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SOME RESULTS ON THE REGULARIZATION OF LSQR FOR

LARGE-SCALE DISCRETE ILL-POSED PROBLEMS∗

YI HUANG† AND ZHONGXIAO JIA‡

Abstract. LSQR, a Lanczos bidiagonalization based Krylov subspace iterative method, and its
mathematically equivalent CGLS applied to normal equations system, are commonly used for large-
scale discrete ill-posed problems. It is well known that LSQR and CGLS have regularizing effects,
where the number of iterations plays the role of the regularization parameter. However, it has long
been unknown whether the regularizing effects are good enough to find best possible regularized
solutions. Here a best possible regularized solution means that it is at least as accurate as the best
regularized solution obtained by the truncated singular value decomposition (TSVD) method. In
this paper, we establish bounds for the distance between the k-dimensional Krylov subspace and
the k-dimensional dominant right singular space. They show that the Krylov subspace captures the
dominant right singular space better for severely and moderately ill-posed problems than for mildly
ill-posed problems. Our general conclusions are that LSQR has better regularizing effects for the first
two kinds of problems than for the third kind, and a hybrid LSQR with additional regularization
is generally needed for mildly ill-posed problems. Exploiting the established bounds, we derive
an estimate for the accuracy of the rank k approximation generated by Lanczos bidiagonalization.
Numerical experiments illustrate that the regularizing effects of LSQR are good enough to compute
best possible regularized solutions for severely and moderately ill-posed problems, stronger than
our theory predicts, but they are not for mildly ill-posed problems and additional regularization is
needed.
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1. Introduction. We consider the iterative solution of large-scale discrete ill-
posed problems

(1.1) min
x∈Rn

‖Ax− b‖, A ∈ R
m×n, b ∈ R

m, m ≥ n,

where the norm ‖·‖ is the 2-norm of a vector or matrix, and the matrix A is extremely
ill conditioned with its singular values decaying gradually to zero without a noticeable
gap. This kind of problem arises in many science and engineering areas, such as
signal processing and image restoration, typically when discretizing Fredholm integral
equations of the first-kind [20, 22]. In particular, the right-hand side b is affected by
noise, caused by measurement or discretization errors, i.e.,

b = b̂+ e,

where e ∈ R
m represents the Gaussian white noise vector and b̂ ∈ R

m denotes the
noise-free right-hand side, and it is supposed that ‖e‖ < ‖b̂‖. Because of the presence
of noise e in b and the ill-conditioning of A, the naive solution xnaive = A†b of (1.1)

is meaningless and far from the true solution xtrue = A†b̂, where the superscript †
denotes the Moore-Penrose generalized inverse of a matrix. Therefore, it is necessary
to use regularization to determine a best possible approximation to xtrue = A†b̂
[14, 18, 20, 22].
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The solution of (1.1) can be analyzed by the SVD of A:

(1.2) A = U

(

Σ
0

)

V T ,

where U = (u1, u2, . . . , um) ∈ R
m×m and V = (v1, v2, . . . , vn) ∈ R

n×n are orthogonal
matrices, and the entries of the diagonal matrix Σ = diag(σ1, σ2, . . . , σn) ∈ R

n×n are
the singular values of A, which are assumed to be simple throughout the paper and
labelled in decreasing order σ1 > σ2 > · · · > σn > 0. With (1.2), we obtain

(1.3) xnaive =

n
∑

i=1

uT
i b

σi
vi =

n
∑

i=1

uT
i b̂

σi
vi +

n
∑

i=1

uT
i e

σi
vi = xtrue +

n
∑

i=1

uT
i e

σi
vi.

Throughout the paper, we assume that b̂ satisfies the discrete Picard condition: On
average, the coefficients | uT

i b̂ | decay faster than the singular values. To be definitive,
for simplicity we assume that these coefficients satisfy a widely used model in the
literature, e.g., [20, p. 81, 111 and 153] and [22, p. 68]:

(1.4) | uT
i b̂ |= σ1+β

i , β > 0, i = 1, 2, . . . , n.

Let k0 be the transition point such that |uT
k0
b̂| > |uT

k0+1e| and |uT
k0+1b̂| ≤ |uT

k0+1e|
[22, p. 98]. Then the TSVD method computes

xTSV D
k =















k
∑

i=1

uT
i b
σi

vi ≈
k
∑

i=1

uT
i b̂
σi

vi, k ≤ k0;

k
∑

i=1

uT
i b
σi

vi ≈
k0
∑

i=1

uT
i b̂
σi

vi +
k
∑

i=k0+1

uT
i e
σi

vi, k > k0,

which can be written as xTSV D
k = A†

kb, the solution of the modified problem that
replaces A by its best rank k approximation Ak = UkΣkV

T
k in (1.1), where Uk =

(u1, . . . , uk), Vk = (v1, . . . , vk) and Σk = diag(σ1, . . . , σk). Remarkably, xTSV D
k is

the minimum-norm least squares solution of the perturbed problem that replaces A
in (1.1) by its best rank k approximation Ak, and the best possible TSVD solution
of (1.1) by the TSVD method is xTSV D

k0
[22, p. 98]. A number of approaches have

been proposed for determining k0, such as discrepancy principle, discrete L-curve and
generalized cross validation; see, e.g., [1, 2, 20, 27, 35] for comparisons of the classical
and new ones. In our numerical experiments, we use the L-curve criterion in the
TSVD method and hybrid LSQR. The TSVD method has been widely studied; see,
e.g., [4, 20, 22, 29].

For a small and moderate (1.1), the TSVD method has been used as a general-
purpose reliable and efficient numerical method for solving (1.1). As a result, we will
take the TSVD solution xTSV D

k0
as a standard reference when assessing the regularizing

effects of iterative solvers and accuracy of iterates under consideration in this paper.
As well known, it is generally not feasible to compute SVD when (1.1) is large.

In this case, one typically projects (1.1) onto a sequence of low dimensional Krylov
subspaces and gets a sequence of iterative solutions [18, 20, 22, 37]. The Conjugate
Gradient (CG) method has been used when A is symmetric definite [18]. As a CG-
type method applied to the semidefinite linear system Ax = b or the normal equations
system ATAx = AT b, the CGLS algorithm has been studied; see [6, 20, 22] and the
references therein. The LSQR algorithm [33], which is mathematically equivalent to
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CGLS, has attracted great attention, and is known to have regularizing effects and
exhibits semi-convergence (see [20, p. 135], [22, p. 110], and also [5, 19, 23, 32]): The
iterates tend to be better and better approximations to the exact solution xtrue and
their norms increase slowly and the residual norms decrease. In later stages, however,
the noise e starts to deteriorate the iterates, so that they will start to diverge from
xtrue and instead converge to the naive solution xnaive, while their norms increase
considerably and the residual norms stabilize. Such phenomenon is due to the fact that
a projected problem inherits the ill-conditioning of (1.1). That is, as the iterations
proceed, the noise progressively enters the solution subspace, so that a small singular
value of the projected problem appears and the regularized solution is deteriorated.

As far as an iterative solver for solving (1.1) is concerned, a central problem is
whether or not a pure iterative solver has already obtained a best possible regular-
ized solution at semi-convergence, namely whether or not the regularized solution at
semi-convergence is at least as accurate as xTSV D

k0
. As it appears, for Krylov sub-

space based iterative solvers, their regularizing effects critically rely on how well the
underlying k-dimensional Krylov subspace captures the k-dimensional dominant right
singular subspace of A. The richer information the Krylov subspace contains on the
k-dimensional dominant right singular subspace, the less possible a small Ritz value
of the resulting projected problem appears and thus the better regularizing effects
the solver has. To precisely describe the regularizing effects of an iterative solver,
we introduce the term of full or partial regularization: If the iterative solver itself
computes a best possible regularized solution at semi-convergence, it is said to have
the full regularization; in this case, no additional regularization is needed. Here, as
defined in the abstract, a best possible regularized solution means that it is at least
as accurate as the best regularized solution obtained by the truncated singular value
decomposition (TSVD) method. Otherwise, it is said to have the partial regulariza-
tion; in this case, in order to compute a best possible regularized solution, its hybrid
variant, e.g., a hybrid LSQR, is needed that combines the solver with additional regu-
larization [5, 13, 28, 30, 31, 32], which aims to remove the effects of small Ritz values,
and expand the Krylov subspace until it captures all the dominant SVD components
needed and the method obtains a best possible regularized solution. The study of
the regularizing effects of LSQR and CGLS has been receiving intensive attention for
years; see [20, 22] and the references therein. However, there has yet been no definitive
result or assertion on their full or partial regularization.

To proceed, we need the following definition of the degree of ill-posedness, which
follows Hofmann’s book [24] and has been commonly used in the literature, e.g.,
[20, 22]: If there exists a positive real number α such that the singular values satisfy
σj = O(j−α), then the problem is termed as mildly or moderately ill-posed if α ≤ 1 or
α > 1; if σj = O(e−αj) with α > 0 considerably, j = 1, 2, . . . , n, then the problem is
termed severely ill-posed. It is clear that the singular values σj of a severely ill-posed
problem decay exponentially at the same rate ρ−1, while those of a moderately or

mildly ill-posed problem decay more and more slowly at the decreasing rate
(

j
j+1

)α

approaching one with increasing j, which, for the same j, is smaller for the moderately
ill-posed problem than it for the mildly ill-posed problem.

Other minimum-residual methods have also gained attention for solving (1.1). For
problems with A symmetric, MINRES and its preferred variant MR-II are alternatives
and have been shown to have regularizing effects [18]. When A is nonsymmetric
and multiplication with AT is difficult or impractical to compute, GMRES and its
preferred variant RRGMRES are candidates [10, 30]. The hybrid approach based on
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the Arnoldi process was first introduced in [11], and has been studied in [9, 11, 12, 28].
Recently, Gazzola et al. [15, 16, 17, 31] have studied more methods based on the
Lanczos bidiagonalization, the Arnoldi process and the nonsymmetric Lanczos process
for the severely ill-posed problem (1.1). They have described a general framework of
the hybrid methods and present Krylov-Tikhonov methods with different parameter
choice strategies employed.

In this paper, we focus on LSQR. We derive bounds for the 2-norm distance
between the underlying k-dimensional Krylov subspace and the k-dimensional right
singular space. There has been no rigorous and quantitative result on the distance
before. The results indicate that the k-dimensional Krylov subspace captures the
k-dimensional dominant right singular space better for severely and moderately ill-
posed problems than for mildly ill-posed problems. As a result, LSQR has better
regularizing effects for the first two kinds of problems than for the third kind. By the
bounds and the analysis on them, we draw a definitive conclusion that LSQR gener-
ally has only the partial regularization for mildly ill-posed problems, so that a hybrid
LSQR with additional explicit regularization is needed to compute a best possible
regularized solution. We also use the bounds to derive an estimate for the accuracy
of the rank k approximation, generated by Lanczos bidiagonalization, to A, which is
closely related to the regularization of LSQR. Our results help to further understand
the regularization of LSQR, though they appear less sharp. In addition, we derive
a bound on the diagonal entries of the bidiagonal matrices generated by the Lanc-
zos bidigonalization process, showing how fast they decay. Numerical experiments
confirm our theory that LSQR has only the partial regularization for mildly ill-posed
problems and a hybrid LSQR is needed to compute best possible regularized solu-
tions. Strikingly, the experiments demonstrate that LSQR has the full regularization
for severely and moderately ill-posed problems. Our theory gives a partial support
for the observed general phenomena. Throughout the paper, all the computation is
assumed in exact arithmetic. Since CGLS is mathematically equivalent to LSQR, all
the assertions on LSQR apply to CGLS.

This paper is organized as follows. In Section 2, we describe the LSQR algorithm,
and then present our theoretical results on LSQR with a detailed analysis. In Section
3, we report numerical experiments to justify the partial regularization of LSQR for
mildly ill-posed problems. We also report some definitive and general phenomena
observed. Finally, we conclude the paper in Section 4.

Throughout the paper, we denote by Kk(C,w) = span{w,Cw, . . . , Ck−1w} the
k-dimensional Krylov subspace generated by the matrix C and the vector w , by ‖ ·‖F
the Frobenius norm of a matrix, and by I the identity matrix with order clear from
the context.

2. The regularization of LSQR. LSQR for solving (1.1) is based on the Lanc-
zos bidiagonalization process, which starts with p1 = b/‖b‖ and, at step (iteration)
k, computes two orthonormal bases {q1, q2, . . . , qk} and {p1, p2, . . . , pk} of the Krylov
subspaces Kk(A

TA,AT b) and Kk(AA
T , b), respectively.

Define the matrices Qk = (q1, q2, . . . , qk) and Pk+1 = (p1, p2, . . . , pk+1). Then the
k-step Lanczos bidiagonalization can be written in the matrix form

AQk = Pk+1Bk,(2.1)

ATPk+1 = QkB
T
k + αk+1qk+1e

T
k+1,(2.2)

where ek+1 denotes the (k + 1)-th canonical basis vector of Rk+1 and the quantities
αi, i = 1, 2, . . . , k + 1 and βi, i = 2, . . . , k + 1 denote the diagonal and subdiagonal
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elements of the (k + 1)× k lower bidiagonal matrix Bk, respectively. At iteration k,
LSQR computes the solution x(k) = Qky

(k) with

y(k) = arg min
y∈Rk

‖‖b‖e1 −Bky‖.

Note that PT
k+1b = ‖b‖e1. We get

(2.3) x(k) = Qky
(k) = ‖b‖QkB

†
ke1 = QkB

†
kP

T
k+1b.

As stated in the introduction, LSQR exhibits semi-convergence at some iteration:
The iterates x(k) become better approximations to xtrue until some iteration k, and
the noise will dominate the x(k) after that iteration. The iteration number k plays
the role of the regularization parameter. However, semi-convergence does not neces-
sarily mean that LSQR finds a best possible regularized solution as Bk may become
ill-conditioned before k ≤ k0 but x(k) does not yet contain all the needed k0 dominant
SVD components of A. In this case, in order to get a best possible regularized solu-
tion, one has to use a hybrid LSQR method, as described in the introduction. The
significance of (2.3) is that the LSQR iterates can be interpreted as the minimum-
norm least squares solutions of the perturbed problems that replace A in (1.1) by

its rank k approximations QkB
†
kP

T
k+1, whose nonzero singular values are just those

of Bk. If the singular values of Bk approximate the k large singular values of A in
natural order for k = 1, 2, . . . , k0, then LSQR must have the full regularization, and
the regularized solution x(k0) is best possible and is as comparably accurate as the
best possible regularized solution xTSV D

k0
by the TSVD method.

Hansen’s analysis [20, p. 146] shows that the LSQR iterates have the filtered SVD
expansions:

x(k) =

n
∑

i=1

f
(k)
i

uT
i b

σi
vi,

where f
(k)
i = 1−

k
∏

j=1

θ
(k)
j

−σi

θ
(k)
j

, i = 1, 2, . . . , n, and θ
(k)
j , j = 1, 2, . . . , k are the singular

values of Bk. In our context, if we have θ
(k)
k ≤ σk0+1 for some k ≤ k0, the factors f

(k)
i ,

i = k+1, . . . , n are not small, meaning that x(k) is already deteriorated and becomes a
poorer regularized solution, namely, LSQR surely does not have full regularization. As
a matter of fact, in terms of the best possible solution xTSV D

k0
, it is easily justified that

the full regularization of LSQR is equivalent to requiring that the singular values of
Bk approximate the k largest singular values of A in natural order for k = 1, 2, . . . , k0,

so it is impossible to have θ
(k)
k ≤ σk0+1 for k ≤ k0.

The regularizing effects of LSQR critically depend on what Kk(A
TA,AT b) mainly

contains and provides. Note that the eigenpairs of ATA are the squares of singular val-
ues and right singular vectors of A, and the tridiagonal matrix BT

k Bk is the projected
matrix of ATA onto the subspace Kk(A

TA,AT b), which is obtained by applying the
symmetric Lanczos tridiagonalization process to ATA starting with q1 = AT b/‖AT b‖
[6]. We have a general claim deduced from [6, 34] and exploited widely in [20, 22]:
The more information the subspace Kk(A

TA,AT b) contains on the k dominant right
singular vectors, the more possible and accurate the k Ritz values approximate the k
largest singular values of A; on the other hand, the less information it contains on the
other n− k right singular vectors, the less accurate a small Ritz value is if it appears.
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For our problem, since the small singular values of A are clustered and close to zero,
it is expected that a small Ritz value will show up as k grows large, and it starts to
appear more late when Kk(A

TA,AT b) contains less information on the other n − k
right singular vectors. In this sense, we say that LSQR has better regularizing effects
since x(k) contains more dominant SVD components.

Using the definition of canonical angles Θ(X ,Y) between the two subspaces X
and Y of the same dimension [36, p. 250], we have the following theorem, which shows
how well the subspace Kk(A

TA,AT b), on which LSQR and CGLS work, captures the
k-dimensional dominant right singular space.

Theorem 2.1. Let the SVD of A be (1.2), and assume that its singular values

are distinct and satisfy σj = O(e−αj) with α > 0. Let Vk = span{Vk} be the subspace

spanned by the columns of Vk = (v1, v2, . . . , vk), and Vs
k = Kk(A

TA,AT b). Then

(2.4) ‖ sinΘ(Vk,Vs
k)‖ =

‖∆k‖
√

1 + ‖∆k‖2

with the (n− k)× k matrix ∆k to be defined by (2.6) and

(2.5) ‖∆k‖F ≤ σk+1

σk

maxnj=k+1 |uT
j b|

mink
j=1 |uT

j b|
√

k(n− k)(1 +O(e−2α)), k = 1, 2, . . . , n− 1.

Proof. Let Ū = (u1, u2, . . . , un) consist of the first n columns of U defined in
(1.2). We see Kk(Σ

2,ΣŪT b) is spanned by the columns of the n× k matrix DTk with

D = diag
(

σiŪ
T b
)

, Tk =











1 σ2
1 . . . σ2k−2

1

1 σ2
2 . . . σ2k−2

2
...

...
...

1 σ2
n . . . σ2k−2

n











.

Partition the matrices D and Tk as follows:

D =

(

D1 0
0 D2

)

, Tk =

(

Tk1

Tk2

)

,

where D1, Tk1 ∈ R
k×k. Since Tk1 is a Vandermonde matrix with σj distinct for

1 ≤ j ≤ k, it is nonsingular. Thus, by the SVD of A, we have

Kk(A
TA,AT b) = span{V DTk} = span

{

V

(

D1Tk1

D2Tk2

)}

= span

{

V

(

I
∆k

)}

with

(2.6) ∆k = D2Tk2T
−1
k1 D−1

1 .

Define Zk = V

(

I
∆k

)

. Then ZT
k Zk = I +∆T

k ∆k and the columns of Zk(Z
T
k Zk)

− 1
2

form an orthonormal basis of Vs
k.

Write V = (Vk, V
⊥
k ). By definition, we obtain

‖ sinΘ(Vk,Vs
k)‖ =

∥

∥

∥(V ⊥
k )TZk(Z

T
k Zk)

− 1
2

∥

∥

∥

=

∥

∥

∥

∥

(V ⊥
k )TV

(

I
∆k

)

(I +∆T
k ∆k)

− 1
2

∥

∥

∥

∥

= ‖∆k(I +∆T
k ∆k)

− 1
2 ‖ =

‖∆k‖
√

1 + ‖∆k‖2
,
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which proves (2.4) and indicates that ‖ sinΘ(Vk,Vs
k)‖ is monotonically increasing with

respect to ‖∆k‖.
We next estimate ‖∆k‖. We have

‖∆k‖ ≤ ‖∆‖F =
∥

∥D2Tk2T
−1
k1 D−1

1

∥

∥

F
≤ ‖D2‖

∥

∥Tk2T
−1
k1

∥

∥

F

∥

∥D−1
1

∥

∥

=
σk+1

σk

maxnj=k+1 |vTj b|
mink

j=1 |vTj b|
∥

∥Tk2T
−1
k1

∥

∥

F
.(2.7)

So we need to estimate
∥

∥Tk2T
−1
k1

∥

∥

F
. It is easily justified that the i-th column of T−1

k1

consists of the coefficients of the Lagrange polynomial

L
(k)
i (λ) =

k
∏

j=1,j 6=i

σ2
j − λ

σ2
j − σ2

i

that interpolates the elements of the i-th canonical basis vector e
(k)
i ∈ R

k at the
abscissas σ2

1 , σ2, . . . , σ
2
k. Consequently, the i-th column of Tk2T

−1
k1 is

Tk2T
−1
k1 e

(k)
i =

(

L
(k)
i (σ2

k+1), . . . , L
(k)
i (σ2

n)
)T

,

from which we obtain

(2.8) Tk2T
−1
k1 =













L
(k)
1 (σ2

k+1) L
(k)
2 (σ2

k+1) . . . L
(k)
k (σ2

k+1)

L
(k)
1 (σ2

k+2) L
(k)
2 (σ2

k+2) . . . L
(k)
k (σ2

k+2)
...

...
...

L
(k)
1 (σ2

n) L
(k)
2 (σ2

n) . . . L
(k)
k (σ2

n)













.

Since |L(k)
i (λ)| is monotonic for λ < σ2

k, it is bounded by |L(k)
i (0)|. Furthermore, let

|L(k)
i0

(0)| = maxi=1,2,...,k |L(k)
i (0)|. Then for i = 1, 2, . . . , k and α > 0 we have

|L(k)
i (0)| ≤ |L(k)

i0
(0)| =

k
∏

j=1,j 6=i0

∣

∣

∣

∣

∣

σ2
j

σ2
j − σ2

i0

∣

∣

∣

∣

∣

=

i0−1
∏

j=1

σ2
j

σ2
j − σ2

i0

·
k
∏

j=i0+1

σ2
j

σ2
i0
− σ2

j

=

i0−1
∏

j=1

1

1−O(e−2(i0−j)α)

k
∏

j=i0+1

1

O(e2(j−i0)α)− 1

=

i0−1
∏

j=1

1

1−O(e−2(i0−j)α)

k
∏

j=i0+1

1

1−O(e−2(j−i0)α)

1
k
∏

j=i0+1

O(e2(j−i0)α)

=

(

1 +
i0
∑

j=1

O(e−2jα)

)(

1 +
k−i0+1
∑

j=1

O(e−2jα)

)

k
∏

j=i0+1

O(e2(j−i0)α)

(2.9)

by absorbing those higher order terms into O(·). Note that in the above numerator
we have

1 +

i0
∑

j=1

O(e−2jα) = 1 +O





i0
∑

j=1

e−2jα



 = 1 +O
(

e−2α

1− e−2α
(1− e−2i0α)

)

,
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and

1+

k−i0+1
∑

j=1

O(e−2jα) = 1+O





k−i0+1
∑

j=1

e−2jα



 = 1+O
(

e−2α

1− e−2α
(1− e−2(k−i0+1)α)

)

.

It is then easily seen that their product is

1 +O
(

2e−2α

1− e−2α

)

+O
(

(

e−2α

1− e−2α

)2
)

= 1 +O
(

2e−2α

1− e−2α

)

= 1 +O(e−2α).

On the other hand, by definition, the denominator
k
∏

j=i0+1

(

σi0

σj

)2

=
k
∏

j=i0+1

O(e2(j−i0)α)

in (2.9) is exactly one for i0 = k, and it is strictly bigger than one for i0 < k. Therefore,

for any k, we have |L(k)
i0

(0)| = maxi=1,2,...,k |L(k)
i (0)| = 1 + O(e−2α). From this and

(2.8) it follows that

∥

∥Tk2T
−1
k1

∥

∥

F
≤

√
k
∥

∥

∥
Tk2T

−1
k1 e

(k)
k

∥

∥

∥
≤
√

k(n− k)|L(k)
i0

(0)| =
√

k(n− k)(1 +O(e−2α)).

Therefore, for i = 1, 2, . . . , n− 1 and α > 0 considerably, from (2.7) we have

‖∆k‖F ≤ σk+1

σk

maxnj=k+1 |uT
j b|

minkj=1 |uT
j b|

√

k(n− k)(1 +O(e−2α)).(2.10)

Remark 2.1 We point out that (2.5) should not be sharp. As we have seen

from the proof, the factor σk+1

σk

maxn
j=k+1 |uT

j b|

mink
j=1 |uT

j b|
seems intrinsic and unavoidable, but the

factor
√

k(n− k) in (2.5) is an overestimate and can certainly be reduced. (2.10) is

an overestimate since |L(k)
i (0)| for i not near to k is considerably smaller than |L(k)

i0
(0|,

but we replace all them by their maximum 1+O(e−2α). In fact, our derivation clearly

illustrates that the smaller i is, the smaller |L(k)
i (0)| than |L(k)

k (0)|.
Recall the discrete Picard condition (1.4). Then

(2.11) ck =
maxnj=k+1 |uT

j b|
minkj=1 |uT

j b|
=

maxnj=k+1(|uT
j b̂+ uT

j e|)
mink

j=1(|uT
j b̂+ uT

j e|)
≈

σ1+β
k+1 + |uT

k+1e|
σ1+β
k + |uT

k e|
.

We observe that ck ≈ σ1+β

k+1

σ1+β

k

< 1 almost remains constant for k ≤ k0. For k > k0, note

that all the |uT
k b| ≈ |uT

k e| almost remain the same. Thus, we have ck ≈ 1, meaning
that Vs

k does not capture Vk as well as it does for k ≤ k0.
Remark 2.2 The theorem can be extended to moderately ill-posed problems

with the singular values σj = O(j−α), α > 1 considerably and k not big since, in a
similar manner to the proof of Theorem 2.1, we can obtain by the first order Taylor
expansion

|L(k)
i0

(0)| ≈ |L(k)
k (0)| =

k−1
∏

j=1

σ2
j

σ2
j − σ2

k

=
k−1
∏

j=1

1

1−O(( jk )
2α)

≈ 1 +
k−1
∑

j=1

O
(

(

j

k

)2α
)

= O(1),
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which, unlike (1+O(e−2α)) for severely ill-posed problems, depends on k and increases
slowly with k for α > 1 considerably. However, for mildly ill-posed problems, from

above we have |L(k)
i0

(0)| > 1 considerably for α < 1.
Remark 2.3 A combination of (2.4) and (2.5) and the above analysis indicate

that Vs
k captures Vk better for severely ill-posed problems than for moderately ill-

posed problems. There are two reasons for this. The first is that the factors σk+1/σk

are basically fixed constants for severely ill-posed problems as k increases, and they
are smaller than the counterparts for moderately ill-posed problems unless the degree
α of its ill-posedness is far bigger than one and k small. The second is that the
factor O(1) is smaller for severely ill-posed problems than the factor 1 +O(e−2α) for
moderately ill-posed problems for the same k.

Remark 2.4 The situation is fundamentally different for mildly ill-posed prob-

lems: Firstly, we always have |L(k)
i0

(0)| > 1 substantially for α ≤ 1 and any k, which
is considerably bigger than O(1) for moderately ill-posed problems for the same k.
Secondly, ck defined by (2.11) is closer to one than that for moderately ill-posed prob-
lems for k = 1, 2, . . . , k0. Thirdly, for the same noise level ‖e‖ and β, we see from the
discrete Picard condition (1.4) and the definition of k0 that k0 is bigger for a mildly
ill-posed problem than that for a moderately ill-posed problem. All of them show
that Vs

k captures Vk considerably better for severely and moderately ill-posed prob-
lems than for mildly ill-posed problems for k = 1, 2, . . . , k0. In other words, our results
illustrate that Vs

k contains more information on the other n− k right singular vectors
for mildly ill-posed problems, compared with severely and moderately ill-posed prob-
lems. The bigger k, the more it contains. Therefore, Vs

k captures Vk more effectively
for severely and moderately ill-posed problems than mildly ill-posed problems. That
is, Vs

k contains more information on the other n− k right singular vectors for mildly
ill-posed problems, making the appearance of a small Ritz value more possible before
k ≤ k0 and LSQR has better regularizing effects for the first two kinds of problems
than for the third kind. Note that LSQR, at most, has the full regularization, i.e.,
there is no Ritz value smaller than σk0+1 for k ≤ k0, for severely and moderately
ill-posed problems. Our analysis indicates that LSQR generally has only the partial
regularization for mildly ill-posed problem and a hybrid LSQR should be used.

Remark 2.5 Relation (2.5) and ck indicate that Vs
k captures Vk better for

severely ill-posed problems than for moderately ill-posed problems. There are two
reasons for this. First, the all the σk+1/σk are basically a fixed constant ρ−1 for
severely ill-posed problems, which is smaller than those ratios for moderately ill-

posed problems unless α is rather big and k small. Second, the quantities |L(k)
i0

(0)| =
1 +O(e−2α) for severely ill-posed problems are smaller than the corresponding O(1)
for moderately ill-posed problems.

Let us investigate more and get insight into the regularization of LSQR. Define

(2.12) γk =
∥

∥A− Pk+1BkQ
T
k

∥

∥ ,

which measures the quality of the rank k approximation Pk+1BkQ
T
k to A. Based on

(2.5), we can derive the following estimate for γk.
Theorem 2.2. Assume that (1.1) is severely or moderately ill posed. Then

(2.13) σk+1 ≤ γk ≤ σk+1 + σ1‖ sinΘ(Vk,Vs
k)‖.

Proof. Let Ak = UkΣkV
T
k be the best rank k approximation to A with respect

to the 2-norm, where Uk = (u1, . . . , uk), Vk = (v1, . . . , vk) and Σk = diag(σ1, . . . , σk).
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Since Pk+1BkQ
T
k is of rank k, the lower bound in (2.13) is trivial by noting that

γk ≥ ‖A−Ak‖ = σk+1. We now prove the upper bound. From (2.1), we obtain

∥

∥A− Pk+1BkQ
T
k

∥

∥ =
∥

∥A−AQkQ
T
k

∥

∥ .

It is easily known that Vs
k = Kk(A

TA,AT b) = span{Qk} with Qk having orthonormal
columns. Then by the definition of ‖ sinΘ(Vk,Vs

k)‖ we obtain

∥

∥A−AQkQ
T
k

∥

∥ =
∥

∥(A− UkΣkV
T
k + UkΣkV

T
k )(I −QkQ

T
k )
∥

∥

≤
∥

∥(A− UkΣkV
T
k )(I −QkQ

T
k )
∥

∥+
∥

∥UkΣkV
T
k (I −QkQ

T
k )
∥

∥

≤ σk+1 + ‖Σk‖
∥

∥V T
k (I −QkQ

T
k )
∥

∥

= σk+1 + σ1‖ sinΘ(Vk,Vs
k)‖.

Numerically, it has been extensively observed in the literature that the γk decay
as fast as σk+1 and, more precisely, γk ≈ σk+1 for severely ill-posed problems; see, e.g.,
[3, 16, 17]. They mean that the Pk+1BkQ

T
k are very good rank k approximations to A.

Recall that the TSVD method generates the best regularized solution xTSV D
k0

= A†
k0
b.

As a result, if γk0 ≈ σk0+1, the LSQR iterate x(k0) = Qk0T
†
k0
QT

k0+1b is reasonably

close to the TSVD solution xTSV D
k0

for σk0+1 is reasonably small. This means that
LSQR has the full regularization and does not need any additional regularization to
improve x(k0). As our experiments will indicate in detail, these observed phenomena
are of generality for both severely and moderately ill-posed problems and thus should
have strong theoretical supports. Compared to the observations, our (2.13) appears
to be a considerrable overestimate.

We next present some results on αk+1 appearing in (2.2). If αk+1 = 0, the Lanczos
bidiagonalization process terminates, and we have found k exact singular triples of A
[26]. In our context, since A has only simple singular values and b has components in
all the left singular vectors, early termination is impossible in exact arithmetic, but
small αk+1 is possible. We aim to investigate how fast αk+1 decays. We first give a
refinement of a result in [17].

Theorem 2.3. Let Bk = WkΘkS
T
k be the SVD of Bk, where Wk ∈ R

(k+1)×(k+1)

and Sk ∈ R
k×k are orthogonal, and Θk ∈ R

(k+1)×k, and define Ũk = Pk+1Wk and

Ṽk = QkSk. Then

AṼk − ŨkΘk = 0,(2.14)
∥

∥

∥AT Ũk − ṼkΘ
T
k

∥

∥

∥ = αk+1.(2.15)

Proof. From (2.1) and Bk = WkΘkS
T
k , we obtain

AṼk = AQkSk = Pk+1BkSk = ŨkΘk.

So (2.14) holds. From (2.2), we get

AT Ũk = ATPk+1Wk

= QkB
T
k Wk + αk+1qk+1e

T
k+1Wk

= QkSkΘ
T
k + αk+1qk+1e

T
k+1Wk

= ṼkΘ
T
k + αk+1qk+1e

T
k+1Wk.
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Note that ‖qk+1‖ = ‖eTk+1Wk‖ = 1. Then we get

(2.16)
∥

∥

∥AT Ũk − ṼkΘ
T
k

∥

∥

∥ = αk+1

∥

∥qk+1e
T
k+1Wk

∥

∥ = αk+1.

We remark that it is an inequality other than the equality in a result of [17] similar
to (2.15).

In combination with the previous results and remarks, this theorem shows that
once αk+1 becomes small for not big k, the k singular values of Bk may approximate
the large singular values of A, and it is more possible that no small one appears for
severely ill-posed problems and moderately ill-posed problems.

As our final result, we establish an intimate and interesting relationship between
αk+1 and γk, showing how fast αk+1 decays.

Theorem 2.4. It holds that

(2.17) αk+1 ≤ γk.

Proof. With the notations as in Theorem 2.3, we have Pk+1BkQ
T
k = ŨkΘkṼ

T
k .

So, by (2.12), we have

γk =
∥

∥

∥A− ŨkΘkṼ
T
k

∥

∥

∥ .

Note that ŨT
k Ũk = I. Therefore, from (2.16) we obtain

αk+1 =
∥

∥

∥
AT Ũk − ṼkΘ

T
k

∥

∥

∥

=
∥

∥

∥AT ŨkŨ
T
k − ṼkΘ

T
k Ũ

T
k

∥

∥

∥

=
∥

∥

∥AT ŨkŨ
T
k − ṼkΘ

T
k Ũ

T
k ŨkŨ

T
k

∥

∥

∥

=
∥

∥

∥

(

AT − ṼkΘ
T
k Ũ

T
k

)

ŨkŨ
T
k

∥

∥

∥

≤
∥

∥

∥

(

AT − ṼkΘ
T
k Ũ

T
k

)∥

∥

∥

∥

∥

∥ŨkŨ
T
k

∥

∥

∥

=
∥

∥

∥A− ŨkΘkṼ
T
k

∥

∥

∥ = γk.

The theorem indicates that αk+1 decays at least as fast as γk, which, in turn,
means that αk+1 may decrease in the same rate as σk+1, as observed in [3, 16, 17] for
severely ill-posed problems.

3. Numerical experiments. In this section, we report numerical experiments
to illustrate the the regularizing effects of LSQR. We will demonstrate that LSQR
has the full regularization for severely and moderately ill-posed problems, stronger
phenomena than our theory proves, but it only has the partial regularization for
mildly ill-posed problems, in accordance with our theory, for which a hybrid LSQR
is needed to compute best possible regularized solutions. We choose several ill-posed
examples from Hansen’s regularization toolbox [21]. All the problems arise from the
discretization of the first kind Fredholm integral equation

(3.1)

∫ b

a

K(s, t)x(t)dt = b(s), c ≤ s ≤ d.
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For each problem we use the codes of [21] to generate a 1024× 1024 matrix A, true

solution xtrue and noise-free right-hand b̂. In order to simulate the noisy data, we
generate the Gaussian noise vector e whose entries are normally distributed with mean

zero. Defining the noise level ε = ‖e‖

‖b̂‖
, we use ε = 10−2, 10−3, 10−4, respectively, in

the test examples. To simulate exact arithmetic, the full reorthogonalization is used
during the Lanczos bidiagonalization process. We remind that, as far as ill-posed
problem (1.1) is concerned, our primary goal consists in justifying the regularizing
effects of iterative solvers, which are unaffected by sizes of ill-posed problems and only
depends on the degree of ill-posedness. Therefore, for this purpose, as extensively
done in the literature (see, e.g., [20, 22] and the references therein), it is enough to
test not very large problems. Indeed, for n large, say, 1,0000 and more, we have
observed completely the same behavior as that for n not large, e.g., n = 1024 used in
this paper. A reason for using n not large is because such choice makes it practical
to fully justify the regularization effects of LSQR by comparing it with the TSVD
method, which suits only for small and/or medium sized problems for computational
efficiency. All the computations are carried out in Matlab 7.8 with the machine
precision ǫmach = 2.22× 10−16 under the Microsoft Windows 7 64-bit system.

3.1. Severely ill-posed problems. We consider the following two severely ill-
posed problems [21].

Example 1 This problem ’Shaw’ arises from one-dimensional image restoration,
and can be obtained by discretizing the first kind Fredholm integral equation (3.1)
with [−π

2 ,
π
2 ] as both integration and domain intervals. The kernel K(s, t) and the

solution x(t) are given by

K(s, t) = (cos(s) + cos(t))2
(

sin(u)

u

)2

, u = π(sin(s) + sin(t)),

x(t) = 2 exp(−6(t− 0.8)2) + exp(−2(t+ 0.5)2).

Example 2 This problem ’Wing’ has a discontinuous solution and is obtained
by discretizing the first kind Fredholm integral equation (3.1) with [0, 1] as both
integration and domain intervals. The kernel K(s, t), the solution x(t) and the right-
hand side b(s) are given by

K(s, t) = t exp(−st2), b(s) =
exp(− 1

9s)− exp(− 4
9s)

2s
,

x(t) =

{

1, 1
3 < t < 2

3 ;
0, elsewhere.

These two problems are severely ill-posed, whose singular values σj = O(e−αj)
with α = 2 for ’Shaw’ and α = 4.5 for ’Wing’, respectively.

In Figure 1, we display the curves of the sequences γk and αk+1 with ε =
10−2, 10−3, 10−4, respectively. They illustrate that the quantities γk decrease as fast
as σk+1 and both of them level off at the level of ǫmach for k no more than 20, and
after that these quantities are purely round-offs and are reliable no more. Moreover,
the curves of quantities αk+1 always lie below those of γk, which coincides with The-
orem 2.4. We can see that the decaying curves with different noise levels are almost
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Fig. 1. (a)-(b): Plots of decaying behavior of the sequences γk, σk+1 and αk+1 for the problem
Shaw with ε = 10−2 (left) and ε = 10−3 (right); (c)-(d): Plots of decaying behavior of the sequences
γk and σk+1 for the problem Wing with ε = 10−3 (left) and ε = 10−4 (right).

the same. Furthermore, we observe that γk ≈ σk+1 for severely ill-posed problems,
indicating that the Pk+1BkQ

T
k are very good rank k approximations to A with the ap-

proximate accuracy σk+1 and that Bk does not become ill-conditioned before k ≤ k0.
As a result, the regularized solutions x(k) become better approximations to xtrue until
iteration k0, and they are deteriorated after that iteration. At iteration k0, x

(k0) only
captures the k0 dominant SVD components of A and suppress the other (n−k0) SVD
components, so that it is a best possible regularized solution. As a result, the pure
LSQR has the full regularization for severely ill-posed problems. We will give a more
direct justification on these assertions in Section 3.3.

In Figure 2, we plot the relative errors
∥

∥x(k) − xtrue

∥

∥ /‖xtrue‖ with different
noise levels for these two problems. Obviously, LSQR exhibits semi-convergence phe-
nomenon. Moreover, for smaller noise level, we get better regularized solutions at the
cost of more iterations, as expected.

3.2. Moderately ill-posed problems. We now consider the following two
moderately ill-posed problems [21].

Example 3 This problem ’Heat’ arises from the inverse heat equation, and
can be obtained by discretizing Volterra integral equation of the first kind, a class of
equations that is moderately ill-posed, with [0, 1] as integration interval. The kernel
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Fig. 2. The relative errors
∥

∥x(k) − xtrue

∥

∥ /‖xtrue‖ with respect to ε = 10−2, 10−3, 10−4 for
the problems Shaw (left) and Wing (right).

K(s, t) = k(s− t) with

k(t) =
t−3/2

2
√
π

exp

(

− 1

4t

)

.

Example 4 This problem is the famous Phillips’ test problem. It can be
obtained by discretizing the first kind Fredholm integral equation (3.1) with [−6, 6]
as both integration and domain intervals. The kernel K(s, t), the solution x(t) and
the right-hand side b(s) are given by

K(s, t) =

{

1 + cos
(

π(s−t)
3

)

, |s− t| < 3;

0, |s− t| ≥ 3,

x(t) =

{

1 + cos
(

πt
3

)

, |t| < 3;
0, |t| ≥ 3,

b(s) = (6− |s|)
(

1 +
1

2
cos
(πs

3

)

)

+
9

2π
sin

(

π|s|
3

)

.

From Figure 3, we see that γk decreases as fast as σk+1, and αk+1 decays as fast
as γk. However, slightly different from severely ill-posed problems, we can observe
that the γk may not be so close to the σk+1, as reflected by the thick rope formed by
three lines. By comparing the behavior of γk for severely and moderately ill-posed
problem, we come to the conclusion that the k-step Lanczos bidiagonalization may
generate more accurate rank k approximation for severely ill-posed problems than for
moderately ill-posed problems, namely, the rank k approximation Pk+1BkQ

T
k may be

more accurate for severely ill-posed problems than for moderately ill-posed problems.
Nonetheless, we have seen that, for the test moderately ill-posed problems, all the
γk are still excellent approximations to the σk+1, so that LSQR still has the full
regularization.

In Figure 4, we depict the relative errors of x(k), and observe analogous phenomena
to those for severely ill-posed problems. A distinction is that now LSQR needs more
iterations for moderately ill-posed problems with the same noise level.
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Fig. 3. (a)-(b): Plots of decaying behavior of the sequences γk, σk+1 and αk+1 for the problem
Heat with ε = 10−2 (left) and ε = 10−3 (right); (c)-(d): Plots of decaying behavior of the sequences
γk and σk+1 for the problem Phillips with ε = 10−3 (left) and ε = 10−4 (right).
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Fig. 4. The relative errors
∥

∥x(k) − xtrue

∥

∥ /‖xtrue‖ with respect to ε = 10−2, 10−3, 10−4 for
the problems Heat (left) and Phillips (right).
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3.3. Comparison of LSQR with and without additional TSVD regular-

ization. For the previous four severely and moderately ill-posed problems, we now
compare the regularizing effects of the pure LSQR and the hybrid LSQR with the ad-
ditional TSVD regularization used within projected problems. We show that LSQR
has the full regularization and no additional regularization is needed, which is based
on the observation that at semi-convergence the regularized solution by LSQR is as
accurate as that obtained by the hybrid LSQR for each problem.

In the sequel, we only report the results for the noise level ε = 10−3. Results for
other ε are analogous and thus omitted.

Figures 5 (a)-(b) and Figures 6 (a)-(b) indicate that the relative errors of ap-
proximate solutions obtained by the two methods reach the same minimum level, and
the hybrid LSQR simply stabilizes the regularized solutions with the minimum error.
This means that the pure LSQR itself has already found a best possible regularized
solution at semi-convergence and no additional regularization is needed. So it has
the full regularization. Our task is to determine such k, which is the iteration where
∥

∥x(k+1)
∥

∥ starts to increase dramatically while its residual norm remains almost un-
changed. The L-curve criterion fits nicely into this task. In these examples, we also
choose xreg = argmink

∥

∥x(k) − xtrue

∥

∥ for the pure LSQR. Figure 5 (c) and Figures 6
(c)-(d) show that the regularized solutions are generally very good approximations to
the true solutions. However, we should point out that for the problem ’Wing’ with a
discontinuous solution, the large relative error indicates that the regularized solution
is a poor approximation to the true solution, as depicted in Figure 5 (d). Such phe-
nomenon is due to the fact that the regularization of LSQR and its hybrid variants
is unsuitable for the ill-posed problems with discontinuous solutions. For such kind
of problems, more reasonable regularization is Total Variation Regularization, which
takes the form minx∈Rn ‖Ax− b‖2 + λ2‖Lx‖21 with L 6= I some p×n matrix and ‖ ·‖1
the 1-norm [22].

In what follows, we compare the regularizing effects of the pure LSQR and hybrid
LSQR for mildly ill-posed problems, showing that LSQR has only the partial regu-
larization and a hybrid LSQR should be used for this kind of problem to improve the
regularized solution by LSQR at semi-convergence.

Example 5 The problem ’deriv2’ is mildly ill-posed, which is obtained by dis-
cretizing the first kind Fredholm integral equation (3.1) with [0, 1] as both integration
and domain intervals. The kernel K(s, t) is Green’s function for the second derivative:

K(s, t) =

{

s(t− 1), s < t;
t(s− 1), s ≥ t,

and the solution x(t) and the right-hand side b(s) are given by

x(t) =

{

t, t < 1
2 ;

1− t, t ≥ 1
2 ,

b(s) =

{

(4s3 − 3s)/24, s < 1
2 ;

(−4s3 + 12s2 − 9s+ 1)/24, s ≥ 1
2 .

Figure 7 (a) shows that the relative errors of approximate solutions by the hybrid
LSQR reach a considerably smaller minimum level than those by the pure LSQR, a
clear indication that LSQR has the partial regularization. As we have seen, the hybrid
LSQR expands the Krylov subspace until it contains enough dominant SVD compo-
nents and, meanwhile, additional regularization effectively dampen the SVD compo-
nents corresponding to small singular values. For instance, the semi-convergence of
the pure LSQR occurs at iteration k = 3, but it is not enough. As the hybrid LSQR
shows, we need a larger six dimensional Krylov subspace K6(A

TA,AT b) to construct
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Fig. 5. (a)-(b): The relative errors
∥

∥x(k) − xtrue

∥

∥ /‖xtrue‖ with respect to LSQR and LSQR
with additional TSVD regularization for ε = 10−3; (c)-(d): The regularized solutions xreg for the
pure LSQR for the problems Shaw (left) and Wing (right).

a best possible regularized solution. We also choose xreg = argmink
∥

∥x(k) − xtrue

∥

∥

for the pure LSQR and the hybrid LSQR. Figure 7 (b) indicates that the regularized
solution obtained by the hybrid LSQR is a considerably better approximation to xtrue

than that by the pure LSQR, especially in the non-smooth middle part of xtrue.

4. Conclusions. For large-scale discrete ill-posed problems, LSQR and CGLS
are commonly used methods. These methods have regularizing effects and exhibit
semi-convergence. However, if a small Ritz value appears before the methods cap-
ture all the needed dominant SVD components, the methods have only the partial
regularization and must be equipped with additional regularization so that best pos-
sible regularized solutions can be found. Otherwise, LSQR has the full regularization
and can compute best possible regularized solutions without additional regularization
needed.

We have proved that the underlying k-dimensional Krylov subspace captures the
k dimensional dominant right singular space better for severely and moderately ill-
posed problems than for mildly ill-posed problems. This makes LSQR have better
regularization for the first two kinds of problems than for the third kind. Furthermore,
we have shown that LSQR generally has only the partial regularization for mildly
ill-posed problems. Numerical experiments have demonstrated that LSQR has the
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Fig. 6. (a)-(b): The relative errors
∥

∥x(k) − xtrue

∥

∥ /‖xtrue‖ obtained by the pure LSQR and
LSQR with the additional TSVD regularization for ε = 10−3; (c)-(d): The regularized solutions
xreg for the pure LSQR for the problems Heat (left) and Phillips (right).

1 2 3 4 5 6 7 8 9 10
10

−2

10
−1

10
0

10
1

Iteration

R
el

at
iv

e 
er

ro
r

 

 
LSQR
LSQR+TSVD

(a)

0 200 400 600 800 1000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

 

 
x

true

x
reg

(LSQR)

x
reg

(LSQR+TSVD)

(b)

Fig. 7. The relative errors
∥

∥x(k) − xtrue

∥

∥ /‖xtrue‖ and the regularized solution xreg with
respect to LSQR and LSQR with the additional TSVD regularization for the problem Deriv2 and
ε = 10−3.
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full regularization for severely and moderately ill-posed problems, stronger than our
theory predicts, and it has the partial regularization for mildly moderately ill-posed
problems, compatible with our assertion. Together with the observations [3, 16, 17], it
appears that the excellent performances of LSQR on severely and moderately ill-posed
problems generally hold.

As for future work, it is more appealing to derive an accurate estimate for ‖∆k‖
other than ‖∆k‖F , as it plays a crucial role in analyzing the accuracy γk of the rank
k approximation, generated by Lanczos bidiagonalization, to A. Accurate bounds for
γk are the core of completely understanding the regularizing effects of LSQR, but our
bound (2.12) for γk is conservative and is expected to be improved on substantially.
Since CGLS is mathematically equivalent to LSQR, our results apply to CGLS as
well. Our current work has helped to better understand the regularization of LSQR
and CGLS. But for a complete understanding of the intrinsic regularizing effects of
LSQR and CGLS, we still have a long way to go, and more research is needed.
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