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Abstract 15 

Ceramic hydroxyapatite foam (CF-HAP) was prepared by combining slip-casting and foaming methods.  16 

The prepared CF-HAP was characterized by scanning electron microscopy (SEM); physisorption of N2, 17 

Fourier transforms infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The results of the specific 18 

surface area and SEM analyses revealed that the used shaping method provides CF-HAP with a wide 19 

range of porosity including macro and mesopores. Based on FTIR and XRD analyses, the CF-HAP is 20 

similar to pure well-crystallized hydroxyapatite. The adsorption results revealed that 94% of the BPA 21 

with a concentration of (40 mg/L) was effectively removed from the water and that the maximum 22 

adsorption capacity was higher in acidic than in basic medium. The thermodynamic studies indicated that 23 

the adsorption reaction was spontaneous and endothermic in nature. The adsorption capacity increased 24 

with the temperature and the BPA is chemisorbed on the ceramic foam. The isotherm data fitted slightly 25 

better with the Liu than with the Freundlich and Langmuir models suggesting that the adsorption was 26 

homogeneous and occurred only in the monolayer. The adsorption process depends largely on the BPA 27 

concentration and the results fitted well with the pseudo-first-order model. This confirms that the 28 

interaction between the BPA and the CF-HAP was mainly chemical in nature. The FTIR analysis of the 29 

used and fresh CF-HAP showed that all the hydroxyl and phosphorus bands characteristic of the 30 

hydroxyapatite shifted after adsorption of Bisphenol- A. This suggests that the adsorption of Bisphenol-31 

A occurred in the sites of the Hydroxyapatite. Therefore, it can be concluded that the CF-HAP has the 32 

potential to be used as an adsorbent for wastewater treatment and purification processes. 33 
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1. Introduction  41 

 42 

Due to the growth of industrial activities, the natural resources essential for life are becoming more and 43 

more polluted. This contamination from industrial sources includes heavy metals, salts, detergents, 44 

pharmaceutical and dyes, and some other organic matters (Salah et al. 2014; Kakoi et al. 2016; Noukeu 45 

et al. 2016). 46 

Some of the organics and pharmaceutical compounds are classified as endocrine-disrupting compounds 47 

(EDCs) (Zacharewski et al 1998). It is widely recognized that the EDCs can affect the function of the 48 

endocrine system in different ways, for instance, it can mimic or block a hormonal function causing an 49 

over or underproduction of hormones (Kapelewska et al. 2016). EDCs can be classified as natural 50 

compounds, pharmaceuticals, and industrial chemicals such as alkyl phenols and Bisphenol A (Gu  et al. 51 

2016). 52 

Bisphenol-A has been mainly used in the plastics industry as a polycarbonate plasticizer. The 53 

Polycarbonate is used in food containers such as recyclable bottles, baby bottles, tableware (plates and 54 

cups) as well as containers for storage. It is also used in the manufacturing of coatings or protective films 55 

covering the cans and tanks for receiving food and drinks. However, BPA presents a danger to human 56 

health and to the environment, if it is released in wastewater or in the drinking water. BPA molecules 57 

can reach the environment during the manufacturing process, incomplete water treatment, or by leaching 58 

from the landfills and materials containing the substance ( Im and Löffler 2016).  59 

BPA is commonly found in the bodies of a large majority of the population, irrespective of age, and 60 

especially in children (Becker et al. 2009). However, BPA toxicity, ecotoxicity, and the acceptable daily 61 

intake are still discussed (Beronius et al. 2010) and has been studied with laboratory lab rats, for its 62 

effects on the brain functions, and on the reproduction capacity (Authority  2010; Huang et al. 2012).  63 

The treatment of BPA with reverse osmosis (Yüksel et al. 2013), advanced oxidation processes (Umar et 64 

al. 2013), membrane bioreactors, and adsorption (Wang et al. 2015, 2018; Zbair  et al. 2018b, a; Zielinska 65 

et al. 2018) have been studied lately. Adsorption is known to be an effective and fast-growing technology 66 

with low cost compared to the other processes (TSAI 2006; Dehghani et al. 2016). Different classes of 67 

materials such as clays (Aguiar et al. 2017), hybrid fibers (Zhao et al. 2017), and activated carbons 68 

(Bhatnagar  and Anastopoulos 2017; Elouahli et al. 2018; Zbair et al. 2019) can be utilized as adsorbents.   69 

Despite using these materials, it is still a challenge to design new materials that have high adsorption 70 

capacity and rate as well as minimal environmental impact. Some studies have focused on the use of 71 

Hydroxyapatite ( Ca10(PO4)6OH2, HAP), which is a biocompatible material with significant importance 72 

(Achelhi et al. 2010; Ronan and Kannan 2017) in tissue and dental engineering, and in drug delivery 73 

(Oliveira and Mansur 2007; Kantharia et al. 2014). It has been reported that hydroxyapatite is an efficient 74 

adsorbent material due to its ion-exchange ability and reactive surface. HAP has been used in the removal 75 

https://www.sciencedirect.com/topics/chemistry/activated-carbon


3 
 

of heavy metals and organic pollutants from water (Lin et al. 2009; Mavropoulos et al. 2011; Kongsri et 76 

al. 2013; Mourabet et al. 2015; Pereira et al. 2020). However, the adsorption capacity and, in particular, 77 

the adsorption rate remains relatively low for most of the HAP materials when used in powder form 78 

(Ciobanu et al. 2009; Lin et al. 2009). It has been reported that the most important characteristics for 79 

better adsorption materials are the possibility of having a wide range of pore structure in terms of size, 80 

morphology, and quantity as well as the ability to be easily recovered after the adsorption process for 81 

further regeneration and reuse (Inagaki 2009; Inagaki and Kang 2014). Therefore, this work will focus 82 

on the preparation of a hydroxyapatite foam and its utilization as an adsorbent for BPA removal. 83 

 84 

2. Materials and methods  85 

2.1. Preparation of the HAP ceramic foam  86 

 87 

The HAP foam (CF-HAP) was prepared by a combination of the direct foaming and the slip-casting 88 

techniques using an aqueous suspension of the sintered HAP powder and egg white as a pore promoter 89 

following the procedure described in our previous work (Khallok et al. 2019). The obtained foam was 90 

poured into a silicone cylindrical mold (3 cm in diameter and 0.5 cm in high) and dried first at 80°C for 91 

one hour and then at 105°C for 24 h. The dried CF-HAP was calcined first at 600°C and then at 1200°C 92 

for further consolidation of the structure. 93 

 94 

2.2. Adsorption experiments  95 

Adsorption batch experiments were conducted in a shaker at 200 rpm. In the kinetic experiments, 150 96 

mg of ceramic foam was placed into flasks containing 200 mL of BPA solution with different initial BPA 97 

concentrations (20, 30, and 40 mg/L) without pH adjustment. Adsorption was carried out at room 98 

temperature for 3 hours. The effect of pH was studied from 2 to 12 with an initial BPA concentration of 99 

40 mg/L at room temperature. The basic solutions were obtained using 0.1M NaOH and acidic medium 100 

using 0.1M HCl. Isotherm studies were conducted by varying the initial concentration from 10 to 50 101 

mg/L at room temperature, 303 K, and 313 K at the optimized pH. After the equilibrium was attained, 102 

the samples were filtered, and immediately analyzed using a Shimadzu 1800 UV-vis spectrophotometer 103 

at maximum absorbance wavelength (λmax) of 276 nm. 104 

 105 

2.3. Regeneration 106 

The BPA-laden ceramic foam was regenerated using 40 mL of ethanol. Ethanol and the used ceramic 107 

foam were agitated at room temperature for 4 hours. Then, the ceramic foam was recovered by filtration 108 

and dried at 105 °C. Adsorption and regeneration cycles were repeated 3 times. 109 

2.4. Measurement of pHpzc 110 
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 111 

A mixture of 100 mg of the CF-HAP in 100.0 mL of 0.01 M KNO3 solution is shaken for 60 minutes at 112 

room temperature. The initial pH values (pH0) are adjusted in the range of 2.5–9.5 using 0.1 M KOH or 113 

0.1 M HNO3 solutions. After equilibration, the pH values are measured once again (pHf), and the value 114 

of pHpzc (point of zero charges) is determined from the ∆pH = f (pH0) plot (∆pH = pH0 – pHf). pHpzc is 115 

the pH0 value when ∆pH = 0. 116 

 117 

2.5.  Modeling 118 

The model parameters of BPA adsorption kinetics and adsorption isotherm were calculated by the non-119 

linear regression method. All equations and models used in this study are listed in the Table 1:  120 

 121 

Table 1 Equations and models used for the adsorption study 122 

Removal 

capacity 

Adsorption capacity (Wang J et al. 1998) 𝐐 𝐞,𝐭 =
(𝐂𝟎−𝐂𝐞) × 𝐕

𝐦
            (1) 

Removal efficiency (Narwade VN et al. 2017) 𝐑% = ( 
𝐂𝟎−𝐂𝐞

𝐂𝟎
) × 𝟏𝟎𝟎   (2) 

 

Kinetic models 

 

Pseudo-first-order (PFO) kinetics (Tran HN et al. 2017) 𝑸𝐭 = 𝐐𝐜𝐚𝐥(𝟏 − 𝐞𝐱𝐩𝐊𝟏𝐭)   (3) 

Pseudo-second-order (PSO) kinetics  (McKay G 1999; Tran HN et al. 

2017) 
𝐐𝐭 =

(𝐊𝟐𝐐𝐜𝐚𝐥
𝟐 𝐭)

(𝟏+𝐊𝟐𝐐𝐜𝐚𝐥𝐭)
                (4) 

Intra particle diffusion (PID) (Weber W.J. and Morris 1963) 𝐐𝐭 = 𝐊𝐢𝐩𝐭
𝟏

𝟐 + 𝐂                (5) 

 

 

Isotherm models 

 

 

Langmuir isotherm  (Langmuir I 1916) 
 𝐐𝐞 =

𝐐𝐋𝐊𝐋𝐂𝐞

𝟏+𝐊𝐋𝐂𝐞
                    (6) 

Freundlich isotherm   (Freundlich H 1907) 
𝐐𝐞 = 𝐊𝐟𝐂𝐞

𝟏

𝐧                       (7) 

Liu isotherm (Saucier C et al. 2015)  𝐐𝐞 =
𝐐𝐋𝐢.(𝐊𝐠.𝐂𝐞)𝐧𝐋

𝟏+(𝐊𝐠.𝐂𝐞)𝐧𝐋
             (8) 

 

Thermodynamic 

models 

 

Gibbs free energy (Anastopoulos I and Kyzas GZ 2016; Ghosal PS 

and Gupta AK 2017; Lima EC et al. 2019) 

∆𝐆° = −𝐑𝐓𝐥𝐧𝐊𝐜             (9) 

Van’t Hof equation  (Anastopoulos I and Kyzas GZ 2016; Ghosal  

PS and Gupta AK 2017; Lima EC et al. 2019) 
𝐋𝐧𝐊𝐜 =

∆𝐒°

𝐑
−

∆𝐇°

𝐑𝐓
             (10) 

Where : 

• C0, Ce is the initial and the equilibrium concentration of pollutant (mg/L). 

• m (g): is the weight of adsorbent. 

• V (L): is the volume of the solution. 

• Qcal (mg/g) and Qt (mg/g) are the adsorbed amounts at equilibrium and time t for the Pseudo first order model. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/adsorption-isotherms
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• K1 (min-1), and K2 (g/mg.min) are the rate constants of the pseudo first and pseudo second order models respectively. 

• Kip (mg/g.min-1/2) and C (mg/g) are the rate coefficient and the thickness of the boundary layer for the Intra particle diffusion 

model. 

• KL (L/mg) and QL (mg/g) are the adsorption coefficient and the maximum adsorption capacity of Langmuir model. 

• Kf (mg/g) (L/mg) 1/n and n are the adsorption coefficient and the intensity of adsorption of Freundlich model. 

• Kg (L/mg), nL and QLi (mg/g): are the equilibrium constant, the exponent and the maximum adsorption capacity for Liu model. 

• ΔG° (Kj/mol) is the Gibbs free energy change, Kc (dimensionless) is the adsorption equilibrium constant, R: gas constant, T: 

Temperature (K), ΔS° (Kj/mol), ΔH° (Kj/mol) are the entropy change and the enthalpy change. 

 123 

2.6. Characterization of the HAP foam 124 

The Infrared Spectra of the obtained and used CF-HAP were recorded on a Fourier Transform 125 

Spectrometer (SHIMADZU FTIR-8400S) with a resolution of 4 cm-1 and 100 scans. The measurement 126 

range was 400 to 4000 cm-1. 127 

The crystalline phases of the foam were identified using the X-ray diffraction (Diffractometer BRUKER 128 

D8 ADVANCED) with Copper Kα radiation (λ= 1.5406 nm) produced at 50 kV and 20 mA. The 129 

diffractograms were scanned with the 2θ range of 05-70° using a step size of 0.02° and a step time of 30 130 

s. Crystallographic identification was accomplished by comparing the experimental XRD patterns to 131 

standards compiled by the joint committee on powder diffraction standards (JCPDS # 00-009-0432). 132 

The porous microstructure of the CF-HAP was examined using a Scanning Electron Microscope ((SEM) 133 

Carl Zeiss EVO50 XPV +Röntec X-flash detector type 1106). 134 

The N2 adsorption-desorption isotherms of the CF-HAP were recorded using the ASAP 2020 instrument 135 

(Micrometrics, Norcross, GA, USA) to determine surface area, pore-volume, and pore size distribution. 136 

 137 

3 Results and discussion 138 

3.1. Characterization of the obtained porous parts  139 

The XRD analysis of the prepared CF-HAP (Fig. 1a), revealed the presence of pure and well-crystallized 140 

hexagonal hydroxyapatite Ca10(PO4)6(OH)2 based on the JCPDS database. The infra-red spectroscopy of 141 

the CF-HAP (Fig. 1b) showed only the presence of one well-crystallized phase of the hydroxyapatite. 142 

The observed IR absorption bands for the CF-HAP around 475, 575, 600, 960, 1040, and 1090 cm-1, are 143 

characteristic of the P-O group present in the theoretical hydroxyapatite, while other bands at 3572 and 144 

632 cm-1 are referred to as the vibration of the hydroxyl groups (OH) of the structure. The band detected 145 

at around 3500 cm-1 was attributed to the water adsorbed on the surface of the HAP foam. 146 
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 147 
Fig. 1 a) XRD pattern and b) FTIR spectra of the sintered CF-HAP 148 

 149 

It is visible in the SEM images (Fig. 2) that CF-HAP has an open and interconnected microstructure at 150 

different magnification scales. The images showed the presence of well-distributed pores on the surface 151 

(Fig. 2 a-c) as well as inside the foams (Fig. 2 b-d).  152 

 153 
Fig. 2 a) CF-HAP as obtained, SEM images of b-c) the foam surface and d) the foam’s inside  154 

 155 

The pores were formed due to space created by air bubbles and also by the burning-out of the egg-protein 156 

as it was already discussed in our previous work (Khallok et al. 2019). The obtained CF-HAP has a wide 157 

variation in porosity and pore size from 1 to 650 µm (Fig. 3d). The majority of the pores in the CF-HAP 158 
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had size less than 100 µm while two other populations of pores ranging from 100 to 300 µm and from 159 

350 to 650 µm present a minority. 160 

Fig. 3a shows the adsorption-desorption isotherm of the CF-HAP. The curve shows an early initial 161 

monolayer coverage followed by multilayer formation with a well-defined hysteresis loop at around 162 

p/p0 = 0.89–0.98, as observed in Fig. 3a. The presence of a wide hysteresis loop with a delay is probably 163 

due to the presence of the macropores in the CF-HAP. The presence of a loop in the hysteresis suggests 164 

that in addition to the macropores, the material contain also mesopores representing the Type IV 165 

adsorption isotherm with the H3 loop according to IUPAC classification. (Grosman and Ortega 2008). In 166 

fact, the BJH results show that CF-HAP has wide-ranging pore size distribution as presented in Fig. 3b. 167 

This result was in accordance with what was found earlier by M.F. Cipreste and all (Cipreste et al. 2016). 168 

CF-HAP had a specific surface area of 10 m².g-1, which is close to the calculated Langmuir surface area 169 

of 14 m².g-1. The distribution of mesopores ranges from 2 to 120 nm with an average pore size of 5.18 nm 170 

and a total pore volume of 0.013 cm3.g-1 covering pores size less than 80 nm (Fig. 3c). 171 

 172 

Fig. 3 a) Nitrogen adsorption-desorption curve, b) derived pore volume distribution, c) pore volume distribution and d) pore 173 

size distribution calculated with ImageJ software 174 

 175 

3.2 Bisphenol-A adsorption studies on HAP foam 176 



8 
 

3.2.1 The Effect of pH 177 

The effect of initial pH on the adsorption capacity (equation (1)) of BPA was evaluated using 150 mg of 178 

CF-HAP and 40 mg/L of BPA at room temperature for 3 hours (Fig. 4). As shown, the removal (equation 179 

(2)) was relatively constant (around 94 %) from pH 2 to 6.5. However, it decreased from 94 to 15% when 180 

the pH increased from 6.5 to 12.  181 

     182 

Fig. 4 Effect of initial pH on the adsorption efficiency of the CF-HAP 183 

 184 

These results can be explained by the change in surface charge that occurs on the CF-HAP and/or by the 185 

nature of the BPA. In the lower pH region, the positively charged (CaOH2+) and neutral ≡P-OH sites 186 

prevail on the CF-HAP surface, making the surface charge of CF-HAP positive ( Bouyarmane et al. 187 

2010) as explained by equation (11): 188 

 189 

≡CaOH + H+                      Ca OH2+   (11) 190 

 191 

In the basic medium neutral (CaOH) and (PO‒) species dominate, producing a negative charge on the 192 

surface of the CF-HAP according to equation (12): 193 

 194 

≡PO- + H+                  ≡POH     (12) 195 

 196 

Thus, the point of zero charges (pHpzc) of CF-HAP is the main parameter influencing the adsorption 197 

phenomenon. The pHpzc value of CF-HAP measured in this study was 6.7 as implied by many other 198 
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studies (Bell et al. 1973; Bengtsson et al. 2009; Bouyarmane et al. 2010). When the solution pH is above 199 

the pHpzc the surface of the CF-HAP is negatively charged. The electrostatic repulsion occurs between 200 

the negatively charged surface of CF-HAP and the BPA in a form of mono-anion of bisphenolate at pH > 201 

6.5, which explains the decrease of BPA adsorption (Zbair et al. 2018a). On the contrary, in the acidic range 202 

(pH <pHpzc), the surface of CF-HAP is positively charged, and the BPA is under its neutral form, which 203 

does not favor electrostatic interactions and consequently maintains the relatively constant BPA adsorption. 204 

This suggests that other mechanisms than electrostatic attraction might be involved in BPA adsorption on CF-205 

HAP. These obtained results were similar to previous studies (Bautista-Toledo et al. 2005; Tsai et al. 206 

2006a, b). 207 

 208 

3.2.2 Adsorption kinetics of BPA 209 

The kinetics of the BPA adsorption onto CF-HAP was assessed at three different initial concentrations 210 

(20, 30, and 40 mg/L). As shown in Fig. 5, the BPA adsorption on CF-HAP occurred rapidly and at the 211 

initial pH of 6.5, which was the pH of the prepared solution without adjustment, and the adsorption 212 

equilibrium was reached about 20 min. 213 

The fast adsorption process may be related to the presence of the macropores that allow rapid and 214 

turbulent flow through the ceramic body enhancing the external diffusion from the solution to the surface 215 

of CF-HAP. The presence of interconnected pores ensures better adsorption efficiency, by trapping the 216 

molecules inside the foam for longer residence time, which enhances the adsorption efficiency. The FTIR 217 

analysis shows that the hydroxyapatite might have a strong affinity to BPA molecules in the solution 218 

since the CF-HAP after BPA adsorption shows that the bands of Bisphenol A were superposed on the 219 

spectrum of the hydroxyapatite with a shifting of some characteristic frequencies, as it will be shown 220 

later.  221 

The pseudo-first order (PFO) (3), and pseudo-second order (PSO) (4) kinetic models were used to fit the 222 

kinetic data (Fig. 5). As can be seen from Table 2, the R2 values calculated for the PFO model were very 223 

close to 1 (R2 = 0.999) while R2 obtained from the PSO model was lower than 0.996-0.997 depending on the 224 

initial concentration. The standard deviation (SD) (0.154-0.277) of the PFO model was lower than that of the 225 

PSO model (0.299-0.625). Therefore, the PFO model was able to explain the adsorption of BPA on CF-HAP 226 

at all studied initial concentrations. Similar results have been reported by several authors (Peng et al. 2015; 227 

Taghi et al. 2016). Furthermore, the adsorption capacities of BPA onto CF-HAP noticeably increased as 228 

the initial concentration of BPA increased (from 20 mg/L to 40 mg/L). However, the adsorption rate K2 229 

(g/mg.min) decreased as a function of initial concentration, with the following order: 0.742 (g/mg.min) 230 

at 20 mg/L> 0.109 (g/mg.min) for 30 mg/L> 0.031 (g/mg.min) for 40 mg/L. The reason of this behavior 231 

may be due to the higher competition at the adsorption sites (Ouasfi et al. 2018).  232 
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 233 

 234 

Fig. 5 Time evolution of the adsorption capacity. Kinetic study by PFO, PSO, and IPD models at 40ppm of BPA and at 298 235 
K 236 

 237 

To inspect the mechanism of BPA transfer on the surface of the CF-HAP and the rate-limiting step of the 238 

Bisphenol-A adsorption, the kinetic data were also fitted using the nonlinear intra-particle diffusion (IPD) 239 

model (5). The parameters determined for the IPD model of BPA adsorption onto CF-HAP are shown in 240 

Table 2. The Kip (IPD rate constant) values were calculated to be 1.460, 1.963, and 3.003 mg/g.min1/2 for the 241 

initial concentrations of 20, 30, and 40 mg/L, respectively. The plotted IPD model did not present a straight 242 

line passing through the origin (Fig. 5): this suggests that the intraparticle diffusion was not the only rate-243 

controlling step of the Bisphenol-A adsorption; in fact, these outcomes indicated that the adsorption of BPA 244 

on CF-HAP occurs in two stages: first via very fast surface adsorption and then by slow intraparticle diffusion. 245 

 246 

Table 2 Pseudo-First-Order, Pseudo-Second Order, and intraparticle diffusion parameters for adsorption of BPA onto CF-247 
HAP 248 

Cintial 

(mg/L) 

Pseudo-second Order (PSO) Pseudo-first Order (PFO) 

Qe,cal (mg/g) K1 (min-1) R2 
Qe,cal 

(mg/g) 

K2 

(g/mg.min) 
R2 

20 39.09 ±0.299 0.742 0.997 39.14 ±0.201 0.729 0.999 

30 51.14 ±0.452 0.109 0.996 50.94 ±0.277 0.604 0.999 
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40 76.01 ±0.625 0.031 0.996 75.18 ±0.154 0.481 0.999 

Cintial 

(mg/L) 

Intraparticle diffusion model (IPD) 

Kip( mg/g1min1/2) C (mg/g) 

20 1.460 26.238 

30 1.963 33.648 

40 3.003 48.659 

 249 

3.2.3. BPA adsorption isotherm  250 

Adsorption isotherms are valuable in recognizing BPA and CF-HAP interactions. To clarify the 251 

adsorption mechanism of BPA, Langmuir (6), Freundlich (7), and Liu (8) models were used to explain 252 

the experimental data at 293, 303, and 313 K (Fig. 6).  253 

 254 

Fig. 6 Isotherm models of BPA adsorption over CF-HAP at different temperatures and at pH=6.5  255 
 256 

The adsorption parameters in Table 3 for Langmuir, Freundlich, and Liu models show the lowest SD 257 

values, for the Liu model. The equilibrium concentration value (Qe) of Liu’s model was closest to the 258 
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experimentally measured Qe. The Langmuir and the Freundlich models did not fit very well to the 259 

experimental data, giving the SD values ranging from 0.745 to 6.911 for Langmuir and 2.109-6.181 for 260 

Freundlich while the SD values obtained for the Liu model were 0.483-1.489 and the R2 value was close 261 

to one. This proves that the experimental data fitted better with the Liu adsorption isotherm. This could 262 

be explained by the fact that the adsorption might occur in the hydroxyapatite sites, and also it depends 263 

on the nature of their interaction with the Bisphenol A. During the adsorption, the BPA interact strongly 264 

with the different functional groups of the hydroxyapatite namely the OH, Ca2+ and PO4 as it was proved 265 

by the FTIR analysis (Fig. 8) and by earlier studies (H.Bouyarmane et al. 2010). 266 

 267 

Table 3 Parameters of adsorption isotherms modeled by the Langmuir, Freundlich, and Liu models 268 

Temperature 293 K 303 K 313 K 

Langmuir 

Qmax (mg/g) 81.3 104.2 198.6 

KL (L/mg
 
) 5.981 9.093 9.281 

R
2
 0.993 0.998 0.987 

SD (mg/g) 1.724 0.745 6.911 

Freundlich 

KF (mg/g)(L/mg)1/n 66.4 88.1 151.8 

n 6.979 6.331 4.951 

R
2
 0.969 0.982 0.955 

SD (mg/g) 2.202 2.109 6.181 

Liu 

Qmax (mg/g) 76.5 103.3 178.9 

Kg (L/mg) 4.760 9.132 9.813 
nL 1.830 1.063 2.003 

R
2
 0.999 0.999 0.999 

SD (mg/g) 0.483 0.497 1.489 

 269 

The effect of the temperature showed that the adsorption capacity increased when increasing the 270 

temperature; the maximum amounts of BPA adsorbed by CF-HAP were 76.5 mg/g at 293 K, 103.3 mg/g 271 

at 303 K, and 178.9 mg/g at 313 K. This result indicates that the removal of BPA from the solution was 272 

endothermic since the adsorption capacity increased with the temperature. The BPA adsorption capacity 273 

on the CF-HAP was compared with the adsorption capacities of various adsorbents. As shown in Table 274 

4, the CF-HAP presented a good adsorption capacity compared to other materials including activated 275 

carbon (Qin et al. 2015) and graphene (Xu et al. 2012) that are known to have high adsorption capacity.  276 

 277 

 278 

 279 

 280 

 281 

 282 
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Table 4 Maximum adsorption capacities of BPA by different adsorbents 283 

 284 

 285 

3.2.4 Thermodynamic parameters  286 

The thermodynamic parameters (ΔG°, ΔH°, and ΔS°) of BPA adsorption can be determined via the Van't 287 

Hoff approach and Gibb’s free energy equation (Tran et al. 2017; Lima et al. 2019). The determined 288 

thermodynamic parameters are represented in Table 5. The negative values of G° (-33.857 kJ/mol, -289 

36.653 kJ/mol, and -38.050 kJ/mol) show that the BPA sorption by CF-HAP was a spontaneous and 290 

favorable process at all the studied temperatures (293 K, 303 K, and 313 K). This result is in agreement 291 

with the literature (Lin et al. 2009). Besides, the equilibrium constant Kg increased remarkably when the 292 

temperature was increased, which proposes that the BPA adsorption on the hydroxyapatite CF-HAP is 293 

more favorable at a higher temperature (313 K). As indicated in Table 5, the adsorption capacity Qm of 294 

the Liu model increased when the temperature of the adsorption medium is increased from 293 K to 313 295 

K; this was in accordance with the adsorption isotherm and the ΔH values (+27.813 kJ/mol) indicating 296 

that the BPA adsorption on the CF-HAP is endothermic in nature. The endothermic adsorption is 297 

attributed to chemical adsorption (chemisorption) with strong bonding of the adsorbate on the adsorbent. 298 

In contrast, in physisorption relatively weak interactions (i.e., Van Der Waals force) are involved. As a 299 

result, the adsorbate tends to desorb easily from the adsorbent surface when the temperature increases 300 

(Van et al. 2018). In the case of the Bisphenol A adsorption onto CF-HAP, the evaluated value of ΔH° 301 

was positive so that the adsorption process is endothermic in nature while the positive values of ΔS (0.211 302 

kJ/mol) show that the organization of BPA molecules at the solid/solution interface become more random 303 

when the temperature increases.  304 

 305 

Adsorbents Qmax 

(mg/g) 

Adsorption conditions  References 

BPA 

Concentration 

(mg/l) 

Dose  

(g/l) 

pH T (K) 

Activated carbon 476 20 0.05 5.6 298 (El Ouahedy N et 

al. 2020) 

Mesoporous carbon (soft 

template) 

156 10 0.1 6 302.15 (Xu J et al. 2012) 

HDTMA-sericite 

(CH3(CH2)15N(CH3)3Br) 

5.047 10 2 6.5 298 (Thanhmingliana 

et al. 2014) 

Mesoporous carbon (soft 

template) 

156 30 0.1 - 298 (Libbrecht W et 

al. 2015) 

Commercial activated carbon 

modified with nitric acid 

57.08 60 0.1 7 298 (Liu F et al. 

2009) 

Hydrophobic zeolite 111.11 20 0.5 7 298 (Tsai  W-T et al. 

2006a) 

CF-HAP 178.9 40 0.75 6.5 313 This work 
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 306 

Table 5 Thermodynamic parameters of the adsorption process of BPA onto the ceramic foam 307 

ΔH (kJ/mol) ΔS(kJ/mol K) 

293 K 303 K 313 K 

Kg (L/mol) 

 

1086643 2084710 2240173 

  ΔG (kJ/mol) 

27.813 0.211 -33.857 -36.653 -38.050 

 308 

3.2.5 Regeneration of ceramic foam 309 

The regeneration and reuse of the CF-HAP are essential for an eco-friendly adsorbent. Thus, two 310 

consecutive regeneration tests were conducted (Fig. 7) using 40 mL of ethanol as the stripping agent. The 311 

adsorption of BPA at each run 1, 2, and 3 were 94%, 92%, and 85%, respectively, showing that the 312 

adsorption capacity was not fully recovered after used regeneration procedures. This was expected due 313 

to the chemisorption observed earlier. However, complete regeneration of the CF-HAP can be achieved 314 

using a calcination step as the foam present a high thermal stability up to 1200 °C as discussed in 315 

connection with the XRD and FTIR analyses. 316 

 317 

 318 

Fig. 7 BPA adsorption efficiency of the CF-HAP after two regeneration treatments: first initial BPA removal, second BPA 319 

removal after first regeneration, and third BPA removal after second regeneration 320 

 321 
3.2.6 Proposed mechanism 322 

In order to discover the adsorption mechanism of BPA on ceramic foam, the FTIR spectra of unused 323 

and used CF-HAP were compared. Fig. 8 shows that several new peaks appear in the FTIR spectrum of 324 

the CF-HAP after the BPA adsorption. These new peaks marked by yellow color (1542–1149 cm−1, 325 

813 cm−1, and 528–401 cm−1) are related to the vibration peak of C=C group in benzene ring of BPA 326 
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molecule and appear with significant intensities, which proves BPA adsorption (Liu et al. 2018)(Jin et 327 

al. 2015). Moreover, the two peaks related to –OH groups were shifted from 3572 to 3568 cm−1 and 328 

632 to 627 cm−1, which can refer to the creation of hydrogen binding between -OH groups of the BPA 329 

and of the hydroxyapatite foam. In fact, several works report that the adsorption of Bisphenol-A is 330 

based also in hydrogen bonding with the adsorbent as found earlier in the work of Chen (Chen and 331 

Chen 2015). The peaks that belong to P-O bonds were also shifted and their intensity decreased after 332 

BPA adsorption. From those results, we can conclude that -OH and P-O groups are involved in the 333 

interaction between BPA and the surface of the ceramic foam. These findings demonstrate that the 334 

adsorption process of BPA on the CF-HAP was mainly due to chemisorption. 335 

 336 

 337 

Fig. 8 FTIR spectra of CF-HAP before and after BPA adsorption at a pH of 6.5 338 
 339 

The proposed adsorption mechanism (Fig. 9) is based on the results from the FTIR measurements and on 340 

an earlier study of Bouyarmane et al. (Bouyarmane et al. 2010). The adsorption was mainly due to the 341 

interaction of phenols with the different functional groups of the hydroxyapatite namely the OH, Ca2+, 342 

and PO4. The oxygen atoms of the phenol might react through the Lewis acid-base interactions with the 343 

calcium site while the hydrogen groups of the Bisphenol- A could interact through hydrogen-hydrogen 344 

Van Der Waals bonds with the P-O and/or with the hydroxyl groups (OH) of the hydroxyapatite as it was 345 

mentioned before (Bouyarmane et al. 2010). 346 

 347 
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 348 
Fig. 9 The proposed adsorption mechanism on the CF-HAP  349 

 350 

4. Conclusion 351 

CF-HAP was successfully prepared by combining slip-casting and foaming methods. The 352 

characterization results showed that the obtained CF-HAP has a similar structure to a Hydroxyapatite 353 

with an interconnected porous microstructure with a large pore size distribution ranging from 1 µm to 354 

650 µm. The adsorption experiments showed that 94 % of BPA (40 mg/L) was effectively removed from 355 

water by the CF-HAP. In fact, the adsorption capacity on CF-HAP increased by increasing temperature 356 

and the kinetics data obeyed the pseudo-first-order model. The isotherm data fitted slightly better with 357 

the Liu model than with Langmuir and Freundlich models while the thermodynamic parameters 358 

recommended that the adsorption was an endothermic process. In addition, the magnitude of enthalpy 359 

indicates chemisorption between the CF-HAP and BPA. Finally, from the adsorption results, it can be 360 

concluded that the ceramic foam-based hydroxyapatite has the potential to be used as an adsorbent to 361 

eliminate emergent contaminants from wastewaters. 362 
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