thus far. Here, a TRD-based power generator that harvests solar energy via concentrated solar irradiation during daytime and via thermal infrared emission towards the outer space at nighttime is proposed, thus achieving the much sought-after 24-hour electrical power generation. Correspondingly, a rigorous thermodynamical model is developed to investigate the all-day performance characteristics, parametric optimum design, and the role of various energy loss mechanisms. The calculated results predict that the daytime TRD-based system yields a peak efficiency of 12.6% under 10 suns, thus significantly outperforming the state-of-art record-setting solar thermoelectric generator. This work reveals the potential of TRD towards 24-hour electricity generation and future renewable energy technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cabraal R A, Barnes D F, Agarwal S G. Productive uses of energy for rural development. Annu Rev Environ Resour, 2005, 30: 117–144

    Article  Google Scholar 

  2. Chen L G, Meng F K, Ge Y L, et al. Performance optimization of a class of combined thermoelectric heating devices. Sci China Tech Sci, 2020, 63: 2640–2648

    Article  Google Scholar 

  3. Ding Z M, Chen L G, Ge Y L, et al. Optimal performance regions of an irreversible energy selective electron heat engine with double resonances. Sci China Tech Sci, 2019, 62: 397–405

    Article  Google Scholar 

  4. Lin B H, Huang Z F. Optimization of irreversible capacitive thermoelectric conversion device performance (in Chinese). Sci Sin Tech, 2020, 50: 551–561

    Article  Google Scholar 

  5. Qiu S S, Ding Z M, Chen L G, et al. Performance optimization of thermionic refrigerators based on van der Waals heterostructures. Sci China Tech Sci, 2021, 64: 1007–1016

    Article  Google Scholar 

  6. Song Y H, Chen X S, Lin J, et al. Stochastic processes in renewable power systems: From frequency domain to time domain. Sci China Tech Sci, 2019, 62: 2093–2103

    Article  Google Scholar 

  7. Zhang Y W, Lu Y N, Chen L Q. Energy harvesting via nonlinear energy sink for whole-spacecraft. Sci China Tech Sci, 2019, 62: 1483–1491

    Article  Google Scholar 

  8. Fang R, Zhang W J, Zhang S S, et al. The rising star in photovoltaicsperovskite solar cells: The past, present and future. Sci China Tech Sci, 2016, 59: 989–1006

    Article  Google Scholar 

  9. Lin B H, Liao T J. Investigation on the performance of a photon-enhanced thermionic emission solar cell (in Chinese). Sci Sin Tech, 2019, 49: 873–879

    Article  Google Scholar 

  10. Zhang X, Wang J C, Ang L K, et al. Designing few-layer graphene Schottky contact solar cells: Theoretical efficiency limits and parametric optimization. Appl Phys Lett, 2021, 118: 053103

    Article  Google Scholar 

  11. Cheng X T, Xu X H, Liang X G. Theoretical analyses of the performance of a concentrating photovoltaic/thermal solar system with a mathematical and physical model, entropy generation minimization and entransy theory. Sci China Tech Sci, 2018, 61: 843–852

    Article  Google Scholar 

  12. Han X, Xu C, Pan X Y, et al. Dynamic analysis of a concentrating photovoltaic/concentrating solar power (CPV/CSP) hybrid system. Sci China Tech Sci, 2019, 62: 1987–1998

    Article  Google Scholar 

  13. Cheng Z M, Shuai Y, Gong D Y, et al. Optical properties and cooling performance analyses of single-layer radiative cooling coating with mixture of TiO2 particles and SiO2 particles. Sci China Tech Sci, 2021, 64: 1017–1029

    Article  Google Scholar 

  14. Yin X B, Yang R G, Tan G, et al. Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science, 2020, 370: 786–791

    Article  Google Scholar 

  15. Fan L, Li W, Jin W, et al. Maximal nighttime electrical power generation via optimal radiative cooling. Opt Express, 2020, 28: 25460–25470

    Article  Google Scholar 

  16. Raman A P, Li W, Fan S. Generating light from darkness. Joule, 2019, 3: 2679–2686

    Article  Google Scholar 

  17. Zhao B, Pei G, Raman A P. Modeling and optimization of radiative cooling based thermoelectric generators. Appl Phys Lett, 2020, 117: 163903

    Article  Google Scholar 

  18. Chen Z, Zhu L X, Li W, et al. Simultaneously and synergistically harvest energy from the sun and outer space. Joule, 2019, 3: 101–110

    Article  Google Scholar 

  19. Ishii S, Dao T D, Nagao T. Radiative cooling for continuous thermoelectric power generation in day and night. Appl Phys Lett, 2020, 117: 013901

    Article  Google Scholar 

  20. Tian Y P, Liu X J, Chen F Q, et al. Harvesting energy from sun, outer space, and soil. Sci Rep, 2020, 10: 20903

    Article  Google Scholar 

  21. Xia Z L, Zhang Z F, Meng Z H, et al. A 24-hour thermoelectric generator simultaneous using solar heat energy and space cold energy. J Quantitative Spectr Radiative Transfer, 2020, 251: 107038

    Article  Google Scholar 

  22. Fernández J J. Theoretical optimization of the working properties of spatial thermoradiative cells using the Carnot efficiency. J Appl Phys, 2019, 125: 103101

    Article  Google Scholar 

  23. Lin B H, Liao T J. Thermoradiative-thermionic hybrid energy electron devices. IEEE Trans Electron Devices, 2020, 67: 1132–1135

    Article  Google Scholar 

  24. Strandberg R. Theoretical efficiency limits for thermoradiative energy conversion. J Appl Phys, 2015, 117: 055105

    Article  Google Scholar 

  25. Zhang X, Ang Y S, Chen J, et al. Design of an InSb thermoradiative system for harvesting low-grade waste heat. Opt Lett, 2019, 44: 3354–3357

    Article  Google Scholar 

  26. Santhanam P, Fan S. Thermal-to-electrical energy conversion by diodes under negative illumination. Phys Rev B, 2016, 93: 161410

    Article  Google Scholar 

  27. Buddhiraju S, Santhanam P, Fan S. Thermodynamic limits of energy harvesting from outgoing thermal radiation. Proc Natl Acad Sci USA, 2018, 115: 3609–3615

    Article  Google Scholar 

  28. Deppe T, Munday J N. Nighttime photovoltaic cells: Electrical power generation by optically coupling with deep space. ACS Photonics, 2019, 7: 1–9

    Article  Google Scholar 

  29. Li W, Buddhiraju S, Fan S. Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space. Light Sci Appl, 2020, 9: 68

    Article  Google Scholar 

  30. Lin K T, Lin H, Yang T S, et al. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat Commun, 2020, 11: 1–10

    Google Scholar 

  31. Burger T, Fan D, Lee K, et al. Thin-film architectures with high spectral selectivity for thermophotovoltaic cells. ACS Photonics, 2018, 5: 2748–2754

    Article  Google Scholar 

  32. Rogalski A. HgCdTe infrared detector material: History, status and outlook. Rep Prog Phys, 2005, 68: 2267–2336

    Article  Google Scholar 

  33. Hansen G L, Schmit J L. Calculation of intrinsic carrier concentration in Hg1−xCdxTe. J Appl Phys, 1983, 54: 1639–1640

    Article  Google Scholar 

  34. Zhang X, Du J Y, Chen J C, et al. Designing high-performance nighttime thermoradiative systems for harvesting energy from outer space. Opt Lett, 2020, 45: 5929–5932

    Article  Google Scholar 

  35. Ono M, Santhanam P, Li W, et al. Experimental demonstration of energy harvesting from the sky using the negative illumination effect of a semiconductor photodiode. Appl Phys Lett, 2019, 114: 161102

    Article  Google Scholar 

  36. Berk A, Anderson G P, Acharya P K, et al. Modtran5: 2006 update. In: Proceedings of SPIE, 2006. 62331F

  37. Chen G. Theoretical efficiency of solar thermoelectric energy generators. J Appl Phys, 2011, 109: 104908

    Article  Google Scholar 

  38. Harder N P, Wuerfel P. Theoretical limits of thermophotovoltaic solar energy conversion. Semicond Sci Technol, 2003, 18: S151–S157

    Article  Google Scholar 

  39. Liao T J, Zhang X, Chen X H, et al. Negative illumination thermoradiative solar cell. Opt Lett, 2017, 42: 3236–3238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yee Sin Ang or JinCan Chen.

Additional information

This work was supported by the Fundamental Research Funds for the Central Universities of China (Grant No. JUSRP121049) and the National Natural Science Foundation of China (Grant No. 12075197). The Authors acknowledge the insightful suggestions from the anonymous reviewer(s).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yang, G., Yan, M. et al. Design of an all-day electrical power generator based on thermoradiative devices. Sci. China Technol. Sci. 64, 2166–2173 (2021). https://doi.org/10.1007/s11431-021-1873-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-021-1873-9

Navigation