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Abstract
Being aware of the progress towards one’s goals is considered one of the main charac-
teristics of the self-regulation process. This is also the case for collaborative problem 
solving, which invites group members to metacognitively monitor the progress with their 
goals and externalize it in social interactions while solving a problem. Monitoring chal-
lenges can activate group members to control the situation together, which can be seen as 
adjustments on different systemic levels (physiological, psychological, and interpersonal) 
of a collaborative group. This study examines how the pivotal role of monitoring for 
collaborative problem solving is reflected in interactions, performance, and interpersonal 
physiology. The study has foci in two central characteristics of monitoring interactions 
that facilitate groups’ regulation in reaching their goals. First is valence of monitoring, in-
dicating whether the group members think they are progressing towards their goal or not. 
Second is equality of participation in monitoring interactions between group members. 
Participants of the study were volunteering higher education students (N = 57), randomly 
assigned to groups of three members whose collaborative task was to learn to run a busi-
ness simulation. The collaborative task was video recorded, and the physiological arousal 
of each participant was recorded from their electrodermal activity. The results of the study 
suggest that both the valence and equality of participation are identifiable in monitoring 
interactions and they both positively predict groups’ performance in the task. Equality 
of participation to monitoring was not related to the interpersonal physiology. However, 
valence of monitoring was related to interpersonal physiology in terms of physiological 
synchrony and arousal. The findings support the view that characteristics of monitoring 
interactions make a difference to task performance in collaborative problem solving and 
that interpersonal physiology relates to these characteristics.
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Introduction

Collaborative learning and problem solving are increasingly used in today’s education. 
Early research demonstrated that solving computer-based problems together can initiate 
learning through interaction (Roschelle and Teasley 1995). More detailed descriptions in 
different contexts have since been made to better explain what is important when students 
collaborate and interact to facilitate learning through problem solving. Currently, there is a 
wide range of studies showing that group members who are successful in their collabora-
tions negotiate with each other (Hmelo-Silver and Barrows 2008) and reciprocally share 
how they are doing with the task (Rogat and Linnenbrink-Garcia 2011; Ucan and Webb 
2015). In other words, they engage in metacognitive monitoring, which can lead to more 
profitable strategies in collaborations (Hadwin et al. 2018). Monitoring can make learners 
aware of whether the task is progressing as planned or if there is a need to control and make 
changes to the process (Azevedo 2014; Azevedo et al. 2010). When learners engage in 
monitoring interactions, expressing their views to each other and acknowledge that there is 
a challenge in terms of their learning process, it can invite socially shared regulation, con-
sisting of negotiated and reciprocal regulatory processes such as planning, monitoring, and 
controlling among the group members (Hadwin et al. 2018; Malmberg et al. 2015).

Learners’ monitoring interactions have a crucial impact on deciding which regulatory 
actions to take in order to reach task goals (Hadwin et al. 2018), because its valence signals 
whether the standards and goals set for task progress, understanding, and resources are 
being met or not (Azevedo et al. 2010; Azevedo 2014; Sobocinski et al. 2020). Monitoring 
interactions with positive valence suggest that things are on track and strategies are likely 
working. Monitoring interactions with negative valence raise the awareness that the group is 
off track and control of the strategies is likely needed. Although there is an emerging inter-
est in studying group regulatory processes in relation to valence of monitoring interactions 
(Sobocinski et al. 2020), the knowledge on the issue is nascent. Specifically, the empirical 
link between the valence of monitoring interactions and group task performance is missing. 
Considering this, the current study investigates how valence of monitoring is seen in inter-
action and its relation to collaborative task performance.

In collaborative settings, metacognitive monitoring occurs as a co-constructed, transac-
tive activity where group members engage in reciprocal turn-taking and respond to each 
other to discuss and evaluate their group progress, understanding, and resources. Several 
studies have underlined the importance of reciprocal interactions in facilitating effective 
monitoring in collaborative learning (Isohätälä et al. 2020; Rogat and Linnenbrink-Garcia 
2011; Ucan and Webb 2015). However, it is also known that group members do not con-
tribute to the collaborative discourse equally (Kapur et al. 2008; Koivuniemi et al. 2018). 
Specifically, there is limited knowledge on how equality of participation manifests in 
monitoring interactions during face-to-face collaboration and its impact on task outcomes. 
Drawing on this, the current study further explores equality of participation in monitoring 
interactions and its relation to collaborative task performance.

Studying metacognitive monitoring and regulation in collaborative learning is challeng-
ing because collaboration involves multiple agents interacting in relation to temporally 
unfolding collaboration events. Regulation in collaborative learning is a multifaceted phe-
nomenon involving cognitive, motivational, emotional, and behavioral aspects (Hadwin et 
al. 2018), and it occurs as interplay on multiple systemic levels, including physiological, 
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psychological, and interpersonal (Reimann 2019; Volet et al. 2009). To date, studying and 
gathering evidence of this temporal, multifaceted, multilevel phenomenon has been dif-
ficult for researchers. In real-time face-to-face collaborative learning studies, in particular, 
video data have been the most dominant data source used to study monitoring (Malmberg 
et al. 2017). Yet, during the past few years, there has been an increase in the development 
of methods and tools that are viable in making metacognitive monitoring and its underlying 
conditions in groups visible (Järvelä et al. 2021). Due to technological development, there 
are increased opportunities to apply, for example, speech recognition (Amon et al. 2019), 
facial expression recognition (Taub et al. 2019), or physiological sensors (Dindar, Järvelä 
et al. 2020), that can, to some extent, reach monitoring and its conditions in real time. 
Although some of these methods hold benefits in collaborative settings, such as physiologi-
cal measures’ unobtrusiveness and intensive sampling, more empirical work is needed to 
show if and how they relate to processes relevant for socially shared regulation of learning 
(Hadwin et al. 2018), such as monitoring. Studying metacognitive processes in relation to 
physiological data might help overcome the aforementioned challenges in developing a 
more thorough understanding of how monitoring unfolds temporally and how it interplays 
with regulatory processes unfolding on the multiple systemic levels (Volet et al. 2009) of 
a collaborative group. Therefore, in addition to studying the characteristics of monitoring 
interaction (i.e., equality of participation and valence), this study utilizes electrodermal 
activity to explore whether these characteristics of monitoring as pivotal features of regula-
tion are also reflected in interpersonal physiology.

Background

Collaboration is a coordinated and synchronous activity that is facilitated by continuous 
attempts to construct and maintain a shared conception of a problem (Roschelle and Tea-
sley 1995). Therefore, collaborative learning can elicit students’ individual learning pro-
cesses but can also start learning processes on a social level (Dillenbourg 1999; Salomon 
and Perkins 1998). However, collaborative learning does not necessarily take an effective 
form just by putting individuals into a group (Kuhn 2015), but rather, it requires learners 
to metacognitively monitor and regulate their cognition, emotion, motivation, and behavior 
individually and as a group (Järvelä et al. 2018). Shared understanding and planning are 
important for solving problems together (Eichmann et al. 2019; Häkkinen et al. 2017), but 
learners also need to be aware of and monitor together how they are doing with their task 
and what needs to be changed when challenges occur (Ackerman and Thompson 2017; 
Hesse et al. 2015).

Monitoring together in collaborative learning

Monitoring is at the core of metacognition and regulation because it facilitates the com-
parison of the current state of the cognition with the standards set for the task (Winne and 
Hadwin 1998). Given that metacognitive monitoring lacks direct access to cognition, it 
often must rely on its products (Veenman et al. 2006; Winne 2018). In problem solving, 
these cognitive products can take the form of progress and performance regarding the task 
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at hand. Therefore, thinking about progress and performance in terms of a collaborative 
problem-solving task can be considered a metacognitive monitoring process (Ackerman 
and Thompson 2017; Clark and Dumas 2016; Rogat and Linnenbrink-Garcia 2011; Ucan 
and Webb 2015).

Monitoring serves as a base for controlling learning and problem solving if needed and is 
therefore important for successful problem-solving (Ackerman and Thompson 2017; Chang 
et al. 2017). This is especially the case when the task is considered to be complex (Dörner 
and Funke 2017; Greene and Azevedo 2009) because complex problem solving involves a 
high level of uncertainty, temporally unfolding events, and evaluation of the effectiveness 
of strategies (Dörner and Funke 2017). These characteristics call learners to monitor their 
knowledge, progress, and strategies. For example, Rudolph et al. (2017) studied the role 
of monitoring in complex problem solving and found it to be positively linked to success 
in solving the problem. Their results suggest that problem solving requires efficient self-
regulation, and in particular, monitoring. The authors also stated that it would be especially 
relevant to study what follows when the monitoring of the students signals challenges in 
the process.

Monitoring also has a fundamental role in theories of regulation in collaborative learning 
(Hadwin et al. 2018). For group-level regulation (co-regulation and socially shared regula-
tion) to manifest itself, it is crucial that metacognitive monitoring is communicated and 
negotiated in the interactions between group members (Hadwin et al. 2018; Malmberg et al. 
2017). This is especially the case during task execution because it is important that all the 
participants in a group know how they are progressing with the task so that they can decide 
together on the efficient use of strategies. Due to that, the quality of monitoring seems to be 
strongly associated with high-quality cognitive activities of collaborative groups (Hurme et 
al. 2006; Khosa and Volet 2014). Näykki et al. (2017) studied the characteristics of univer-
sity students’ monitoring in collaborative learning and found that groups in which learners 
monitored their own and their peers’ understanding throughout the tasks had an advantage 
in terms of their learning gains over the groups who did not. In the successful groups, learn-
ers were also actively involved in monitoring each other’s task progress, task understanding, 
and task interests. Rogat and Linnenbrink-Garcia (2011) studied in detail the characteristics 
of high-quality monitoring in collaborative learning. Their results suggest that groups’ high-
quality monitoring asks for group members’ equal contributions to monitoring. This view 
is supported by Ucan and Webbs’ (2015) study, in which reciprocal monitoring interactions 
facilitated a beneficial knowledge co-construction process within the groups. Reciprocal 
interactions and equal contributions to monitoring should also support the socially shared 
regulation of learning, which again, should contribute to collaborative learning (Järvelä et 
al. 2018; Saab 2012).

The importance of equality of participation in small groups has been acknowledged for 
decades for its apparent ability to predict differences in learning (Cohen 1994). In practice, 
equality of participation has often been operationalized with indices of statistical dispersion 
derived from either the number of task acts or the amount of talking time initiated by each 
group member (Bachour et al. 2010; Cohen and Roper 1972). In computer-supported col-
laborative learning environments, the length of the messages has also been used as a unit of 
analysis (Kapur et al. 2008; Strauß and Rummel 2021). Results from synchronous online 
collaboration studies (Kapur et al. 2008) suggest that equality of participation is a significant 
positive predictor of collaborative learning outcomes and that the level for this in a group 
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is quite stable. Inequal participation is hypothesized to leave little opportunity for different 
perspectives, strategies, and solutions to be shared and discussed, which might explain why 
equality of participation predicts learning outcomes.

Further, emerging evidence from studies in face-to-face collaborative learning settings 
suggests that productive collaboration involves distributed actions of regulation, social 
behaviors with positive valence, and forms of interaction, which support equal participa-
tion in a group (Pino-Pasternak et al. 2018). For example, Isohätälä et al. (2020) explored 
how actively students participate in cognitive and socio-emotional interactions during 
collaborative learning and what characterizes the moments when participation changes 
during transitions between the types of interaction. They categorized events from video 
data where all or only some of the students participated in the interaction. The qualita-
tive analysis showed that monitoring task progress and challenges often occurred when a 
higher number of students participated during a transition from cognitive to socio-emo-
tional interaction. Groups’ metacognitive interaction about their performance seemed to 
co-occur with socio-emotional interaction and often involved increased participation in 
a group. The authors of the study hypothesize that these moments may help groups to 
coordinate and develop shared understandings of their learning and promote a positive 
socio-emotional climate. They also conclude that future studies should investigate how 
patterns of participation and types of social interaction affect regulation and outcomes of 
collaborative learning.

To conclude, monitoring has a special role in collaborative problem solving, because in 
order to collaborate, students should share their views about the task and progress towards 
their goal. This is also a prerequisite for socially shared regulation (Hadwin et al. 2018). 
However, empirical evidence about the importance of equality of participation in monitor-
ing interactions for the group performance in face-to-face collaboration is still limited.

Valence of monitoring makes a difference to regulation

Although the aforementioned earlier research has revealed some of the characteristics of 
monitoring interaction, the valence of monitoring has so far gained little attention in the 
analysis of regulatory processes (Azevedo 2014). Because monitoring is an activity that 
raises participants’ awareness of the current situation, it can signal two completely different 
states of affairs with regard to valence.

Monitoring has different valences depending on if there is a discrepancy or not with the 
standards and goals set. On the one hand, monitoring can signal that there is a challenge and 
that the cognitive activity process is not developing as it should, which requires students 
to control their cognitive processes. This has been called monitoring with negative valence 
(Azevedo et al. 2010; Sobocinski et al. 2020). For example, a group of students might notice 
that their simulation task is not progressing as it should and that they are not performing 
well. This serves as a sign that something needs to be changed (metacognitive control) in 
their cognitive processes, and they can start to discuss alternative strategies to use in the 
simulation. They might end up reading the instructions again or adjusting the simulation for 
better success. On the other hand, monitoring may also indicate that the process is currently 
on track, which is called monitoring with positive valence. This suggests that the learning is 
progressing as it should and that no significant adjustments are needed regarding the cogni-
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tive processes of the group. Though the valence of monitoring is likely linked to emotional 
valence, it has a different meaning because emotional valence refers to the pleasantness of 
a feeling (Bradley and Lang 1994), while valence of monitoring refers to the evaluation of 
a cognitive process in relation to set standards (Azevedo and Witherspoon 2009). It is, for 
example, possible for a learner to monitor their own task progress with negative valence but 
still express and experience emotions with positive valence.

Monitoring with negative valence makes a difference for regulation in collaborative 
learning because it is likely to start the control processes of regulation. This means that 
the group has to activate and show an effort to change the course of the learning process 
(Hadwin et al. 2018), which should also be reflected as the interplay of adjustments on 
different systemic levels, including physiological, psychological, and interpersonal (Volet 
et al. 2009), of a collaborating group. Therefore, the distinction of valence as a charac-
teristic in monitoring is important for understanding how students regulate their learning 
processes together (Sobocinski et al. 2020). The valence of monitoring has been acknowl-
edged in regulation research on individual learners (Azevedo et al. 2010). However, there 
are only a few studies that have investigated it in collaborative learning contexts (Sobo-
cinski et al. 2020; Koivuniemi et al. 2018). These studies suggest that becoming aware 
and acknowledging the challenges in approaching the goals is important for efficient col-
laboration and seems to be linked to collaboration dynamics such as equality of participa-
tion. Evidence for the relation between valence of monitoring interactions, collaborative 
task performance and marks of regulation on different systemic levels of collaborative 
group is still scarce.

Interpersonal physiology reflecting monitoring in  
collaboration

Regulation of collaborative learning is not static but rather unfolds over time. While it is 
metacognitively grounded (Hadwin et al. 2018), it activates adjustments on different sys-
temic levels (physiological, psychological, and interpersonal) based on perceived or antici-
pated changes in the demands and conditions of the environment to meet goals (Volet et al. 
2009). This means that recognizing a need for adjustment through monitoring is pivotal and 
should therefore be reflected in social interactions (Näykki et al. 2017) and physiology (Ull-
sperger et al. 2014). To have a comprehensive understanding on the nature of monitoring 
and regulation in collaborative learning, it is important to investigate the interplay between 
the aforementioned systemic levels (Reimann 2019).

So far, it has been challenging to find scalable measures to explore these processes (Hurme 
and Järvelä 2005). Approaching regulation through triangulation with multiple methods and 
data channels has been proposed as one potential solution for the challenge (Karabenick 
and Zusho 2015; Järvelä et al. 2019). Recent developments in technology have opened new 
possibilities for studying monitoring with temporal data. Still, robust measures in individual 
learning settings, such as computer log events (Winne and Jamieson-Noel 2002) or a think-
aloud protocol (Greene et al. 2012), are not necessarily well suited to face-to-face collabora-
tive tasks. This is because the number of log events in face-to-face collaborative settings is 
often low, and traditional thinking aloud directed toward the researcher cannot be carried 
out normally when students take turns discussing the problem with one another.
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Recently, it has become possible for learning researchers to utilize data modalities that 
have previously only been available in highly controlled laboratory settings (Järvelä et al. 
2019; Reimann et al. 2014). For example, physiological measures provide intensive tempo-
ral data linked to cognitive and emotional processes during cognitive tasks (Efklides et al. 
2018; Kreibig and Gendolla 2014; Strain et al. 2013), which means they have potential in 
studying learning processes. Autonomic nervous system (ANS) activity does reflect cogni-
tive processes (Critchley et al. 2013), and its measures have been used in psychological 
research for years to study physiological arousal in relation to the emotion, cognition, and 
behavior of individuals. For example, there have been attempts to find an optimal level 
of physiological arousal for performance (Stennett 1957; Yerkes and Dodson 1908), and 
empirical findings suggest that physiological arousal is linked to learning outcomes in real 
collaborative classroom environments (Pijeira-Díaz et al. 2018).

Research also suggests that physiological arousal relates to processes relevant to the 
regulation of learning (Malmberg et al. 2019). Being a goal-targeted activity, regulation 
of learning is likely to be reflected in ANS, which has the purpose of regulating bodily 
functions to meet the interpreted situational demands. For example, in addition to having 
cognitive and affective effects, monitoring problems in task performance (monitoring with 
negative valence) activates ANS, providing the somatic basis for behavioral adaptations 
(Ullsperger et al. 2014). Recently proposed allostatic models of regulation and adaptation 
of physiology also suggest that changes in ANS are not just reactions to events, but reflect 
individuals’ and groups’ predicted demands (physical, cognitive, or social) in the situation 
(Blair and Raver 2015; Kreibig and Gendolla 2014; Saxbe et al. 2020; Sterling 2012). This 
means that changes in arousal also reflect the predictions of the coming events and required 
actions in relation to individuals’ or groups’ goals.

In addition to investigating individuals’ physiological activity in collaborative settings, a 
growing interest has risen to study the relationship between people’s physiological dynam-
ics referred as interpersonal physiology (Palumbo et al. 2017). Interpersonal autonomic 
physiology studies temporal interactions in ANS between multiple people. These interac-
tions have been linked to several social cognitive and emotional phenomena relevant for 
collaboration, such as shared understanding (Järvelä et al. 2014), empathy (Marci et al. 
2007), and emotional contagion (Pijeira-Díaz et al. 2019). However, the role of interde-
pendence between the participants’ physiological processes for social coordination remains 
unclear. On the one hand it seems to facilitate common social and affective space for col-
laboration (Cornejo et al. 2017; Danyluck and Page-Gould 2019) and on the other hand in 
some contexts it seems to reflect co-dysregulation in face of challenges (Saxbe et al. 2020). 
It has been hypothesized that these dynamics in interpersonal physiology aim towards sta-
bility through change, meaning continual predictive adjustment of multiple physiological 
systems to maintain homeostatic balance in a group (Saxbe et al. 2020).

Different concepts and computational procedures have been used to describe interper-
sonal physiology (Palumbo et al. 2017). In practice, most of the indices reveal how much 
interdependent or associated activity there is between the participants’ physiological pro-
cesses. In this study, this interdependence is referred to as physiological synchrony.

One of the potential ANS measures to inspect interpersonal physiology during tempo-
rally unfolding collaborative events is electrodermal activity (Ahonen et al. 2018; Schneider 
et al. 2020). Electrodermal activity (EDA) indicates the sympathetic “Fight or Flight” activ-
ity of ANS, which especially has been hypothesized to prepare the individual to face chal-
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lenges identified in the situation (Dawson et al. 2017). Though EDA has often been linked 
with emotional reactions, it is also considered to relate to metacognitive processes, such as 
the monitoring of task performance (Ahonen et al. 2018; Hajcak et al. 2003; Ullsperger et 
al. 2014) and feelings relating to difficulty and effort (Efklides et al. 2006).

Ahonen et al. (2018), studying collaborative learning in coding with dyads, found that the 
amplitude of EDA responses contains information about collaboration dynamics in relation 
to the role participants have in collaboration. They also found preliminary evidence suggest-
ing that EDA provides insight into the valence of pivotal task events. In the study, students 
who ran the code showed significantly higher EDA responses before running unsuccessful 
code than those running successful code. Authors of the study frame this as a link to emo-
tional valence, but further explain it with participants’ mental model of the code goodness, 
which could be considered to rely on metacognition. The fact that the arousal arose before 
testing the non-successful code could mean that prediction of the coming performance and 
adjustments needed after that was made beforehand, which would align with allostatic mod-
els of physiological regulation (Sterling 2012).

Based on prior research, Malmberg et al. (2019) investigated how physiological arousal 
relates to monitoring events during collaborative exams. They found that, at a session level, 
the frequency of monitoring utterances was strongly related to physiological arousal, seen 
as EDA peaks.

Recently, Schneider et al. (2020) found physiological synchrony to be positively linked 
with interaction characteristics relevant to regulation in collaborative learning, such as 
reciprocal interactions and dialogue management. They also found that groups that man-
aged to reach a consensus decreased their physiological synchrony over time. Further, group 
effort demands might play a role in this, as Dindar, Järvelä et al. (2020) found monitoring 
of mental effort to be positively related to physiological synchrony during collaboration. 
Physiological synchrony has also been found to reflect the similarity between subjective 
self-reported evaluations of cognition between group members in collaboration (Dindar, 
Malmberg et al.2020). Sobocinski et al. (2020) studied the valence of monitoring and the 
following reactions by collaborative group members as markers of adaptation during a col-
laborative physics exam. They found that groups that monitored more with positive valence 
also tended to show more transitions in their group-level physiological states, as derived 
with vector quantization from their heart rate signals. Though the strength of the correlation 
was limited, the relations between monitoring and interpersonal physiology seem to have 
potential to be explored further.

Frequently found relations between monitoring interactions and physiology suggest 
that the hypothesized interplay (Reimann 2019; Volet et al. 2009) between systemic lev-
els of physiology and social interaction in the regulation of collaborative learning exists. 
However, the findings of interpersonal physiology in relation to monitoring expressed 
in collaborative learning are still somewhat inconsistent, and there seem to be group- 
(Haataja et al. 2018) and task-dependent variations (Dindar et al. 2019). It remains 
unclear whether interpersonal physiology is more likely to reflect the dynamics of roles 
and equality of participation in collaborative interactions (Ahonen et al. 2018; Schneider 
et al. 2020) or the recognized regulatory need for adjustments (monitoring with negative 
valence) in a group (Sobocinski et al. 2020; Volet et al. 2009). The valence of monitoring 
should be pivotal for the following regulation process (Azevedo 2014), making it impor-
tant to study valence in relation to monitoring interactions, arousal, and physiological 
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synchrony. More research is needed to better understand how physiological synchrony, 
which in some contexts seems to facilitate adaptation (Feldman 2007) but in others is 
coupled with challenges (Malmberg et al. 2019; Saxbe et al. 2020), relates to monitoring 
and regulation in collaborative learning.

Aims

This study acknowledges the pivotal role of monitoring for collaborative problem solving 
and hypothesizes that it can be evidenced in interactions, performance, and interpersonal 
physiology. Therefore, the study aims to investigate how valence and equality of participa-
tion in monitoring interactions relates to collaborative problem-solving performance, physi-
ological arousal, and physiological synchrony.

The specific research questions and hypotheses are as follows:
RQ1. Do valence and equality of participation in monitoring interactions relate to col-

laborative task performance?
H1. Valence of monitoring interactions predicts collaborative task performance.
H2. Equality of participation in monitoring interactions predicts collaborative task 

performance.
RQ2. Do physiological arousal and physiological synchrony relate to valence of moni-

toring interactions?
H3. Physiological arousal predicts valence of monitoring interactions.
H4. Physiological synchrony predicts valence of monitoring interactions.
RQ3. Do physiological arousal and synchrony relate to equality of participation in moni-

toring interactions?
H5. Physiological arousal is positively linked to equality of participation in monitoring 

interactions.
H6. Physiological synchrony is positively linked to equality of participation in monitor-

ing interactions.

Methodology

Participants and context

The subjects of the study were volunteer university students (N = 77, Mage = 27.84, SD = 5.51, 
Male = 33) who were randomly assigned to groups of three. In total, data were collected 
from 26 groups. However, seven groups were excluded from the dataset, either due to a par-
ticipant leaving the task before it was over or because of the poor quality of a participant’s 
EDA data. One of the excluded groups included only 2 participants. Therefore, the final 
dataset includes data from 19 groups (N = 57, Mage = 27.29, SD = 4.89, Male = 25).

The collaborative task was a business simulation in which participants were required to 
run a shirt production company (Danner et al. 2011). The simulation’s goal was to increase 
the value of the company as much as possible. This depended on the relationships between 
24 variables (e.g., employee wages, storage costs, store locations, advertisement costs, shirt 
price), which could be adjusted by the group members. The simulation included two distinct 
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phases: exploration and performance. The current study concentrates on the exploration 
phase, wherein the participants ran the simulation for six simulated months with the aim 
of learning how the system worked, as well as understanding how adjusting the variables 
would affect the value of the company. Adjustments for each month were followed by a tran-
sition to the next month, after which the participants could immediately see the company’s 
current value based on the decisions and adjustments made during the previous month. 
This study focuses on one-minute episodes that took place immediately after each transition 
as those were considered to be pivoting parts of the simulation where the students would 
likely spontaneously monitor their problem-solving processes. The participants were not 
prompted on how to interact after the transitions.

Data

The data were collected in a classroom-like research infrastructure specifically designed 
for collaborative learning. The research space was separated into three rooms with sound-
proof walls, which made it possible to collect data from three groups simultaneously. First, 
participants were asked to fill in consent forms. Second, for EDA recording, the research-
ers attached Shimmer 3GSR + sensors (Burns et al. 2010) to the participants’ non-domi-
nant hands so that the gel electrodes were placed on the thenar and hypothenar eminences 
on their palms (Dawson et al. 2017). Third, the researchers introduced the participants to 
their randomly assigned group members and guided them to the data collection room. In 
the room, the group members were seated at a table with a desktop computer. Fourth, the 
researcher read the task instruction and then left the participants to complete the simulation 
collaboratively. On average, it took 41 min and 14 s for the groups to complete the explora-
tion phase of the task (SD = 17 min 5 s).

The data of the current study consist of video recordings, physiological data, and task 
performance measures for 19 groups. Altogether, the video recordings include 27  h and 
3 min of data. However, this study concentrates on the exploration phase of the simulation, 
and the (1 min) episodes following the transitions between the simulated months altogether 
provide 114 one-minute video recordings. The original EDA data consist of 57 recordings 
with a sampling frequency of 128 hz. Log data include the timestamps of the transition epi-
sodes and the company values before and after the transitions in the simulation.

Analysis of the performance

Since the goal of the simulation is to maximize the company value, the changes in the 
company value after each simulated month are considered as performance indicators for the 
Tailorshop simulation (Danner et al. 2011). Although a trend in the change seems to be the 
most reliable measure of individuals’ dynamic decision-making skill, this study was more 
interested in the specific moments of collaboration in the simulation interactions. Therefore, 
a change in the company value (M = -12373.26, SD = 17493.20) for the month, following 
the transition minute, was used as an indicator of task performance for each month. Because 
the change is presented as a simulated monetary unit, being possibly difficult to interpret, 
the values were standardized to help interpretation of the results.
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Analysis of the video data

The analysis of the current study concentrates on the (1  min) time segments when the 
students transitioned to the subsequent month in terms of exploring the simulation and, 
therefore, when they had the chance to monitor their progress with the task. Monitoring 
utterances and subjects participating were identified and coded from the transition (1 min) 
episodes in the video, and was based on prior coding schemes used for monitoring coding 
(Haataja et al. 2018; Whitebread et al. 2009). Verbalizations related to the ongoing on-task 
assessment of the quality of the task performance, understanding, and the degree to which 
performance was progressing towards a desired goal were considered as monitoring inter-
actions (Whitebread et al. 2009). After this, a coding scheme on the valence of monitoring 
was developed based on theory (Azevedo 2014; Azevedo and Witherspoon 2009) and prior 
research (Sobocinski et al. 2020).

The valence of monitoring included three categories: monitoring with positive, neutral, 
and negative valence. Defining characters for monitoring with positive valence were that 
the students considered that the problem-solving process was progressing towards their 
goal or that they acknowledged knowing how the simulation worked. Monitoring with 
neutral valence was more about students verbally pointing out the current state of the 
problem-solving process without considering if it was progressing towards the goal or 
not. Monitoring with negative valence signaled that the process of problem solving was 
not advancing towards the goal or that the students did not understand how the system 
operated. Table 1 explains the key differences between each of these categories in further 
detail.

In the current study, verbal expressions of monitoring were considered as participation 
in monitoring and, therefore, equality of participation into monitoring was operationalized 
from the variation in summed durations of expressed monitoring utterances between the stu-
dents. In practice, equality of participation in monitoring interactions between the students 
was calculated for each simulation transition minute as the standard deviation (SD) of the 
three members’ monitoring proportions (the duration of the monitoring by a member as a 
proportion of the total duration of the monitoring) within each group (Kapur et al. 2008). 
This would have meant that a lower SD indicated more equal participation in the monitor-

Table 1  Description of coding categories for the valence of monitoring interactions
Code Description Examples
Monitoring 
with positive 
valence

Utterances stating that the group is advancing 
towards their goal or that they understand something 
concerning the task. Positive comparison to the 
previous state of the task.

“Our company value increased”
“We are doing well!”
“We know that this relates to …”
“We made more profit!”

Monitoring 
with neutral 
valence

Utterances pointing out the current state of the task 
without considering if it is progressing towards the 
goal or not. No comparison to the previous state of 
the task.

“We are now in month 5”
“Our bank account value is …”
“We made 1500 shirts”

Monitoring 
with negative 
valence

Utterances stating that the group is not advancing 
towards their goal or that they do not understand 
something concerning the task. Negative comparison 
to the previous state of the task.

“I don’t understand how this 
works”
“We are going bankrupt”
“We are making less money”
“Our value decreased”
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ing interactions between the students in a group. Therefore, the variable was reversed for 
easier interpretation. First, each value was subtracted from the theoretical maximum of the 
proportional SD that three group members could have, referring to a case of least equal par-
ticipation where one student would be responsible for all the monitoring. Second, resulting 
values were then divided by theoretical maximum to adjust the range of the scale to 0–1. In 
the resulting variable, value 0 indicates the lowest possible equality of participation where 
one student is responsible for all the monitoring in a group, and value 1 indicates the highest 
possible equality of participation where all three group members attend to exactly the same 
amount.

Reliability of the video data coding

The reliability analysis was performed on two levels: first, (a) to identify monitoring utter-
ances at the student level and second, (b) to reveal the valence of the monitoring utterances 
at the student level. Both the monitoring utterances and the valence of the monitoring utter-
ances were coded by two researchers. After the principal coder had completed the coding, 
the interrater coder assessed 20 % of the data from randomly selected one-minute episodes, 
altogether consisting of 23 min of video from 15 groups. The interrater coder was asked 
to demarcate monitoring utterances and the valence of the monitoring utterances from the 
students’ verbal interactions (i.e., when the monitoring began and ended) and to name the 
type of valence (negative, neutral, or positive). In the first round of the reliability coding, 
four random episodes were selected. In this phase of the analysis, the rules and criteria 
for identifying monitoring utterances with valence were also clarified. In the second round 
of the analysis, 10 episodes from 23 randomly assigned episodes were analyzed, yielding 
agreement between the coders with a kappa value of 0.59. After negotiating and specifying 
the coding schema, the rest of the episodes were coded, and the overall interrater reliability 
kappa value for 168 monitoring utterances was 0.64, which can be considered as demon-
strating a substantial level of agreement. The resulting video codes used in the later steps of 
the analysis were all coded by a principal coder who was more experienced with these types 
of data. The duration of each valence of monitoring for each one-minute episode and for 
each student was retrieved from Observer XT12.5 software.

Analysis of the physiological data

The EDA signal was pre-processed with a previously used approach (see, e.g., Di Lascio et 
al. 2018). First, the EDA data were visually inspected for clear signs of movement artifacts 
(e.g., lost electrode contact seen as a drop in the signal), and the artifacts found were manu-
ally corrected with Ledalab toolbox. Second, the signals were downsampled to 4 hz with 
the purpose of making long recordings computable for recurrence quantification analysis. 
Third, signals were standardized in order to make them comparable with each other (Ben-
Shakhar 1985). Standardization has been successfully used for EDA (Ben-Shakhar 1985; 
Dawson et al. 2017) and is also suggested for recurrence-based analysis to ensure that its 
measures are based on the sequential similarity of the time series (Wallot and Leonardi 
2018). Fourth, the signal was decomposed with Ledalab continuous decomposition analy-
sis, including the adaptive smoothing of the signal (Benedek and Kaernbach 2010), which 
resulted in a rapidly changing phasic signal component (seen as peaks in the original signal) 
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and a more slowly changing tonic signal component (seen as a base level in the original 
signal).

Physiological arousal was measured by the change in the tonic signal component of 
EDA, which has been suggested to be applicable to unfolding events such as collaborative 
learning (Mendes 2009). In practice, physiological arousal was derived from the slope of 
the tonic EDA component by fitting a linear model for each signal in each transition minute. 
Because this gave values for the individuals in a group, an aggregation for the group level 
had to be carried out. For this, the best unbiased linear predictor method in the MicroMacro 
R package was used (Croon and van Veldhoven 2007; Lu et al. 2017). This resulted in slope 
values for each group for each transition, reflecting physiological arousal at a group level. 
Positive values signaled an increase and negative values signaled a decrease in the group’s 
arousal.

Physiological synchrony aims to reveal interdependence in physiology between the 
individuals. In this study, the explored time windows for interdependence were quite short 
(1  min), and therefore, the phasic signal component of EDA was used as the signal for 
calculation (Mendes 2009). Multidimensional recurrence quantification analysis (MdRQA) 
is one of the few methods that can quantify the synchrony between more than two signals 

Fig. 1  Example of EDA signals (A,C) and the resulting recurrence plots (B,D) of one-minute episodes with 
high synchrony (A,B) and low synchrony (C,D)
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(Wallot et al. 2016), and therefore, it was used to quantify the physiological synchrony 
between the students. MdRQA is a nonlinear time series analysis method that allows the 
investigation of synchrony patterns between two or more time series, which do not necessar-
ily have to be stationary. MdRQA statistics are based on recurrence plots, which graphically 
display the dynamics of a multidimensional phase space of a system, such as a collaborating 
group (see the example in Fig. 1). In general, MdRQA statistics derived from the plot can 
be considered to indicate synchrony between the signals. For example, percent recurrence 
(%REC) indicates how many individual elements between three signals are shared, percent 
determinism (%DET) is the degree to which elements between the three signals repeat in 
terms of larger connected synchrony patterns, and average diagonal line (ADL) indicates the 
average size of the repeated synchrony patterns (Wallot et al. 2016).

The parameters for running the MdRQA analysis were decided based on the suggestions 
in the RQA literature (Wallot et al. 2016). First, the delay (DEL) parameter was estimated 
using the average mutual information function for each individual EDA signal. Second, the 
false nearest neighbor function was used for each EDA signal to estimate the embedding 
dimension parameter. With both functions, the first local minimum was determined for each 
signal and then averaged and rounded up for all the signals. In this case, the resulting values 
were divided by two as the signals were embedded together in the MdRQA. This means that 
not all the dimensions had to be reconstructed by time-delayed embedding because they 
were available as separately measured signals (Wallot et al. 2016). The parameters used 
were delay = 10 and embedding = 2. The radius parameter was set to 0.30, which kept the 
mean of percent recurrence close to the suggested 5 % (Wallot and Leonardi 2018).

To verify that the synchrony occurred due to collaboration and not due to chance or task 
constraints, false groups were formed so that phasic EDA signals were randomly matched 
with participants from other groups. In practice, each signal was randomly assigned to a false 
group so that none of the signals stayed in the same group with the original group members. 
Then, MdRQA was performed for the false groups to compare them with the real ones. The 
Mann-Whitney U test showed a significant difference between the real and the false groups 
for percent recurrence (%REC, U = 5 385.5, n1 = 112, n2 = 112, z = − 2.032, p = .042), percent 
determinism (%DET, U = 5 116, n1 = 112, n2 = 112, z = − , p = .010) and average diagonal line 
length (ADL, U = 5 407, n1 = 112, n2 = 112, z = − 1.988, p = .047). However, for maximum 
diagonal line length (MDL, U = 6 306, n1 = 112, n2 = 112, z = − 0.159, p = .874) and percent 
laminarity (%LAM, U = 5428.5, n1 = 112, n2 = 112, z = − 1.944, p = .052), no significant dif-
ference was found, and therefore, these were excluded from the later phases of analysis.

In order to use all the observed values from transition moments for each group in the 
analysis, the effects of repeated measures and possible serial dependency had to be taken 
into account in the statistical analysis. Generalized estimating equations (GEE) with a 
robust covariance estimator were used to model the standardized independent variables 
as predictors of task performance, equality of participation in monitoring, and valence of 
monitoring interactions. GEE attempts to accommodate the covariance that exists between 
the observations (i.e., repeated observations or clusters) and yields regression coefficient 
estimates with standard error estimates being corrected for nested or repeated types of data 
(McNeish et al. 2017). Because the dependent variables were continuous, normal, gamma, 
and inverse gaussian distributions with logarithmic and identity link functions were tested 
to select the best fitting working correlation matrix indicated by the lowest quasi-likelihood 
under the independence criterion (QIC) value (Garson 2012). Independent variables were 
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standardized before being included in the model. The independent covariates for each model 
were included based on the lowest values of corrected quasi-likelihood under the indepen-
dence model criterion (QICC), indicating the best fit for the model (Cui and Qian 2007). The 
results of each model with the working correlation matrix, distribution, and link functions 
are reported in each table. Variance inflation factor values for MdRQA measures (VIF < 2.2) 
and different valences of monitoring (VIF < 1.2) were below commonly used cutoff limits 
(4–10, O’Brien 2007) suggesting that multicollinearity does not exist between the variables.

Results

Descriptive statistics

Descriptive statistics for the monitoring utterances with different valences are introduced 
as durations and frequencies in Table  2. Most of the monitoring had a neutral valence 
(M = 16.88 s, SD = 11.45 s). Monitoring with positive valence occurred the least (M = 5.45 s, 
SD = 5.52 s). On average, half of the duration of the transition minutes included monitoring 
interactions (see Table 2).

The Friedman test was run to see if there were differences between six subsequent tran-
sitions in terms of the duration of the monitoring and the three different valence catego-
ries. Durations of monitoring with neutral valence (χ2(5) = 2.81, p = .730) and with positive 
valence (χ2(5) = 6.85, p = .232), and monitoring overall, showed no differences between tran-
sitions. Only monitoring with negative valence showed a significant difference between 
transition episodes (χ2(5) = 17.80, p = .003). However, a post hoc comparison of Wilcoxon 
signed-rank tests with Bonferroni correction could not identify significant differences in 
pair-wise comparisons between the transitions. Variance partitioning coefficients suggested 
that differences between groups explained 21 % of the variance in all monitoring, 12 % in 
monitoring with negative valence, 27 % in monitoring with neutral valence, and 4 % in 
monitoring with positive valence. This supported the use of GEE for the later steps of the 
analysis.

The values for equality of participation varied from 0 to 1, with a mean of 0.52 and a SD 
of 0.20. A repeated measures ANOVA showed no significant difference between the means 
of the six subsequent transition episodes (F (5, 90) = 1.72, p = .14), which would suggest 
that on average there was no change or trend in terms of how equally the students took part 
in monitoring interactions during the simulation. The variance partitioning coefficient sug-

Table 2  Monitoring interactions with different valences for all the transitions
Type of 
monitoring

Duration (s) Frequency

Min Max M SD Sum % Min Max M SD Sum %
Monitoring with 
negative valence

0 38.29 9.06 7.76 1015.28 29 0 7 2.3 1.58 258 31

Monitoring with 
neutral valence

0 47.55 16.88 11.45 1890.28 54 0 11 3.63 2.29 407 49

Monitoring with 
positive valence

0 21.19 5.45 5.52 610.05 17 0 6 1.48 1.46 166 20

All monitoring 0 51.8 31.39 12.81 3515.6 100 0 16 7.42 3.01 831 100
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gested that 27 % of the variance in equality of participation in monitoring was explained by 
the group. This is to say, there were consistent differences between the groups (see Fig. 2) 
in terms of how equally the monitoring interactions were distributed between the group 
members, which also supported use of GEE for the later analysis.

RQ1. Do valence of monitoring interactions and equality of participation in moni-
toring interactions relate to collaborative task performance?

Equality of participation in monitoring and monitoring with negative, neutral, and posi-
tive valence (duration) were used as independent variables to fit a GEE model predict-
ing task performance. Based on the QIC and QICC, the best fitting model predicting task 
performance included equality of participation in monitoring and monitoring with positive 
valence as significant positive predictors (see Table 3). Intercept made the fit of the model 
worse and was therefore excluded from it. This result means that higher equality of par-
ticipation in monitoring interactions and more monitoring with positive valence predicted 
better task performance following the transition episodes.

RQ2. Do physiological arousal and physiological synchrony relate to valence of 
monitoring interactions?

The slope of the tonic EDA signal, representing physiological arousal and %REC, 
%DET, and ADL, representing physiological synchrony, were used to fit models predicting 
each valence category of monitoring interactions. The GEE model output for monitoring 
with negative, neutral, and positive valence shows that physiological arousal and physi-
ological synchrony were both related to the valence of monitoring interactions (see Table 4). 
First, the model predicting monitoring with negative valence included the tonic EDA slope 
and %DET as significant positive predictors, meaning that increase in physiological arousal 
and higher physiological synchrony were related to more monitoring interactions with nega-
tive valence. Second, the model predicting monitoring with neutral valence included the 
tonic EDA slope as a significant negative predictor, meaning that an increase in arousal was 
related to less monitoring interactions with neutral valence. Third, the model predicting 
monitoring with positive valence indicates that %REC and %ADL were significant negative 
predictors, meaning that higher physiological synchrony was related to less monitoring with 
positive valence.

RQ3. Do physiological arousal and synchrony relate to equality of participation in 
monitoring interactions?

Fig. 2  Equality of participation 
presented for each group during 
each transition episode
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The slope of the tonic EDA signal, representing physiological arousal, and %REC, 
%DET, and ADL, representing physiological synchrony, were used as independent vari-
ables to predict equality of participation in monitoring interactions. None of the independent 
physiological data variables improved the fit of the GEE model for predicting equality of 
participation in monitoring interactions. The best fitting model therefore only included the 
intercept (β = 0.241, χ2 = 333.72, p < .001, 95 % CI [0.22, 0.27]), which suggests that neither 
arousal nor physiological synchrony has the potential to predict equal participation in moni-
toring interactions.

Discussion

Research into regulation in learning has emphasized the need to differentiate the characteris-
tics of monitoring in different settings (Azevedo 2014). Equality of participation (Isohätälä 
et al. 2017; Rogat and Linnenbrink-Garcia 2011) and the valence of monitoring interactions 
(Sobocinski et al. 2020) have been considered as important characteristics for successful 
collaborative learning, but few studies have examined these systematically. Theories of 
regulation in collaborative learning have also emphasized the multifaceted (Hadwin et al. 
2018) and multilevel (Volet et al. 2009) nature of regulation in collaborative learning. Prior 
research suggests that interpersonal physiology does relate to monitoring and regulation in 
collaborative learning. However, this relation has not held true for all tasks and all groups 
(Dindar et al. 2019; Haataja et al. 2018). In general, researchers have called for more empiri-
cal evidence to confirm the methodological relevancy of multimodal data for conceptual and 
theoretical progress in the field of regulated learning (Järvelä et al. 2019; Reimann 2019).

Table 4  GEE model output for monitoring with negative, neutral, and positive valence
Dependent variable Monitoring with negative 

valence
Monitoring with neutral 
valence

Monitoring with positive 
valence

Covariance Structure First order autoregressive Unstructured First order autoregressive
Distribution Gamma with identity link Gamma with identity link Gamma with identity link

Covariate β 
(SE)

Wald 
χ2

95% 
CI

β 
(SE)

Wald 
χ2

95% 
CI

β 
(SE)

Wald 
χ2

95% 
CI

Intercept 8.93 
(0.86)

108.21** [7.24, 
10.61]

16.55 
(1.29)

165.36** [14.03, 
19.07]

5.60 
(0.63)

79.63** [4.37, 
6.83]

Tonic EDA slope 1.42 
(0.20)

51.27** [1.04, 
1.81]

−3.40 
(0.26)

165.35** [−3.91, 
−2.88]

REC% −0.51 
(0.06)

79.61** [−0.62, 
−0.40]

DET% 1.31 
(0.34)

14.60** [0.64, 
1.98]

ADL −0.86 
(0.10)

79.60** [−1.05, 
−0.67]

Model criteria
QIC 286.43 191.80 504.24
QICC 290.95 194.85 508.45
Note. *p < .05, **p < .01, QIC = Quasi-likelihood under the independence criterion (lower is a better fit), 
QICC = Corrected quasi-likelihood under the independence model criterion
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This study supports the view that the different types of valence occurs in monitoring and 
can be recognized in the interactions of the students (Sobocinski et al. 2020). However, in 
the collaborative problem-solving context studied, much of the monitoring was neutral, 
without indicating a clear negative or positive valence. This distribution between different 
valence categories likely depends, to a great extent, on the contextual task demands and on 
the competence of the group. Because the task of the current study was novel for the par-
ticipants, they were likely to monitor a lot of elements of which not all were related to the 
cognitive goals of the task. Complex problem solving also involves a high level of uncer-
tainty (Dörner and Funke 2017), which is also likely to trigger knowledge construction that 
could be reflected as neutral monitoring. Still, in general monitoring with different valences 
stayed constant, and no significant differences between the transition episodes were found 
as the students progressed with the task.

The results suggest that groups differ in how equally participants take part in monitor-
ing interactions, and this seems to be a characteristic that is somewhat “fixed” through the 
collaboration. This means that in some groups, participants continuously take more equal 
responsibility in terms of monitoring interactions. Similar findings for equality of partici-
pation in collaborative learning have been made in prior research (Cohen 1994, Kapur et 
al. 2008). This could indicate that initial individual and/or social conditions such as self-
efficacy or interest might have a significant role in terms of equality of participation in 
monitoring interactions. This should be considered when interventions aiming to support 
monitoring are designed. For example, it might be important that prompts, which have been 
considered as a prominent approach to facilitate metacognitive interaction (Malmberg et al. 
2015), are introduced early in the collaboration and that these would also aim to influence 
equality of participation in monitoring interactions.

Group members’ equality of participation in monitoring and monitoring with positive 
valence were found to be significant predictors of task performance. First, this supports the 
importance of shared regulatory processes in collaborative learning (Hadwin et al. 2018). 
When more participants monitor the task process, it is likely that different points of views 
are presented to construct shared knowledge (Roschelle and Teasley 1995), which also sup-
ports the reciprocal and negotiated use of strategies and joint responsibility for the progress 
of the task (Isohätälä et al. 2020). It is also possible that inequality in participation has a 
hindering effect on collaboration because it can involve overruling and social loafing types 
of phenomena (Linnenbrink-Garcia et al. 2011). Importantly, although this study gives some 
support to the view that participation in monitoring can (in some cases) signal good-quality 
collaboration (Jeong and Hmelo-Silver 2016), it does not account for every variety of other 
quality characteristics in monitoring, such as targets and accuracy of monitoring, which 
affect how successfully students construct knowledge together (Rogat and Linnenbrink-
Garcia 2011). Second, the result underlines the role of the valence of monitoring in reveal-
ing pivotal moments in collaborations. An explanation for the latter could be that when 
group members understand something relevant for the task, signaled as monitoring with 
positive valence, their following performance is likely to be better. Still, though the GEE 
analysis adjusts to the repeated nature of the data, this result should be interpreted carefully 
because of the possible relatedness between transitions.

The results of the current study also show that the valence of monitoring relates to the 
interpersonal physiology of the students. For example, monitoring with negative valence 
was positively related to increase in physiological arousal (EDA slope) and physiological 
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synchrony (%DET). This means that when monitoring interactions suggest that there is a 
need to act and change something in a group’s strategies, learners simultaneously show the 
effortful allocation of physiological resources and attune with each other. This aligns with 
the hypothesized interplay of regulation on different systemic levels in collaborative groups 
(Reimann 2019; Volet et al. 2009). Arousal itself might also have a special adaptive role in 
collaborative learning, since it seems to increase information sharing (Berger 2011), which 
might be especially useful when different strategies are considered. In contrast, monitoring 
with neutral valence was related to a decrease in physiological arousal, and monitoring 
with positive valence was negatively linked to physiological synchrony (%REC and ADL), 
which signals that synchrony is lower when things are considered to be on-track. These 
results can also explain why some of the prior studies have observed variance in the relation 
between monitoring and physiological synchrony for different tasks and groups (Dindar et 
al. 2019; Haataja et al. 2018). Because the valence of monitoring interactions reflects task 
demands, it is likely that tasks with different degrees of difficulty and groups with different 
levels of competence show different relationships between monitoring and physiological 
synchrony if the valence of monitoring is not considered. This is also in line with recent 
findings showing a link between the monitoring of mental effort (Dindar, Järvelä et al. 2020) 
and task difficulties (Malmberg et al. 2019) with physiological synchrony. It seems that 
physiological synchrony occurs as a condition, especially when the group as a whole con-
siders that efforts and changes in the collaborative process are needed. When the strategies 
are changed, physiological synchrony tends to decrease (Mønster et al. 2016). Therefore, 
it could be hypothesized that groups that continuously show high synchrony and arousal 
throughout their collaboration might actually be unable to adapt and find efficient strategies 
and could therefore benefit from support.

Earlier research has found interpersonal physiology to reflect reciprocal contributions to 
collaborative learning (Schneider et al. 2020), and therefore, this study explored the possible 
relationship between equality of participation in monitoring and physiological synchrony 
and arousal. However, the current study could not find a relationship between physiological 
synchrony or arousal and equality of participation in monitoring interactions. The differ-
ence in these results with those of prior research might be due to the different indices used 
for measuring physiological synchrony, different task types, and conditions, or the fact that 
monitoring interactions make up only a small part of all the interactions in collaborations. 
The result also suggests that, although joint contributions to monitoring interactions seem 
to be important for performance, it is not a prerequisite for students to interpret similarly the 
demands of the ongoing situation.

In relation to physiological arousal, it should be noted that constant increased physi-
ological arousal is a taxing condition for the body (Dawson et al. 2017). Therefore, if a task 
involves a lot of monitoring with negative valence caused, for example, by uncertainty or 
difficulty, this is likely to be exhausting at the mental and physiological levels (Barrett et al. 
2016; Stephan et al. 2016). Also, it could be hypothesized that if the physiological state of 
the individual or group is not optimal to start with, it might be difficult to keep demanding 
monitoring and regulation processes going. Considering this, physiological data hold the 
potential to reveal a more holistic picture of the conditions within which self- and socially 
shared regulation processes emerge (Ben-Eliyahu and Bernacki 2015; Järvelä et al. 2019).

The challenge of using physiological data as a direct proxy to study any mental-level 
self-regulatory process remains (Winne 2019). In the case of arousal, though it is likely 
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related to monitoring of some current or forthcoming cognitive demands (Dawson et al. 
2017), it is very challenging to say if these interpreted demands actually are cognitive or, for 
example, socio-emotional. Therefore, this allocation of physiological resources to meet the 
demands seen as changes in arousal cannot itself indicate whether it stems only from meta-
cognition, or whether it is related to the learning task at all. This means that other data about 
the context are needed to make (at least somewhat) correct predictions of specific cognitive 
processes with physiological data (Järvelä et al. 2021). However, current investigations into 
the relations between physiology and social interactions in collaborative groups, as in this 
study, are likely to increase our understanding of how regulation involves adjustments on 
the multiple systemic levels of a collaborative group (Reimann 2019; Volet et al. 2009).

Further, because the valence of monitoring is likely, but not necessarily always, linked to 
emotional valence during collaborative learning, it would be important to investigate these 
processes together (Törmänen et al. 2021). Arousal originating from monitoring of cogni-
tion, or some other cognitive process, can also be considered as an affective ingredient when 
emotional experience is being constructed (Barrett 2016). This might partly explain some of 
the relationships found between emotions and metacognitive processes (Taub et al. 2019). 
One way to control and inspect these relations further in the future would be to separately 
capture fine-grained data of emotional expressions (e.g., facial expressions), metacognitive 
monitoring (e.g., interactions, or think-a-loud), and physiological arousal (e.g., electroder-
mal activity) and inspect the discrepancies and relations between them.

Future studies should also consider the nonlinear nature of emergence in these learning 
processes. For example, monitoring with different valence characteristics triggers different 
types of feedback loops of regulation, which are not linear but are likely to greatly affect the 
following learning process (Azevedo 2014). It is also important to investigate the temporal 
changes of interpersonal physiology such as moving in and out of synchrony (Likens and 
Wiltshire 2020), because these seem to be prominent in revealing the quality of the col-
laboration (Schneider et al. 2020) and might reflect adaptation or mal-adaptation of a group 
(Saxbe et al. 2020; Sobocinski et al. 2020). Because regulation in collaborative learning is 
a dynamic process and emerges on different systemic levels, which are likely to constantly 
interact with each other (Reimann 2019; Volet et al. 2009), a complex dynamical systems 
approach might offer potential methodological tools (e.g., MdRQA) for researching it in the 
future (Hilpert and Marchand 2018; Jacobson et al. 2016).

In conclusion, this study shows the importance of monitoring interactions for successful 
collaborative learning. It also provides evidence that levels of metacognitive interactions 
and interpersonal physiology are linked in collaborative learning. This suggests that moni-
toring interactions that serve groups’ regulation of learning towards a shared goal are linked 
to a different type of regulatory process on another systemic level: interpersonal physiology. 
Though the strength of this link may be limited, it is likely that research involving mul-
tiple data modalities such as video and physiological data advances understanding of how 
regulation on these different levels intertwine and facilitate or hinder groups in progressing 
towards their goals in problem solving and learning.
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Limitations

The current study has several limitations. First, the data for this study were gathered with 
a simulation task, which is rather specific and not usual for the participants to be working 
with. Therefore, it might have a novelty effect not seen in other contexts. Also, though the 
task performance measures of the simulation are likely to reflect some of the learning gains, 
they are not a direct measure of these.

The focus of the current study was limited to transition moments in the simulation pro-
cess. This was due to limited possibilities to code the entire video corpus with the level of 
detail used in this study. As a result, some of the monitoring that focused more on content 
understanding during exploration was likely left out of the analysis. Additionally, the study 
only concentrated on one central process of regulation—monitoring—and two of its char-
acteristics. Considering the full cycles of regulation, including different phases, would be 
important in the future.

The transitions between simulated months are also likely to trigger monitoring and there-
fore results might not apply to monitoring during tasks with less structure. Due to the nature 
of the task, this monitoring also mostly targeted cognitive performance in contrast to, for 
example, knowledge about strategies. Further, in a real classroom the learners might moni-
tor progress towards a variety of goals, from which only some might be related to learning. 
Though monitoring of cognition has been shown to be linked with arousal, other factors are 
likely to be linked to physiological arousal and synchrony during collaborative learning.
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