Skip to main content
Log in

Wastewater-based epidemiology approach to assess population exposure to pesticides: a review of a pesticide pharmacokinetic dataset

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Wastewater-based epidemiology is an innovative approach to estimate a population’s intentional and unintentional consumption of chemicals based on biomarker assays found in wastewater. This method can provide real-time objective information on the xenobiotics to which a population is directly or indirectly exposed. This approach has already been used to assess the population exposure to four classes of pesticides: organochlorines (chlordecone), triazines, organophosphates, and pyrethroids. This review aims to obtain the data (excretion rates) and characteristics (pesticide and metabolites stability, including in-sewer one) for other pesticides to broaden the scope of this new method. Excretion rates and stability descriptions for 14 pesticides, namely 2,4-d, aldrin, carbaryl, chlorobenzilate, dieldrin, diquat, ethion, glufosinate, glyphosate, folpet, malathion, parathion, penconazole, and tebuconazole, will be discussed in a practical framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams CD, Thurman EM (1991) Formation and transport of deethylatrazine in the soil and vadose zone. J Environ Qual 20(3):540–547

    CAS  Google Scholar 

  • Aelion CM, Mathur PP (2001) Atrazine biodegradation to deisopropylatrazine and deethylatrazine in coastal sediments of different land uses. Environ Toxicol Chem 20(11):2411–2419

    CAS  Google Scholar 

  • Arnold EK, Beasley VR (1989) The pharmacokinetics of chlorinated phenoxy acid herbicides: a literature review. Vet Hum Tox 31(2):121–125

    CAS  Google Scholar 

  • Arrebola FJ, Martínez Vidal JL, Fernández-Gutiérrez A (1999) Excretion study of endosulfan in urine of a pest control operator. Tox Let 107(1–3):15–20

    CAS  Google Scholar 

  • Ahmed N, Englund JE, Ahman I, Lieberg M, Johansson E (2011) Perception of pesticide use by farmers and neighbors in two periurban areas. Sci Tot Env 412–413(15):77–86

    Google Scholar 

  • BCPC (2018) The Pesticide Manual 18th edition. BCPC Publication, Alton, UK.1400pp

  • Berthet A, Bouchard M, Danuser B (2012a) Toxicokinetics of captan and folpet biomarkers in orally exposed volunteers. J Appl Tox 32(3):194–201

    CAS  Google Scholar 

  • Berthet A, Bouchard M, Vernez D (2012b) Toxicokinetics of captan and folpet biomarkers in dermally exposed volunteers. J Appl Tox 32(3):202–209

    CAS  Google Scholar 

  • Berthet A, Heredia-Ortiz R, Vernez D, Danuser B, Bouchard M (2012c) A detailed urinary excretion time course study of captan and folpet biomarkers in workers for the estimation of dose, main route-of-entry and most appropriate sampling and analysis strategies. Ann Occup Hyg 56(7):815–828

    CAS  Google Scholar 

  • Bouchard M, Carrier G, Brunet RC (2008) Assessment of absorbed doses of carbaryl and associated health risks in a group of horticultural greenhouse workers. Intern Arch Occup Environ Health 81(3):355–370

    CAS  Google Scholar 

  • Calmon J-P, Sayag DR (1976) Instability of methyl 1-(Butylcarbamoyl)-2-Benzimidazolecarbamate (Benomyl) in various solvents. J Agricul Food Chem 24(2):426–428

    CAS  Google Scholar 

  • Carver MP, Levi PE, Riviere JE (1990) Parathion metabolism during percutaneous absorption in perfused porcine skin. Pestic Biochem Physiol 38:245–254

    CAS  Google Scholar 

  • Connolly A, Jones K, Basinas I, Galea KS, Kenny L, McGowan P, Coggins MA (2018) Exploring the half-life of glyphosate in human urine samples. Intern J Hyg Environ Health. In Press

  • Daughton CG (2018) Monitoring wastewater for assessing community health: Sewage Chemical-Information Mining (SCIM). Sci Total Environ 619-620:748–764

    CAS  Google Scholar 

  • Davies CR, Llanos-Cuentas EA, Campos P, Monge J, Leon E, Canales J (2000) Spraying houses in the Peruvian Andes with lambda-cyhalothrin protects residents against cutaneous leishmaniasis. Trans Roy Soc Trop Med Hyg 94(6):631–636

    CAS  Google Scholar 

  • Devault DA, Ith C, Merlina G, Lim P, Pinelli E (2010) Study of a vertical profile of pre-emergence herbicide contamination in middle Garonne sediments. InternJ Environ Analyt Chem 90(3–6):311–320

    CAS  Google Scholar 

  • Devault DA, Karolak S, Lévi Y, Rousis N, Zuccato E, Castiglioni S (2018a) Exposure of an urban population to pesticides assessed by wastewater-based epidemiology in a Caribbean island. Sci Total Environ 644:129–136

    CAS  Google Scholar 

  • Devault DA, Amalric L, Bristeau S (2018b) Chlordecone consumption estimated by sewage epidemiology approach for health policy assessment. Environ Sci Poll Res 25(29):29633–29642

    CAS  Google Scholar 

  • Devault DA, Maguet H, Merle S, Péné-Annette A, Lévi Y (2018c) Wastewater-based epidemiology in low Human Development Index states: bias in consumption monitoring of illicit drugs. Environ Sci Poll Res 25(28):27819–27838

    Google Scholar 

  • Ebert E, Leist KH, Mayer D (1990) Summary of safety evaluation toxicity studies of glufosinate ammonium. Food Chem Toxicol 28:339–349

    CAS  Google Scholar 

  • Faludi T, Balogh C, Serfőző Z, Molnár-Perl I (2015) Analysis of phenolic compounds in the dissolved and suspended phases of Lake Balaton water by gas chromatography-tandem mass spectrometry. Environ Sci Poll Res 22(15):11966–11974

    CAS  Google Scholar 

  • Feldmann RJ, Maibach HI (1974) Percutaneous penetration of some pesticides and herbicides in man. Toxic Appl Pharmac 28:126–132

    CAS  Google Scholar 

  • Ferland S, Côté J, Ratelle M, Thuot R, Bouchard M (2014) Detailed urinary excretion time courses of biomarkers of exposure to Permethrin and estimated exposure in workers of a corn production farm in Quebec, Canada. Ann Occup Hyg 59(9):1152–1167

    Google Scholar 

  • Fustinoni S, Mercadante R, Polledri E, Rubino FM, Mandic-Rajcevic S, Vianello G, Colosio C, Moretto A (2014) Biological monitoring of exposure to tebuconazole in winegrowers. J Exp Sci Environ Epidem 24(6):643–649

    CAS  Google Scholar 

  • Gerecke AC, Schärer M, Singer HP, Müler SR, Schwarznbach RP, Sägesser M, Ochsenbein U, Popow G (2002) Sources of pesticides in surface waters in Switzerland: pesticide load through wastewater treatment plants – current situation and reduction potential. Chemosphere 48:307–315

    CAS  Google Scholar 

  • Gracia-Lor E, Zuccato E, Castiglioni S (2016) Refining correction factors for back-calculation of illicit drug use. Sci Total Environ 573:1648–1659

    CAS  Google Scholar 

  • Gracia-Lor E, Castiglioni S, Bade R, Been F, Castrignanò E, Covaci A, González-Mariño I, Hapeshi E, Kasprzyk-Hordern B, Kinyua J, Lai FY, Letzel T, Lopardo L, Meyer MR, O’Brien J, Ramin P, Rousis NI, Rydevik A, Ryu Y, Santos MM, Senta I, Thomaidis NS, Veloutsou S, Yang Z, Zuccato E, Bijlsma L (2017) Measuring biomarkers in wastewater as a new source of epidemiological information: current state and future perspectives. Environ Intern 99:131–150

    CAS  Google Scholar 

  • Gracia-Lor E, Rousis NI, Hernandez F, Zuccato E, Castiglioni S (2018) Wastewater-based epidemiology as a novel biomonitoring tool to evaluate human exposure to pollutants. Environ Sci Technol 52:18

    Google Scholar 

  • Hall RJ (1990) Accumulation, metabolism and toxicity of parathion in tadpoles. Bull Environ Contam Toxicol 44:629–635

    CAS  Google Scholar 

  • Heredia-Ortiz R, Berthet A, Bouchard M (2013) Toxicokinetic modeling of folpet fungicide and its ring-biomarkers of exposure in humans. J Appl Tox 33(7):607–617

    CAS  Google Scholar 

  • Hirose Y, Kobayashi M, Koyama K, Kohda Y, Tanaka T, Honda H, Yoshida K, Kikuchi M (1999) A toxicokinetic analysis in a patient with acute glufosinate poisoning. Hum Experim Toxicol 18(5):305–308

    CAS  Google Scholar 

  • Hori Y, Tanaka T, Fujisawa M, Shimada K (2003) Toxicokinetics of DL-glufosinate enantiomer in human BASTA® poisoning. Biolog Pharmac Bull 26(4):540–543

    CAS  Google Scholar 

  • Kitamura S, Mita M, Shimuzu Y, Sugihara K, Ohta S (1999) Conversion of Dieldrin to Aldrin by intestinal Bacteria in rats. Biolog Pharma Bull 22(8):880–882

    CAS  Google Scholar 

  • Hussain S, Arshad M, Springael D, Sorensen SR, Bending GD, Devers-Lamrani M, Maqbool Z, Martin-Laurent F (2015) Abiotic and biotic processes governing the fate of phenylurea herbicides in soils: a review. Crit Rev Environ Sci Technol 45(18):1947–1998

    CAS  Google Scholar 

  • Knaak JB, Tallant MJ, Kozbelt SJ, Sullivan LJ (1968) The metabolism of carbaryl in man, monkey, pig, and sheep. J Agric Food Chem 16(3):465–470

    CAS  Google Scholar 

  • Lavy TL, Mattice JD, Massey JH, Skulman BW (1993) Measurements of year-long exposure to tree nursery workers using multiple pesticides. Arch Environ Contam Tox 24(2):123–144

    CAS  Google Scholar 

  • Litchfield MH (2005) Estimates of acute pesticide poisoning in agricultural workers in less developed countries. Toxicol Rev 24:271–278

    CAS  Google Scholar 

  • Loos R, Locoro G, Contini S (2010) Occurrence of polar organic contaminants in the dissolved water phase of the Danube River and its major tributaries using SPE-LC-MS2 analysis. Water Res 44(7):2325–2335

    CAS  Google Scholar 

  • Menzie CM (1980) Metabolism of pesticides-update III. Special Scientific Report- Wildlife No. 232. Washington, DC: U.S. Department of the Interior, fish and wildlife service p. 12

  • Mercadante R, Polledri E, Rubino FM, Mandic-Rajcevic S, Vaiani A, Colosio C, Moretto A, Fustinoni S (2019) Assessment of penconazole exposure in winegrowers using urinary biomarkers. Environ Res 168:54–61

    CAS  Google Scholar 

  • Morgan MK, Sobus JR, Barr DB, Croghan CW, Chen F-L, Walker R, Alston L, Andersen E, Clifton MS (2016) Temporal variability of pyrethroid metabolite levels in bedtime, morning, and 24-h urine samples for 50 adults in North Carolina. Environ Res 144:81–91

    CAS  Google Scholar 

  • Niemann L, Sieke C, Pfeil R, Solecki R (2015) A critical review of glyphosate findings in human urine samples and comparison with the exposure of operators and consumers. J Verbr Lebensm 10:3–12

    CAS  Google Scholar 

  • Nigg HN, Stamper JH (1983) Exposure of spray applicators and mixer-loaders to chlorobenzilate miticide in Florida citrus groves. Arch Environ Contam Tox 12(4):477–482

    CAS  Google Scholar 

  • Ochiai N (2005) Optimization of a multi-residue screening method for the determination of 85 pesticides in selected food matrices by stir bar sorptive extraction and thermal desorption GC-MS. J Separ Sci 28:1083–1092

    CAS  Google Scholar 

  • Roan Y, Morgan D, Paschal EH (1971) Urinary excretion of DDA following ingestion of DDT and DDT metabolites in man. Arch Environ Hlth 22:309

    CAS  Google Scholar 

  • Rousis NI, Zuccato E, Castiglioni S (2016) Monitoring population exposure to pesticides based on liquid chromatography-tandem mass spectrometry measurement of their urinary metabolites in urban wastewater: a novel biomonitoring approach. Sci Total Environ 571:1349–1357

    CAS  Google Scholar 

  • Rousis NI, Zuccato E, Castiglioni S (2017a) Wastewater-based epidemiology to assess human exposure to pyrethroid pesticides. Environ Intern 99:213–220

    CAS  Google Scholar 

  • Rousis NI, Gracia-Lor E, Zuccato E, Bade R, Baz-Lomba JA, Castrignanò E, Causanilles A, Covaci A, de Voogt P, Hernàndez F, Kasprzyk-Hordern B, Kinyu J, McCall A-K, Plósz BG, Ramin P, Ryu Y, Thomas KV, van Nuijs A, Yang Z, Castiglioni S (2017b) Wastewater-based epidemiology to assess pan-European pesticide exposure. Water Res 121:270–279

    CAS  Google Scholar 

  • Rousis NI, Bade R, Bijlsma L, Zuccato E, Sancho JF, Hernandez F, Castiglioni S (2017c) Monitoring a large number of pesticides and transformation products in water samples from Spain and Italy. Environ Res 156:31–38

    CAS  Google Scholar 

  • Sams C, Jones K, Galea KS, MacCalman L, Cocker J, Teedon P, Cherrie JW, van Tongeren M (2016) Development of a biomarker for penconazole: an human oral dosing study and a survey of UK residents’ exposure. Toxics 4(2):1–10

    Google Scholar 

  • Sauerhoff MW, Braun WH, Blau GE, Gehring PJ (1977) The fate of 2,4-dichlorophenoxyacetic acid (2,4-D) following oral administration to man. Toxics 8(1):3–11

    CAS  Google Scholar 

  • Schulz R (2004) Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: a review. J Environ Qual 33(2):419–448

    CAS  Google Scholar 

  • Sultatos L, Gagliardi CL (1990) Desulfuration of the insecticide parathion by human placenta in vitro. Biochem Pharmacol 39(4):799–801

    CAS  Google Scholar 

  • Weschler CJ, Nazaroff WW (2008) Semivolatile organic compounds in indoor environments. Atm Environ 42:9018–9040

    CAS  Google Scholar 

  • Whitmore RW, Kelly JE, Reading PL (1992) National Home and Garden Pesticide Use Survey: Final Report. US EPA, Office of Pesticides and Toxic Substances, Biological and Economic Analysis Branch. Research Triangle Institute. Vol. 1. NTIS PB92–174739

  • Williams GM, Kroes R, Munro IC (2000) Safety evaluation and risk assessment of the herbicide roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol

  • World Health Organization/ Food and Agriculture Organization (WHO/FAO). Joint Meeting on Pesticide Residues on Tebuconazole (107534-96-3), 1994. Available from, IPCS Inchem http://www.inchem.org/documents/jmpr/jmpmono/v94pr10.htm (accessed 11 December 2018)

  • Zettler JL, Arthur FH (2000) Chemical control of stored product insects with fumigants and residual treatments. Crop Prot 19(8–10):577–582

    CAS  Google Scholar 

  • Zuccato E, Chiabrando C, Castiglioni S, Bagnati R, Fanelli R (2008) Estimating community drug abuse by wastewater analysis. Environ Health Persp 116(8):1027–1032

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Alain Devault.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devault, D.A., Karolak, S. Wastewater-based epidemiology approach to assess population exposure to pesticides: a review of a pesticide pharmacokinetic dataset. Environ Sci Pollut Res 27, 4695–4702 (2020). https://doi.org/10.1007/s11356-019-07521-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07521-9

Keywords

Navigation