Journal of Computer Virology and Hacking Techniques (2019) 15:195-208
https://doi.org/10.1007/s11416-019-00331-0

ORIGINAL PAPER

®

Check for
updates

Nonnegative matrix factorization and metamorphic malware

detection

Yeong Tyng Ling' - Nor Fazlida Mohd Sani' - Mohd Taufik Abdullah’ - Nor Asilah Wati Abdul Hamid’

Received: 5 August 2018 / Accepted: 20 March 2019 / Published online: 26 April 2019

© Springer-Verlag France SAS, part of Springer Nature 2019

Abstract

Metamorphic malware change their internal code structure by adopting code obfuscation technique while maintaining their
malicious functionality during each infection. This causes change of their signature pattern across each infection and makes
signature based detection particularly difficult. In this paper, through static analysis, we use similarity score from matrix
factorization technique called Nonnegative Matrix Factorization for detecting challenging metamorphic malware. We apply
this technique using structural compression ratio and entropy features and compare our results with previous eigenvector-based
techniques. Experimental results from three malware datasets show this is a promising technique as the accuracy detection is

more than 95%.

Keywords Metamorphic malware - Nonnegative matrix factorization - Dimension reduction - Structural analysis

1 Introduction

Malware are threatening today’s computing world by its rapid
evolving. According to latest report in [1], malware implant
to legitimate software were up to 200% in year 2017. There-
fore, this leads to urge for new detection technique.

It is generally believed that the detection of metamorphic
malware remains a difficult task in the area of research [2,35].
Metamorphic malware utilize code obfuscation techniques to
disguise themselves from traditional pattern matching signa-
ture based detection. During each propagation, they change
their internal syntax or structure while maintaining underly-
ing malicious functionality. A recent study has shown that a
well-designed metamorphic malware was capable of evading
statistical analysis using Hidden Markov Model (HMM) [29]
detection. Due to this reason, several file structural analysis
approaches such as in [10,14,19,33], have shown to be very
effective at classifying this type of metamorphic malware.

Motivated by this, we adopt structural analysis on two
types of file feature, namely, the compression ratio and

B Yeong Tyng Ling
ling.yt@student.upm.edu.my

Nor Fazlida Mohd Sani
fazlida@upm.edu.my

Faculty of Computer Science and Information Technology,
Universiti Putra Malaysia, Serdang, Selangor, Malaysia

entropy from previous works in this paper. We also modi-
fied the implementation of [14] through inspiration of facial
recognition technique based on matrix factorization known as
Nonnegative Matrix Factorization (NMF) [17]. NMF learns
a parts-based representation of facial images by representing
faces with a set of basis images correspond to parts of faces.
This recognition technique bears a resemblance to malware
detection where detecting a set of malware can actually be
represented by detecting a smaller subset of their own. Hence,
our contribution is to adapted NMF technique using struc-
tural analysis of file compression ratio and entropy features
on three types of challenging metamorphic malware fami-
lies, in particularly, on real malware sample. Our approach
use the similarity scores derived from NMF technique to find
the similarity of structural pattern that exist in both malware
and benign files. As expected, we show that NMF technique
yields comparable result when test on small scale datasets
with both features. We observed that using structural entropy
can produce better detection than using structural compres-
sion ratio feature.

The rest of this paper is organized as follows. In Sect. 2 we
briefly reviewed metamorphic techniques and related work in
detection, the difference between SVD and NMF techniques.
Then, in Sect. 3 the application of NMF on our malware
detection will be described in details. Section 4 presents the
experimental and result analysis. Finally, we conclude and
suggest future work in Sect. 5.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-019-00331-0&domain=pdf

196

Y.T.Ling et al.

2 Background and related work

In this section, background of metamorphic malware tech-
niques, some recent works on malware detection will be
described. Then, mechanism of SVD and NMF techniques
will be presented.

2.1 Metamorphic techniques

Metamorphic malware use obfuscation techniques to hide
themselves by changing their structure on each infected
program while keeping the same functionality. In lieu of
encryption, they replace their malicious code sequences with
semantically equivalent code during infection and the muta-
tions tend to exhibit statistical properties indistinguishable
from other nonencrypted, benign files [23]. According to [7],
the obfuscation techniques can be divided into two types,
data flow obfuscation (junk or dead code insertion, variable
or register substitution, instruction replacement or permuta-
tion) and control flow obfuscation (code transposition).

Data flow obfuscation using junk or dead code insertion
is to make the malware codes look different and thus possi-
bly evade hexadecimal string matching. It does not change a
program’s functionality but to confuse and exhaust the emu-
lator during code analysis [32]. Research had shown that by
inserting a quite amount of dead code from benign files can
cause the statistical properties of the resulting morphed code
indistinguishable from benign codes [29].

Variable or register substitution is another simple tech-
nique that a virus variable or instruction operands are stored
in different registers for each new infection. It replaces the
use of a register in an instruction with another unused regis-
ter. Even though this has no impact on a program behavior,
it does evade signature-based detection.

Instruction replacement or permutation technique is where
malware evolve its original code by replacing some instruc-
tions with other equivalent ones.

Control flow obfuscation such as code transposition is
where it reorder its original virus code sequence by using
“jump’ instruction or complex transfer of control as back-
bone for obfuscation. This causes confusion during malware
analysis.

2.2 Metamorphic malware detection

There have been several works on detecting metamorphic
malware in the past. Our study here will focus on the most
recent works which used static analysis on file bytes as the
features representing a given file.

Lee et al. [19] extracted structural compression ratio using
Gzip (based on Lempel-Ziv) with wavelet analysis on raw
bytes of a file to detect metamorphic malware. They used
file sequence similarity to compared between malicious and

@ Springer

benign files. The limitation of the technique claimed in their
study was when there are many compression or packing of
a file, detection will be difficult. What we learned from their
work was that compression ratio can be used as alternative
to entropy when representing a file.

Follow from [19] idea was Ekhtoom et al. [11] where
they classify metamorphic malware family using Approx-
imate Minimum Description Length (AMDL) and Best-
Compression Neighbor (BCN). However, their experimental
results shown no better than 77% accuracy. Another com-
pression based technique combined with machine learning by
Alshahwan et al. [3] where arandom forest classifier was built
using Normalized Compression Distance (NCD) and com-
pressibility ratio features on binary files to detect malware.

Jidigam et al. [14] expanded the eigenvalue analysis from
[10,27] using Singular Value Decomposition (SVD) on raw
bytes to detect metamorphic malware. They used a meta-
morphic worm built under Linux operating system by [29]
and shown with high detection rate. However, it classified
poorly on compiler file generation when compared with Hid-
den Markov Model (HMM) classification [4].

Bhattacharya et al. [6] exploited information theoretic
similarity measures in tandem with wavelet analysis for mal-
ware detection. They extracted overlap n-gram of binary
bytes and compared using cross entropy, Kullback-Leibler
divergence and mean squared error as classifiers. Their exper-
imental data consisted of Kaggle malware [15] with 82.1%
accuracy but manage to achieve 100% precision.

When an executable file changes between contents for-
mats (native, encrypted or compressed), its file’s representa-
tion in entropy also changed. Hence, Wojnowicz et al. [33]
applied a wavelet decomposition on file’s entropy on byte-
level to obtain the entropic wavelet energy spectrum. With
this, they can quantify the suspicious pattern variations of
a file which can yield predictive information for malware
detection.

Radkani et al. [25] introduced entropy based distance
(PDME) in K-Nearest Neighbors (KNN) method to clas-
sify metamorphic malware families. PDME computes the
entropy of opcode frequencies of two files and compare their
distance. They results shown high detection on MWOR with
padding ratio up to 4.0. However, as the paper mentioned,
PDME distance measure might not be able to consider two
malware files are similar if they have different opcodes.

Khammas et al. [16] extracted n-gram term frequency
directly from binary files and used Support Vector Machine
(SVM) to classify metamorphic malware. They first reduced
the n-gram feature search space by masking with known mal-
ware signature n-gram (Snort) [28] before sending to SVM.
Their result achieved high detection rate with low false pos-
itive rate and shown superior than commercial anti-virus.
However, the Snort sub-signatures have to regularly updated
in order to achieve high detection rate.

Nonnegative matrix factorization and metamorphic malware detection

197

2.3 Singular value decomposition

We briefly present here the mechanism of Singular Value
Decomposition (SVD) which is based on concept of Prin-
cipal Component Analysis (PCA). In matrix perspective,
most often numeric data are represented in rectangular tables
form, i.e. n x m data matrix, with n-dimensional space for
n samples. As the size of the matrix becomes really large, it
challenges the traditional multivariate analysis approaches.
To solve this problem, low-rank matrix approximation or fac-
torization (MF) was introduced. The key idea of MF is that
there exists latent structures in the data, by uncovering which
we could obtain a compressed representation of the data. By
factorizing an original data matrix to low-rank matrices, MF
provides a unified method for dimension reduction, cluster-
ing, and matrix completion.

Singular Value Decomposition (SVD) is the most famil-
iar way of getting a low-rank matrix approximation using
eigenvector analysis and has been widely used in image pro-
cessing. It is a eigen- decomposition method for reducing a
matrix to its constituent parts in order to make certain subse-
quent matrix calculations simpler. Hence, given a real-valued
n x m data matrix A, it can be factorized into

A=USvT)

with A € W™, U € Rk, S e wExk and VT e gibxm,
where k is the size of the low-rank or reduced dimensions.

As illustrated in Fig. 1, the matrix U is the row singular
vectors of A, the matrix V contains the corresponding column
singular vectors of A, and the matrix S is a diagonal matrix of
the singular values, in decreasing order of magnitude, which
can be viewed as “strength” of corresponding eigenvectors
of each specified rank. Columns in both matrices U and V
always form the orthogonal set, which can result a square
and invertible matrix A.

2.4 Nonnegative matrix factorization

The motivation of having NMF over SVD is because the basis
vectors are not orthogonal, which mean each vector can have
overlap group and the nonnegative values is more interpreted
than negative values. The historical development of NMF has

T

kxk kxm

A u
X m

nxk

Fig.1 The SVD decomposition of an n x m matrix

to go back to [24]. Later, [17] popularized it as a way to find a
set of basis images for representing nonnegative images data
in facial recognition.

NMF is a dimension reduction technique that decomposes
or factors the matrix into a low-rank, sparse and nonnegative
factors. The way of NMF “learning” is based on dictionary
learning mechanism [12] in which finding a sparse represen-
tation of the input data in the form of a linear combination of
certain basic elements or patterns. The general formulation
of NMF is shown in (2), given a real-valued V € RZ{" a
matrix consists of m objects and each object is represented
with n-dimensional of features, the value of rank, & is selected
for dimension reduction, where k(n + m) < nm, find non-

negative basis matrix W € m’;ﬁ" and nonnegative coefficient

matrix H € SRIS(‘)’”, such that their product approximates the
original matrix V.

V~WH 2)

An expanded matrix version of (2) is shown below:

V with m sets of input, nxm W is k basis sets, nxk

ViaVig - Vim Wig - Wik
Vi Voo Vo Wo - Wag
Vn,l Vn,2 T Vn,m Wn,l T Wn,k 3)

H is representation, k xm

Hi1 Hip - Hip

Hy 1 Hip - - Hem

In the approximation (2), W is the dictionary of recurring pat-
terns, which is characteristic of the original data, and every
column 4, contains the decomposition or activation coef-
ficients that approximate every v, onto the dictionary. The
nonnegativity of W ensures interpretability of the dictionary,
because column patterns Wy and original column V,, belong
to the same column space, remain nonnegative. Hence, W is
called the basis matrix because its row contains set of basis
vectors which can be referred as the local features of V. The
nonnegativity of H ensures that W H is nonnegative, tends
to produce part-based representations, because subtractive
combination is forbidden. The result W H can be interpreted
as weighted sum of each of the basis vectors in W, the weights
been the corresponding columns of H.

NMF uses the following two-block coordinate descent
scheme, that is, they optimize alternatively over one of the
two factors, W or H, while keeping the other fixed. The
reason is that the subproblem in one factor is convex. The
matrices W and H are initialized with positive random val-
ues, given a rank k, it learns through multiplicative updates

@ Springer

198

Y.T.Ling et al.

rule by guaranteeing monotonical convergence to a local
maximum [18]:

Wik < Wik * [VHL./(WHHT)])
Hyj < Hyj. % [WT Vi /(WT W Hyj)] (3)

forl <i <n,and1 < j < m, where .x and ./ denote the
element-wise product and division between matrices, respec-
tively. Equations (4), (5) iterate until converge to a local
maximum by the following objective function:

1
FW H)=2|V-WH 1% (©6)

After the iterations, matrix W contains the learned NMF
basis vectors. A new (previously unseen) data matrix Ve,
are projected onto k-dimensional space by fixing W and using
one of the following algorithms [20]:

1. randomly initializing H,.,, and iterating (4) and (5) until
convergence; or

2. as a least-square solution of V., = W Hyey, that is,
Hyey = (WIW)TWT Vo,

The second algorithm can produce negative entries of Hyey,
since the goal of this study is not to accelerate convergence,
we will use the first algorithm.

3 Design and implementation

In this section, we present the details implementation of
metamorphic malware detection based on structural analysis
through NMF approach using compression ratio and entropy
features. An overall architecture of malware detection using
NMF technique is shown in Fig. 2.

Test files Train files
Les ceunzes
(a) Preprocess
¥
Normalized Normalized
series of series of
chunks chunks

(b) Factorization
and Projection

L 4 L 4

(c) Similarity H(B): L { H:

Comparison coefficient t '\ coefficient

Fig.2 Overall architecture of NMF malware detection

@ Springer

3.1 Determine file size

The first step in our technique is to determine the file size
of interest. This is to compromise with the building of data
matrix later. Given two sets of files, malware and benign
sets, we compute the average file size from each set and use
the smaller average size as the file size of interest. We do
this because we assume the average file size can represent
individual file in each set.

3.2 Splitting a file into byte windows

Next, we split a file into a series of n numbers of byte chunks.
A chunk consists of a string of consecutive bytes, with each
chunk contains the same number of bytes, N. When divid-
ing a file into a series of chunks, chunks will overlap some
amount. Hence, we slide a specified number of byte win-
dow before allocating the next chunk. We have determined
a chunk size N = 512-byte and sliding window size w =
128-byte as the optimal sizes in our experiment. To facilitate
further usage, we also make sure that the series 7 is of even
number extracted from each file. To do this, we used Pro-
scrustean assignment to choose evenly spread chunks from
each file in malware or benign sets. This happens when the
sliding window reading N bytes at last chunk of a file, it
either chopped the last byte if that file is larger than the aver-
age file size, or if that file is smaller than average file size, it
will append null byte to the last chunk to retain the charac-
teristics of the original data as possible. We then normalized
the series to produce same range of values for each file as in
Fig. 2(a) shown.

3.3 Feature extraction

Each chunk of bytes that we extracted is then transformed into
compression ratio and entropy values. In this step, we adopt
gzip utility function [30] from python programming language
and Shannon’s Entropy [8] as in [5,19]. Gzip utilises Lempel
Ziv (1z77) coding by replacing repeated instances with ref-
erences to their earlier occurrences in the data stream. The
compression ratio is computed by having the compressed
chunk over the uncompressed chunk, this way the distribu-
tion of unique byte sequences in each chunk can be measured.
Entropy is the measure of uncertainty of the data in a file
on a value from 0-8. The lower the entropy, the lower the
chances are that the code has been obfuscated or encrypted.
Whereas, the higher the entropy, the greater the chances are
that the code is obfuscated or encrypted [21]. We used these
two feature extraction on the chunk of bytes to represent the
structure of a file.

Each file is now represented as a n-vector of compression
ratio or entropy values. We then normalize the vectors and
form into the data matrix, i.e. malware files matrix V, with

Nonnegative matrix factorization and metamorphic malware detection

199

compression ratio, as in the form of (7) with n chunks of rows
and m files of columns. Test files matrix B is constructed the
same way for both features.

Via Vig - Vi
Vo1 Voo o Vo

Bi1 Bip -+ By
By 1 Byp -+ By

V =

’

Bn,m’
(7

Vn,l Vn,2 e Vn,m Bn,l Bn,Z

where m is the number of test files.

3.4 Nonnegative matrix factorization

By first considering using compression ratio feature, we con-
struct data matrix V by collecting malware files from training
set, with column vectors represent m files. The testing set
consists of two parts, the malware files that does not used in
training set and the benign files set.

We then apply NMF on V by selecting the low-rank k as
mentioned in 2.4. The factorization and projection of NMF
is shown in Fig. 2(b) where first, we randomly initialize W
and H with positive elements. By using equations (4) and
(5) we iterate with 500 times. During the update iteration,
we added an epsilon 107!° to the denominator of W and
H, respectively, for smoothing division. After the iteration,
this will give the basis vectors, dictionary matrix W, which
contain the basic pattern of malware, and H, the activation
or coefficient of malware dictionary W.

Then we project testing data matrix B onto W feature
space by first randomly initialize coefficient matrix Hp with
positive elements. Hp is with k rows and m’ columns itera-
tively updated by the multiplicative update rule while keeping
W intact. Now we are ready for malware detection.

3.5 Malware detection

The detection of malware as shown in Fig. 2 part (c) is done
by comparing column distance between H and Hp using
Euclidean distance measure. This distance could be in range
of [0, oo]. So, we convert this distance to similarity score
with range [0, 1] by

1
SCOIr¢e = ——mMm————@@@8@ (8)
1 +d(p1, p2)

where, d(p1, p2) is the distance between each pair of vectors
in H with Hpg. So, the closer the score to 1, the better the
projection of a test file onto the feature space W, and hence
the better it is matches the structure of these malware space.
Thus, we have a similarity matrix S with rows contain the m
test files and columns contain the m train files. We then take

the maximum similarity score for each row to represent the
prediction score of each test files.

Having the maximum coefficient similarity scores, we can
then set a threshold value to determine if the similarity score
is higher or equal to the threshold, which mean very close to
vectors in H, then it will be considered as malware; other-
wise, it is classified as benign file. We repeat Sects. 3.4 and
3.5 for entropy feature.

4 Experiments and results analysis

Results obtained from the experiments on the similarity score
as discussed above which applied to classes of metamor-
phic malware will be presented in this section. All works are
conducted under Windows 10 Professional 64-bit and NMF
algorithm [18] are implemented in Python language. We will
first consider the datasets and then discuss the performance
metrics. Then, varies low-rank k will be analyzed and dis-
cussed.

4.1 Datasets

Three types of small scale metamorphic malware datasets
were considered to evaluate our method and the number of
files used are shown in Table 1. These datasets are selected
because they contain known metamorphic malware as ground
truth and have been used in the literatures [6,14]. The corre-
sponding testing set of benign files is shown in Table 2.
MWOR A highly metamorphic worm generator under
Linux OS developed for the purpose of research [29]
that employs stealth technique to defeat statistical analy-
sis. Specifically, it inserts arbitrary amounts of dead code
extracted from benign files into the generated malware file.
By doing so, MWOR retains its malicious functionality while

Table 1 Metamorphic malware datasets

Family oS Files
Total Training Testing

MWOR Linux 600 480 120
VCL32 Windows 65 52 13
Vundo Windows 475 380 95
Table 2 Benign datasets
oS Files

Type Number
Linux Linux utilities 20
Windows Cygwin utilities 39
Windows Applications 2000

@ Springer

200

Y.T.Ling et al.

has the effect of making the statistics properties of the mal-
ware more closely match that of the benign files. The MWOR
uses “padding ratio” to specify the ratio of dead code inserted
to actual functional worm code. For example, a padding ratio
of 4.0 means there is 4 times as much dead code as worm
code were inserted in the malware file. We choose and tested
100 MWOR variants from each set of padding ratios of 1.0,
1.5, 2.0, 2.5, 3.0, and 4.0, respectively. Since MWOR is a
Linux worm, we collected 20 files from Linux OS under bin
to represent the benign dataset. The number of files used in
benign dataset and MWOR dataset are the same as in [14].

VCL32 Virus Creation Lab for Win32 (VCL32) the only
virus generators which we managed to collect from VX Heav-
ens website [13] before it was closed down due to dangerous
threaten virus availability. This type of virus family infect the
host file by adding a new section or hook on to the API of the
host file. To evade detection, it uses simple XOR encryption,
simple polymorphic engine or KME32 advanced engine to
obfuscate the infected file. According to [34] VCL32 is not
a strong metamorphic generator. One of the reason we use it
here is to investigate the performance of NMF at the funda-
mental level of obfuscation. Since this is a windows virus, we
collected 34 windows utility files from open source Cygwin
[9] to test along with VCL32.

Vundo According to [22], it is a multiple-component fam-
ily of malware that downloads files without user permission
and displays pop-up advertisements. It has been observed that
this family uses encryption technique to escape detection and
to hinder removal. We collected this malware from [15] under
the train subset. There are a total of 475 variants under this
metamorphic malware family, therefore, we extracted all the
variants in byte representation (hexdump) only format and
used xdd [31] to convert the hexdumps to binary executa-
bles. For the testing purpose, we collected 2000 windows
applications from filehippo.com which is a open source of
trusted windows applications.

4.2 Evaluation metrics

To evaluate the detection performance of NMF technique,
we use receiver operating characteristic (ROC) curves. An
ROC curve plots the balance between true positive and false
positive rates at every possible threshold. By calculating the
area under ROC curve (AUC), we implicitly calculate the
false positive rate (FPR) or [-specificity, and true positive
rate (TPR) or sensitivity, at different threshold and combine
them into one single metric in a graph. If the AUC is near
0.5, it indicates that the evaluated results of a binary classifier
are no better than flipping a coin. An AUC of 1.0 represents
ideal performance, in the sense that we can set a threshold
for which there will be no false positive or false negatives.
For imbalanced datasets, we use the AUC of the precision-
recall curve (APRC) for more informative evaluation as

@ Springer

stated in [26]. The precision expresses the ability of our clas-
sification to return only relevant instances, i.e. how much
malware instances are captured among all those which were
captured as malware in this dataset. The precision is defined
as:

Ip

Precision = ————
tp+ fp

where fp indicates the number of false positive.

The recall expresses the ability of a classification to find
all relevant instances in a dataset, it is essentially is the true
positive rate, i.e. how much malware instances are captured
among malware group in this dataset. The recall is defined
as:

Ip

Recall = ——
tp+ fn

where #p indicates the number of true positives and fn is the
number of false negatives. Similar to ROC, APRC depicts
the balance between the positive predictive value and true
positive rate.

4.3 Metamorphic malware results

We use five-fold cross validation for each experiment. That
is, we partition the malware set into five equal size subsets.
We then use four of the subsets for training, reserving the
fifth for testing and we repeat the training and testing five
times, once for each possible arrangement of the subsets. To
obtain a single estimate, we compute the average of the five
results from the folds. During our experiments, we assumed
low-rank of NMF will carry the most significant information,
therefore, we randomly choose ranks k = 1,2,3,7 through out
the experiments.

4.3.1 MWOR

As mentioned in Sect. 4.1, MWOR employs a stealth tech-
nique which can effectively defeats statistical analysis [29],
particularly, MWOR inserts dead code extracted from benign
files, which has the effect of making the statistics pattern
of malware very close to the benign files. Different chunks
distribution using compression ratio and entropy feature
extraction of a specific MWOR file before projection onto
NMF are shown in Figs. 3 and 4, respectively. The blue color
refers to the benign files whereas the red color refers to the
malware files. It can be observed that Linux utility files tend
to have widen dispersion of compression ratio and entropy
values compared to malware files. From the distribution, fea-
ture using entropy has more compact and condensed value
than compression ratio. This means each chunk of entropy
value contains number of bits which are not vary too much

Nonnegative matrix factorization and metamorphic malware detection 201
Distribution before projection

1.00

0.25 4 @ benign

+ malware 4 ® oo ® °® os0 O

1 8 gy b ot

0.20
i%&*xm A :**mmmuxfnﬁm e
: +

0.15 . +-M+++o-+++"+++++|- + + +"'-o--|-|-+|-+ ﬂ-r:*' +"+-I+ﬂ-lﬁ\l+++ﬁ+1"‘

Values

0.10 1

0.05 4

0.00

T T T T T
0 50 100 150 200
Number of chunks

Fig. 3 Compression ratio distribution of malware and benign files for
padding 1.0

Distribution before projection

® benign

0.25 4 + malware

0.20 4

0.15 1

Values

0.10 4

0.05 4

0.00 4

0 50 100 150 200
Number of chunks

Fig.4 Entropy distribution of malware and benign files for padding 1.0

across themselves. As for compression ratio feature, each
chunk contains number of bits differently from each other.

After all the testing files are projected onto NMF follow-
ing the steps in Sect. 3.4, we get the distance between each
coefficient of training set H and each projected coefficient
Hp of testing set, as shown in Figs. 5 and 6 for compres-
sion ratio and entropy feature, respectively. We can clearly
see that malware coefficient scores in testing files condense
close to 1.0, which mean they are very similar to the training
set, on the other hands, majority of benign files tend to have
smaller similarity coefficient scores as they are relatively far
from 1.0.

Figure 7 shows the scatterplots of maximum coefficient
similarity score of each testing set with the training set for
padding ratio 1.0. The left column is the similarity score
using compression ratio and the right column is the similarity
scores using entropy. Each figure contains 40 test files with
red colors are the MWOR files and blue colors are the benign
files. We observed that malware files in the testing files have
higher similarity score with the ones in training dataset, as

+
5

0.85 gy ++ 4ok T,
=2 F ++++|-H-"’+"'l-|-h|-l"+
:¥ o ++ +.+, +,,,,.p |$" AR

+“$"+:$”++ ++

4-..
0.80 oy o+ ok h bbb gy +
"'qd"' "'"“’+""'+ﬁ +""l-|-*"+|mm'”', I'l"'+"'+"++"""'+ R b
T M-I-,., e, ﬂ- et *‘H""‘*WIM*WW it
m‘:ﬂ' et e «ul"lh o L m... e
0751 ¥ "‘++" ity - w;l"' 2% ++++“++|'F+++"'lq. bty *’”ﬂ"‘“
¥ *,_"+++ bt ++++""‘+|-++1"'++ ekt +i-o-+++++ +-H-o- «+|-+++H...-|+
et it 5 et T et e SR
0.70 4
+ benign + % +
+ + 4+t +
e malware % +1""‘+""1++ +F b bt S L e T T
0.65 1

0 10 20 30 40 50 60 70 80
Number of training files

Fig.5 Pairwise similarity score of compression ratio for padding 1.0

100 | G S
0.95 A
R T PRI LR LT PRI R S PR A
R T o i e T G L TR ey
0.90
) R s i T
8
> 0.85 A
5
E 080 ﬂwﬂﬂmtmm#mﬁmmwmittﬁﬂmtm#ﬂ#
0751 ¥H R
Mmﬂwm*ﬂ»ﬂkﬂmﬂﬂwhﬂwmhmmmﬂﬁ#ﬂ
B e L e
0.704 + benign
® malware bbb R R

) 10 20 30 40 50 60 70 80
Number of training files

Fig.6 Pairwise similarity score of entropy for padding 1.0

for benign files the similarity scores are more scatter around
the range of 0.98-0.66. From here, we can see that as rank
number increases, says, to 7, it will “expand” the maximum
similarity scores as well, this is obvious in Fig. 7(c) which
can cause a spoiled optimal threshold.

We plot the ROC and collect the mean AUC over the five
experiments conducted in the five-fold cross validation as in
Table 3. By using the maximum similarity score, we can get
100% accurate prediction at k = 1 for entropy feature across
all the padding ratios and as for compression ratio feature, it is
at padding ratio 1.0 only. This means with low rank, it carries
the most significant pattern in the feature W. The lowest
AUC for entropy feature 98.30% is at k = 3 for padding
ratio 1.0. This is not as expected and we need to further
investigate the result. As for compression ratio feature, its
accuracy performance maintains above 99%. Table 4 shows
a comparison of using NMF technique on entropy feature in
this paper with previous technique [10,14] which used byte
feature on SVD and Eigenvector, respectively, with rank 1

@ Springer

202

Y.T.Ling et al.

Similarity score: originalcempratiofold 1

Similarity score: eriginalentfold 1

...........,......o. 100 ® @ @ 88 # & & & & & & & & & & & 8 8 B S
oosd * L + W g *
' 0.85 4
+ * +
+
0.90 1 * - 0.90
. + +
i il 8 %
= =3
g § 085
2 0.85 =
= £ 0D
5 . # E i A .
0,80 ¥ = *
0,75 *
¥ & * + * % +
0.75 0,70 1
+ benign + + benign ok
e malware * 065 g malware &
0.70 - T - T r r . = - ; . . - :
[+14] 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 oo 2.5 50 7.5 10.0 12.5 15.0 17.5 200
HNumber of test files Number of test files
(a) rank 1
Similarity score: originalcompratiofold 2 Similarity score: criginalentfold 2
0] @ ® _ 88 g 5 9899 888 4,844 1.00 1 et e Leee s 05000
&
.
0.95 4 - 095 +
+
-
3 b * g i '
5 .90 - R
A - + " *
= + * ¥ i £
5 S
E 0:85 - + * E 0.85
& +* & & . & & + +
+ + * * +
0.80 4 * LEL R B N o +
+ benign + benign +
0.75 4 *] n *
& malware 0.75 8 malware
00 2.5 50 75 100 125 150 175 200 oo 25 50 75 100 125 150 175 200
Humber of test files Number of test files
(b) rank 3
Similarity score: ariginalcempratiofold 4 Similarity score: criginalentfold 4
] 1.00 -
- e " 8 * g 84 . L]
-, ¢ & . . . e .
e, .05 [A
0.95 4 .
. L L] -
0.0 4 e
« 090 B
= * L = + &
g - o S 0.85 1 +
i | 4+ Tign
E’ 055 . ® malware '? o
5 [} A +
z + + - 2 B £ 0.ED 5 5 -
[J # * +
080 = + + + & +
0.75
+
075 i
.73 4 +
4 * . 0.70
+ + * e, + benign g
.70 4 & malware
L . : ' , ; ; . 0651 : : : , ; ; :
0.0 25 50 1.5 1.0 125 15.0 17.5 20.0 oo 25 50 7.5 10.0 12.5 15.0 175 20.0
Mumber of test files Wumber of test files
(c) rank 7

Fig.7 MWOR padding ratio 1.0 with different NMF ranks

@ Springer

Nonnegative matrix factorization and metamorphic malware detection 203
Table3 MWOR average AUC Table5 MWOR APRC for compression ratio feature
Rank Padding ratio Compression ratio Entropy Padding ratios k=1 k=2 k=3 k=17
k=1 1.0 1.000 1.000 1.0 AR 1.000 1.000 .9900 9950
1.5 19995 1.000 PA 9983 9983 9976 9966
2.0 9995 1.000 1.5 AR 9950 19950 19950 .9950
2.5 9995 1.000 PA 9983 19988 19999 9974
3.0 19980 1.000 2.0 AR 9950 19950 .9900 9950
4.0 19995 1.000 PA 9983 9991 9964 9963
k=2 1.0 1.000 1.000 2.5 AR 9750 9750 .9000 .9250
1.5 9995 1.000 PA 9981 19990 9963 .9966
2.0 .9995 1.000 3.0 AR 9750 1.000 1.000 1.000
2.5 19990 1.000 PA 9969 9977 9977 9958
3.0 9975 .9990 4.0 AR 1.000 1.000 9250 1.000
4.0 9975 9975 PA .9983 9977 9975 9968
k=3 1.0 9975 9830
1.5 9995 9955
Table6 MWOR APRC for entropy feature
2.0 .9960 9925
30 9970 9960 1.0 AR 1.000 1.000 9700 19800
4.0 9975 9995 PA 1.000 1.000 9901 9959
k=7 1.0 9965 9975 15 AR 1.000 1.000 9800 9700
L5 9975 9905 PA 1.000 1.000 9955 9932
2.0 9910 9990 2.0 AR 1.000 1.000 19800 19950
2.5 9975 9960 PA 1.000 1.000 9953 9994
3.0 9965 9980 25 AR 1.000 1.000 9750 8500
4.0 9980 9940 PA 1.000 1.000 9965 9974
3.0 AR 1.000 1.000 .9750 19250
PA 1.000 9983 .9952 9972
Table4 MWOR mean AUC for rank 1
- - 4.0 AR 1.000 9500 .9750 19250
Padding ratio AUC PA 1.000 9979 9988 .9957
NMEF (entropy) SVD Eigenvalue
1.0 1.000 19999 1.000 . . Lo
s 1,000 9999 1,000 feature, our technique can achieve accurate prediction APRC
’ ' ' ’ as high as 99.83%. As the number of k increases, the APRC
2.0 1.000 9975 1.000 . . . L.
slightly drops to 99.68% in padding 4.0 which is make sense
2.5 1.000 9966 1.000 . .
since there are more dead code inserted. For entropy feature,
30 1000 9935 1:000 it can achieve 100% APRC in all the padding ratios for k = 1
4.0 1.000 9834 1.000

because it was the best result obtained in their experiments.
Entropy feature extraction shown a steady AUC even with
high dead code insertion at padding ratio 4.0 as compared to
SVD.

Tables 5 and 6 show the results of average AUC of
precision-recall curve (APRC) from the five experiments are
evaluated at different ranks, k, of NMF using both features.
The first column of the tables refers to the padding ratios
from 1.0 to 4.0, the second column is the performance met-
rics where accuracy rate, AR and APRC, PA are used. We
observed with lower rank of k = 1 for compression ratio

and the performance drop when the rank increases. These
results suggested that entropy as feature is a strong feature
compared to compression ratio for this malware family.

4.3.2 VCL32

We test VCL32 malware files with 39 windows Cygwin64
[9] utilities files. The compression ratio and entropy values
distribution of this type of malware are shown in Figs. 8
and 9, respectively. From the scatterplots of the distributions,
there are clear pattern difference between the malware and
the benign files for both features. This implies the obfusca-
tion technique applied in this malware family is not strong
because each variant tend to have the same pattern.

@ Springer

204 Y.T.Ling et al.

Distribution before projection
@ benign 1007
t+ + malware
0.4 i+
4 0.95
0.3 » 0.90
o
S
8 4 + benign
é 0.2 1 :g 0839 ® malware
E
Y 0.80 3
0.1 j | + o+
. 0.75 !++ e + 4 ++; ; '
] + o4 47 ii+ + + +i +++i+ o
+’*+. +ol ThL oL M N ML +=+++*+++++ Tt a byt
b Jee 0 LIRS LM T L e M
01 0.70 1 i +! +!+ *ﬁ*ﬁ ! Lt ﬂ! !"!!!"‘ !! 4 !E
Number of chunks 6 1I0 2IO 3|0 4b SIO

Number of training files
Fig.8 Compression ratio distribution of VCL32 and benign files
Fig. 11 VCL32 pairwise comparison on entropy feature

Distribution before projection 104 + benign o
e benign e malware i + ! 2‘2“ 8 ot L "R |
g - o8 - 1R i !’O + g o otit s +oq

$+ + malware + ! 5 iy + ® & & +.+.+ »
0.4 1 1 09 32e 0* “‘i 0 ' M !0 ® ot ;1
O MR L W T
+ o :'. +++§+ ;. 3 : ;' .'o .!+++ s

i + O
03] é &2 8: >t 01:300 s + +++. ;+ ;.o +:°'+.o’ . o J!

5] + +@ +
: R D o) R
3 £ 07 o g o4 hesge, ° 0 []
% 021 g B oot og Y MM Thegyley ot g2
% ”.1-. + ! ! & 2 ° %. ' .. .,.’ $
: 06 TR P TP o8 (33 t 495 Tt
3 % " (3 3:. gﬁ“ Sz ;t 5 T .’31:
0.11 4 g . gHeb o7 ® g Ot ® i e
o, WL . 5 i PSR
gl os] 908 VT T st 38 e oite
ail R L & , O 00, o® “ a % * : =
0.0 - £+ * O Fhgn oy T s e
- - - . . ; . 0.4

0 10 20 30 40 50 60 . " oy o A o

Number of chunks . N
Number of training files

Fig.9 Entropy distribution of VCL32 and benign files Fig. 12 VCL32 pairwise similarity score of compression ratio feature

rank = 2

1.00 4

Both Figs. 10 and 11 show the results of projected dis-
tance between the coefficient H of training space and Hp of
testing space with rank k = 1 for both feature extractions.
Here, entropy feature also reveal more compact values than
compression ratio values which imply the complexity char-

0.95 A

0.90 ~

+ benign
S — acteristic of each chunk in entropy is less random than the

0.85 A +

Similarity scores

+

s way compression ratio computed. It can be seen that there

., f++ SRR S * is clear separation among the malware and benign files in
+{+*++++$ﬁ+++*++ {;'f; §+++$++++ ++++++§++++++++ the testing space with this low-rank, however, we noticed if
;;f#f;ff ;E**i*ﬂf*ﬁ*ﬁ*ﬁfgﬁfﬁ***ﬁ** f*;*; we increase the rank more than one, the projected distance
o751} ifigi $;;$;$ sty ;;;i;};;;i % ;;; will be stretched out within range of 1.0-0.4, an example is
r = = - pa = shown in Fig. 12. With higher number of rank, the distance

Number of training files between a train file in H with respect to all the test files in Hp

becomes wider, due to more dimension points are involved
during the computation of distance.

The scatterplots of maximum similarity scores with rank
1 for this malware family are shown in Figs. 13 and 14.

0.80 -

+H

Fig. 10 VCL32 pairwise comparison on compression ratio feature

@ Springer

Nonnegative matrix factorization and metamorphic malware detection 205
Similarity score: originalcompratiofold 1 Table7 VCL32 mean AUC
T S — : rb:ar:f:re Ranks Compression ratio Entropy
0.95 1 1.000 1.000
2 1.000 1.000
g 0.90 3 1.000 1.000
: . 7 9980 9767
S 0.85 1 "
E . R
@ T P I ++
PR T & ++t + o+ + . .
0809 + 44 5 i o Table8 VCL32 AUC of PRC for compression ratio feature
+
& Evaluation metrics k=1 k=2 k=3 k=17
0.75 4
+
. i . : : : i : Accuracy 1.000 1.000 1.000 .9846
0 5 10 15 20 25 30 35
NirbeE 6T tesbfies APRC 1.000 1.000 1.000 .9948
Fig. 13 VCL32 similarity score for compression ratio
Table9 VCL32 AUC of PRC for entropy feature
Similarity score: originalentfold 1 - -
o I ———— y =n Evaluation metrics k=1 k=2 k=3 k=17
® malware
Accuracy 1.000 1.000 1.000 .9846
0.9 APRC 1.000 1.000 1.000 9813
3 0.90
E Distribution before projection
E 85 @ benign
% 550 + malware
+
0.80 A : & +
+++++++ s +++ B +++++++++++ * 0.15
0.75 i
* g
, , 2 0.10
0 5 10 15 20 25 30 35 2

Number of test files

Fig. 14 VCL32 similarity score for entropy

From the figures, show a clear cut of similarity between the
malware and benign files in testing set. We also observed
that feature extraction using compression ratio has a wider
dispersion than using entropy.

The AUC results for both compression ratio and entropy
features are shown in Table 7 for different NMF ranks. As the
low-rank dimension increases to 7, the accuracy prediction
dropped slightly for both features. To further evaluate our
technique, the average APRC results are shown in Tables 8
and 9 for both features. Surprising to see that compression
ratio feature can still preform better than entropy feature with
APRC 99.48 at k = 7. This entails VCL32 family may con-
tains variants which are very similar to each other and simple
compression method work well for this family (Table 9).

4.3.3 Vundo

For the third dataset, the chunks distribution extracted using
both compression ratio and entropy features before project

0.00 4

T T T T T
0 2000 4000 6000 8000
Number of chunks

Fig. 15 Compression ratio distribution of malware and benign files
before projection

onto NMF are shown in Figs. 15 and 16. We observed that
in both feature extraction methods, benign files have higher
series of normalized compression ratio or entropy values than
malware files. This may due to the benign files we selected
in this experiment are mostly setup or application files con-
tain more compressed data than Vundo. From the figures,
normalized compression ratio values are in the range 0-0.2,
whereas, normalized entropy values span up to 1.0. How-
ever, if we look closely, most of the malware training files
have relatively small entropy values. We suspect this is due
to smaller mean file size that we took from the pool of mal-
ware and benign file which may not completely represent the
entire file structure.

@ Springer

206

Distribution before projection

109 * @ benign
+ malware
L]
0.8
0.6
4
E]
2 °
044 ©
0.2
0.0 1
0 2000 4000 6000 8000

Number of chunks

Fig. 16 Entropy distribution of malware and benign files before pro-
jection

1.01
0.9
0
o
o
3 0.8 4 =
3 0.
> benign
£ ® malware
L)
£
0.7
0.6

0 50 100 150 200 250 300 350 400
Number of training files

Fig. 17 Vundo pairwise comparison on compression ratio feature

1.0 1
0.9
0
4
5 0.8 4
9 -
; + benign
) e malware
p!
E 0.7
(7]
0.6
o5 R S,
0 50 100 150 200 250 300 350 400

Number of training files

Fig. 18 Vundo pairwise comparison on entropy feature

@ Springer

Y.T.Ling et al.
100 g+ . N
o+ 4+ b +
L 13'-,:" ++ 1‘%;"# +"‘$:'
0.95 - 3 ! %
v 0.90
S
b
2 0.85 -
S
E
w
0.80 -
A
H e+ i ~ 4 bt
LA O ,
0754 # i Foah
X +$_r+++4t¢* $ire +f 3+++ o
+2FE * ™ + benign
PR
0.70 4 ® malware
0 250 500 750 1000 1250 1500 1750 2000

Number of test files

Fig. 19 Projected similarity scores for compression ratio feature with
rank 2

1.0 A
0.9 A
0
g
[=]
@
> 0.8 -
5
£
wn
0.7 1
¥ e + + benign
0.6 1 + ® malware
0 250 500 750 1000 1250 1500 1750 2000

Number of test files

Fig.20 Projected similarity scores for entropy feature with rank 2

The projected distance of 475 variants of malware with H
in the training space and 2000 benign files with Hp in the
testing space is shown in Figs. 17 and 18 for both features.
The figures depicts with rank 1, the distance of coefficients
between training space and testing space can be seen clearly
in both features. We also notice in this type of family, with
rank > 1, the distance will stretch out within a bound due to
many dimension points considered. Figures 19 and 20 show
the scatterplots of maximum coefficient similarity scores
for compression ratio and entropy feature, respectively, with
rank 1. We observed that scores using compression ratio have
wider dispersion than using entropy feature, this may indi-
cate entropy capture less randomness of chunks information
in this family.

We then obtain the mean AUC after 5-folds in Table 10
for different ranks of NMF. This implies both features can
be used to detect malware with rank 1-3 showing a satisfac-
tory results of more than 99% accurate prediction. As for the
average accuracy rate and APRC results are shown in Tables
11 and 12. The best rank to be used for both features is at

Nonnegative matrix factorization and metamorphic malware detection

207

Table 10 Vundo average AUC

Rank Compression ratio Entropy
1 .9990 1.000
2 .9994 9993
3 .9908 9926
7 .9606 7366

Table 11 Vundo compression ratio feature classification performance

Evaluation metrics k=1 k=2 k=3 k=17
Accuracy 9911 .9962 9663 9221
APRC 9925 9961 .9549 4395
Table 12 Vundo entropy feature classification performance

Evaluation metrics k=1 k=2 k=3 k=17
Accuracy 1.000 .9996 9368 .8000
APRC 1.000 9981 .9420 2467

k = 2 with APRC 99.61% for compression ratio and 99.81%
for entropy feature. Again, entropy feature demonstrated to
be better feature than compression ratio because even with
k = 1, it can achieve 100% accurate prediction for this mal-
ware family. However, its performance drop sharply when
k = 7. This indicates for this metamorphic malware it has
pattern similar with benign application files and with higher
rank, there are redundant data points due to high obfuscation
technique applied in this family.

5 Conclusion and future work

In this study we applied NMF technique on three challenging
metamorphic malware datasets, in particular with real mal-
ware set and confirmed that this approach is as effective as
that in [14]. We extracted and compared the file structural
with two features, compression ratio using gzip and entropy.
Our observations are summarized into the following:

1. Using entropy on series of byte chunks seems to have a
smaller value than using compression ratio. According to
[21], encrypted or compressed files have higher entropy
values (< 6.8). Through out the experiments, we applied
entropy on a series of byte chunks instead of the whole
file itself and it is yet to proof that this caused the entropy
values we got render less randomness among the chunks.

2. Due to the small variation among the byte chunks,
entropy could be a better feature compared to compres-
sion ratio in our three types of datasets.

3. Thefiles size under experiments are different across these
datasets, average file size for MWOR is between 35—
68 KB across different padding ratio, VSL32 has the
smallest size with only 8 KB, whereas Vundo, after byte
conversion, is 256 MB. We suspected the small file size in
VCL32 produced such a high classification performance
as in Table 8.

4. NMF with low-rank can produce local feature vec-
tors W with better projection than with higher ranks.
This denotes NMF can present significant patterns with
low rank. However, with standard NMF algorithm, it
could produce correlated basis functions as rank number
increases and this will deteriorate the detection perfor-
mance.

Overall, we are able to achieve satisfactory detection with
accuracy rate more than 95% in all three datasets. A strength
of our technique is that it is applied directly to binary file with-
out the need for pre-processing which most of the time need
special domain knowledge for further parsing. By applying
NMF on the series of feature chunks, we noticed that NMF
technique can be as effective as with [14] for classifying mal-
ware files. From the three types of datasets, we notice that
entropy as feature achieved higher precision and detection
rate at lower rank, 1 or 2 of NMF. This indicates with lower
rank of NMEF, it carries more significant feature than higher
ranks, as higher ranks may contains redundant or “noice”
which can make detection difficult.

Several limitations of our method include the direct com-
parison between each vector during similarity check and
since no accelerate of convergence was considered, the com-
putation here is intensive. Our current work only tested on
dead code insertion and encryption types of obfuscation.
Other types of obfuscation such as register substitution or
control flow obfuscation may able to evade this method as
the randomness of information in a series of byte chunk is
not affected.

For future work, different sizes of sliding window can be
studied when project onto NMF. So far, we only tested on
128-byte sliding window. We also need to categorize the file
size in training and testing set, as there was no uniform size
between these two groups at the moment and this may affect
the files under investigated. More tests shall be conducted on
alarger scale of real malware files to confirm NMF technique.
Another further work, we plan to use NMF as clustering
parameters in statistical model such as HMM to study the
effectiveness of NMF in grouping malware family.

Acknowledgements This material is partly based upon work sup-
ported by the Universiti Putra Malaysia under Putra Grant No.
GP/2018/9621600. We also want to thank Prof. Stamp Mark of SJISU,
California for sharing the Linux metamorphic malware dataset used in
this study.

@ Springer

208 Y.T.Ling etal.
References 19. Lee, J., Austin, T.H., Stamp, M.: Compression-based analysis of
metamorphic malware. Int. J. Secur. Netw. 10(2), 124-136 (2015)
1. 2018 Internet Security Threat Report: https:/resource.elq. 20. Li, Y., Ngom, A.: Non-negative matrix and tensor factorization
symantec.com/LP=58407cid=70138000000rm1eAAA (2018) based classification of clinical microarray gene expression data.
2. Alam, S., Horspool, R.N., Traore, L., Sogukpinar, L: A framework In: 2010 IEEE International Conference on Bioinformatics and
for metamorphic malware analysis and real-time detection. Com- Biomedicine (BIBM), pp. 438-443. IEEE (2010)
put. Secur. 48, 212-233 (2015) 21. Lyda, R., Hamrock, J.: Using entropy analysis to find encrypted
3. Alshahwan, N., Barr, E.T., Clark, D., Danezis, G.: Detecting mal- anfi packed ma.lware. IEEE Secur. Priv. .5(2),.40—4.5 (2007)
ware with information complexity. arXiv:1502.07661 (2015) 22. Microsoft: Windows defender security intelligence. https://
4. Austin, T.H., Filiol, E., Josse, S., Stamp, M.: Exploring hid- www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-
den markov models for virus analysis: a semantic approach. In: description?Name=Win32%2FVundo (2012). Accessed 16 May
2013 46th Hawaii International Conference on System Sciences 2016
(HICSS), pp. 5039-5048. IEEE (2013) 23. Mohan, V., Hamlen, K.W.: Frankenstein: stitching malware from
5. Baysa, D., Low, R.M., Stamp, M.: Structural entropy and meta- benign binaries. WOOT 12, 77-84 (2012)
morphic malware. J. Comput. Virol. Hacking Tech. 9(4), 179-192 24. Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative
(2013) factor model with optimal utilization of error estimates of data
6. Bhattacharya, S., Menéndez, H.D., Barr, E., Clark, D.: Itect: values. Environmetric§ 5(2), 111-126 (1994))
scalable information theoretic similarity for malware detection. 25. Radkani, E., Hashemi, S., Keshavarz-Haddad, A., Haeri, M.A.:
arXiv:1609.02404 (2016) An entropy-based distance measure for analyzing and detecting
7. Borello, J.M., Mé, L.: Code obfuscation techniques for metamor- metamorphic malware. Appl. Intell., 1-11 (2017)
phic viruses. J. Comput. Virol. 4(3), 211-220 (2008) 26. Saito, T., Rehmsmeier, M.: The precision-recall plot is more infor-
8. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd mative than the roc plot when evaluating binary classifiers on
edn. Wiley, Hoboken (2006) imbalanced datasets. PloS ONE 10(3), e0118432 (2015)
9. Cygwin: Cygwin get that linux feeling—on windows. http://www. 27. Saleh, M.E., Mohamed, A.B., Nabi, A.A.: Eigenviruses for meta-
cygwin.com/. Accessed 23 July 2018 morphic virus recognition. IET Inf. Secur. 5(4), 191-198 (2011)
10. Deshpande, S., Park, Y., Stamp, M.: Eigenvalue analysis for meta- 28. Sgon: Snort. https://www.snort.org/) o
morphic detection. J. Comput. Virol. Hacking Tech. 10(1), 53-65 29. Sridhara, S.M., Stamp, M.: Metamorphic worm that carries its own
(2014) morphing engine. J. Comput. Virol. Hacking Tech. 9(2), 49-58
11. Ekhtoom, D., Al-Ayyoub, M., Al-Saleh, M., Alsmirat, M., Hmeidi, (2013) o ' .
I.: A compression-based technique to classify metamorphic mal- 30. Support for Gzip Files: https://docs.python.org/2/library/gzip.
ware. In: 2016 IEEE/ACS 13th International Conference of Com- html/ (20'17) Accessed 28 Nov 2017 '
puter Systems and Applications (AICCSA), pp. 1-6 (2016). https:/ 31. SySTutorlalls: xxd (1)—linux man pages. https://www.systutorials.
doi.org/10.1109/AICCSA.2016.7945801 com/docs/linux/man/1-xxd/ ' .
12. Elad, M., Aharon, M.: Image denoising via sparse and redundant 32. Szor, P, Ferrie, P.: Hunting for metamorphic, symantec security
representations over learned dictionaries. IEEE Trans. Image Pro- response. https‘://www.symantec.com/avcenter/reference/huntlng.
cess. 15(12), 3736-3745 (2006) for.metamorphic.pdf (2003)
13. http://vxheaven.org/lib/vzo21.html (2001) 33. Wojnowicz, M., Chisholm, G., Wolff, M., Zhao, X.: Wavelet
14. Jidigam, R.K., Austin, T.H., Stamp, M.: Singular value decompo- decomposition of software entropy reveals symptoms of malicious
sition and metamorphic detection. J. Comput. Virol. Hacking Tech. code. J. Innov. Digit. Ecosyst. 3(2), 130-140 (2016)
11(4), 203-216 (2015) 34. Wong, W.: Analysis and detection of metamorphic computer
15. Kaggle: Microsoft malware classification challenge (big 2015). viruses. PhD‘ thesis, San Jose State. Universi.ty (2006))
http://arxiv.org/abs/1802.10135 (2016). Accessed 23 July 2018 35. You, I, Yim, K.: Malware obfuscation techniques: a brief survey.
16. Khammas, B.M., Monemi, A., Ismail, 1., Nor, S.M., Marsono, In: 2010 International Conference on Broadband, Wireless Com-
M.: Metamorphic malware detection based on support vector puting, Communication and Applications (BWCCA), pp. 297-300.
machine classification of malware sub-signatures. TELKOMNIKA IEEE (2010)
(Telecommun. Comput. Electron. Control) 14(3), 1157-1165
(2016)
17. Lee, D.D., Seung, H.S.: Learning the parts of objects by non- Publisher’s Note Springer Nature remains neutral with regard to juris-
negative matrix factorization. Nature 401(6755), 788 (1999) dictional claims in published maps and institutional affiliations.
18. Lee,D.D., Seung, H.S.: Algorithms for non-negative matrix factor-

ization. In: Advances in Neural Information Processing Systems,
pp. 556-562 (2001)

@ Springer

https://resource.elq.symantec.com/LP=5840?cid=70138000000rm1eAAA
https://resource.elq.symantec.com/LP=5840?cid=70138000000rm1eAAA
http://arxiv.org/abs/1502.07661
http://arxiv.org/abs/1609.02404
http://www.cygwin.com/
http://www.cygwin.com/
https://doi.org/10.1109/AICCSA.2016.7945801
https://doi.org/10.1109/AICCSA.2016.7945801
http://vxheaven.org/lib/vzo21.html
http://arxiv.org/abs/1802.10135
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2FVundo
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2FVundo
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2FVundo
https://www.snort.org/
https://docs.python.org/2/library/gzip.html/
https://docs.python.org/2/library/gzip.html/
https://www.systutorials.com/docs/linux/man/1-xxd/
https://www.systutorials.com/docs/linux/man/1-xxd/
https://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf
https://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf

	Nonnegative matrix factorization and metamorphic malware detection
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Metamorphic techniques
	2.2 Metamorphic malware detection
	2.3 Singular value decomposition
	2.4 Nonnegative matrix factorization

	3 Design and implementation
	3.1 Determine file size
	3.2 Splitting a file into byte windows
	3.3 Feature extraction
	3.4 Nonnegative matrix factorization
	3.5 Malware detection

	4 Experiments and results analysis
	4.1 Datasets
	4.2 Evaluation metrics
	4.3 Metamorphic malware results
	4.3.1 MWOR
	4.3.2 VCL32
	4.3.3 Vundo

	5 Conclusion and future work
	Acknowledgements
	References

