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ABSTRACT 11 

Hydrological models contain parameters whose values cannot be directly measured in 12 

many field-scale projects, hence need to be meaningfully inferred through calibration 13 

against historical records. Much progress has been made in development of efficient search 14 

algorithms in order to find optimal parameter values and their underlying uncertainty 15 

distributions. Yet, relatively little is known about the effects of calibration data (or error 16 

residual) transformations on the identifiability of model parameters, reliability of model 17 

predictions, and convergence speed of the search algorithm. Such transformations are 18 

common in the model-data synthesis literature, but often appear ad-hoc without a 19 

comprehensive and comparative theoretical or practical justification. Effects of calibration 20 



data transformations on the posterior parameter distribution and predictive capability of 21 

two parsimonious hydrological models are here analyzed. We are particularly concerned 22 

with convergence speed and reliability of parameters and predictive uncertainty estimates 23 

of hydrological models. Our results depict that calibration data transformations 24 

significantly influence parameter and predictive uncertainty estimates, sometimes 25 

distorting the information content of data. In particular, transformations which distort the 26 

temporal distribution of calibration data, such as flow duration curve, normal quantile 27 

transform, and Fourier transform, considerably deteriorate the identifiability of 28 

hydrological model parameters derived in a formal Bayesian framework with a residual-29 

based likelihood function. Other transformations, such as wavelet, BoxCox and square 30 

root, while demonstrating some merits in identifying specific model parameters, would not 31 

consistently improve predictive capability of hydrological models in a single objective 32 

inverse problem. Multi-objective optimization schemes may present a more rigorous basis 33 

to extract several independent pieces of information from different data transformations. 34 

Finally, data transformations might offer a greater potential for model evaluation and 35 

selection than calibration in a single objective framework.  36 

 37 
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1 INTRODUCTION AND SCOPE 41 

Rainfall-Runoff (RR) models are simplified representations of complex bio-geophysical 42 

processes in a watershed transforming climatic forcing into runoff that emanates from 43 

catchment outlet [Sadegh et al., 2015]. Such models are utilized for two general purposes, 44 

scientists scrutinize them to better understand hydrological behavior of watersheds, while 45 

engineers utilize them as predictive tools for decision making and policy planning 46 

[Jakeman et al., 2006; Pushpalatha et al., 2012]. Parameters of (conceptual) hydrological 47 

models are often not directly measurable, at the scale of interest, and need to be adjusted 48 

to optimally fit model simulations to measured data. In other words, they should be inferred 49 

indirectly through inverse modeling [Yapo et al., 1996]. Goodness of fit between 50 

simulations and observations is typically evaluated through an objective function that 51 

summarizes, as consistently as possible, the mismatch between modeled and observed 52 

system behavior.  53 

 54 

There is an extensive and growing body of literature on optimization, parameter estimation, 55 

and uncertainty analysis methods [Thiemann et al., 2001; Reed et al., 2000, 2003; Tolson 56 

and Shoemaker, 2007; Vrugt et al., 2009; Guzman et al., 2015], but input, structural and 57 

measurement errors overburden the identifiability of unbiased parameter distributions 58 

[Vrugt and Sadegh, 2013]. Such errors lack an inherent probability distribution that can 59 

inform formulation of an explicit likelihood/objective function [Vrugt and Sadegh, 2013]. 60 

The commonly used likelihood/objective functions in the literature are based on some 61 

assumptions regarding error residuals, many of which are not borne out of post-processing 62 



of the inverse modeling results [Sadegh and Vrugt, 2014]. In order to satisfy these 63 

assumptions, a common practice is to transform simulated and observed data or error 64 

residual time series prior to evaluating the objective function [Yapo et al., 1996; Bennett 65 

et al., 2013]. Data transformation is usually adopted either to satisfy predefined 66 

assumptions about the distribution of a time series of data [Dotto et al., 2014; Madadgar 67 

and Moradkhani, 2014], or to efficiently extract desired information from data that 68 

highlight different aspects of model behavior in a given domain [Bennett et al., 2013]. 69 

Desired information may emphasize a specific portion of the system response. Impacts of 70 

low flows in an inverse modeling practice, for example, could be accentuated through 71 

logarithmic, square root and inverse transformation of streamflows [Pushpalatha et al., 72 

2012]. In other words, time series of simulations and measured flows can be filtered 73 

through a “context” prior to collation in the objective function aiming to highlight a 74 

particular behavior of catchment. 75 

 76 

Signature-based analysis proposed by Gupta et al. [2008] suggests hydrological models 77 

should be calibrated against historical data presented in a “context” rather than their 78 

original (raw) format. Gupta et al. [2008] argue that “data” is not identical to “information”. 79 

“Information” is one’s understanding of the data presented through a filter of a “context”. 80 

The appropriate “context” yields most relevant information of the observations which has 81 

“clear and compelling diagnostic power” to reconcile a model with measurements [Gupta 82 

et al., 2008]. This has been postulated as a potentially beneficial approach to calibrate 83 

models, and to ensure models are able to mimic key characteristics of the hydrological 84 

system of interest.  85 



 86 

This paper aims to evaluate if data transformations can help us better understand 87 

hydrological behavior of watersheds, and consequently improve information extraction 88 

from available calibration data in a Bayesian framework. In this study, a range of 89 

commonly used transformations with widespread applications in hydrological modeling 90 

have been scrutinized. This includes square root, BoxCox, flow duration curve and normal 91 

quantile transformations, as well as spectral and wavelet spectral analysis. For each 92 

different transformation the posterior parameter distributions of hydrological models are 93 

estimated using a state of the art hybrid Markov Chain Monte Carlo (MCMC) algorithm 94 

[Sadegh et al., 2017] within a Bayesian framework. Posterior model parameter and 95 

prediction distributions, as well as convergence speed of MCMC simulation, are employed 96 

to assess the applicability of each transformation. Two lumped conceptual hydrological 97 

models, namely GR4J and HyMod, are used to analyze three catchments in the United 98 

States obtained from the MOPEX data set (available at 99 

ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/). Our MCMC simulation 100 

formally maintains detailed balance, and we therefore argue that the convergence speed is 101 

a proxy statistic to determine the relative information content of the data. Overall, our 102 

results show while some transformations might offer promise to improve model parameter 103 

identifiability and predictive capability, a multi-objective framework is necessary to 104 

harness all available independent pieces of information obtained from different 105 

transformations. Moreover, some data transformations, such as flow duration curve, 106 

normal quantile, and Fourier transform, leave detrimental imprints on the inverse modeling 107 

results in a formal Bayesian context.  108 

ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/


 109 

This paper is organized as follows: Section 2 describes the materials and methods used in 110 

this study, which details a general modeling framework, followed by a short description of 111 

Bayesian inference. This section continues with a concise explanation of data 112 

transformations used in this study, including square root, flow duration curve, normal 113 

quantile, BoxCox, spectral, and wavelet spectral analysis. Subsequently, the two 114 

conceptual rainfall runoff models, GR4J and HyMod, and case studies used in this analysis 115 

are briefly discussed. Section 3 presents the results of Bayesian analysis of these two 116 

hydrological models calibrated against different transformations of historical and synthetic 117 

records from three catchments in the U.S. Finally, section 5 presents the concluding 118 

remarks. 119 

 120 

2 MATERIALS AND METHODS 121 

In a common forward modeling practice, a set of describing equations and physical 122 

constraints are used to simulate the response of a system to a cohort of drivers. A rainfall-123 

runoff model, 𝑀, for example, translates a set of inputs, 𝑰̃, including precipitation, 𝑷̃, and 124 

potential evapotranspiration, 𝑷𝑬𝑻̃, to streamflow discharge, 𝑫, at catchment outlet given 125 

a parameter set, 𝜽: 126 

𝑫 = 𝑀(𝜽, 𝑰̃) + 𝒆.          (1) 127 

In this equation, 𝒆 represents error residuals stemming from the difference between model 128 

hypothesis, 𝑀, and the underlying “true” unknown streamflow generating process, 𝐾, as 129 



well as input, calibration data and parameter errors [Sadegh and Vrugt, 2013; Sadegh et 130 

al., 2017].  131 

 132 

We wish to estimate model parameters, 𝜽, through an optimization algorithm that tune 133 

them to minimize the discrepancy between model simulation, 𝑫, and streamflow 134 

observation, 𝑫̃. Several optimization algorithms, such as Shuffled Complex Evolution 135 

(SCE-UA) of Duan et al. [1992], have been employed to find the optimal parameters of 136 

conceptual rainfall-runoff models. Such algorithms locate the model realization which best 137 

fits observed data without recourse to the underlying uncertainties of the modeling practice 138 

[Thiemann et al., 2001]. Bayesian inference, on the other hand, has shown great 139 

applicability and promise to characterize the underlying modeling uncertainties in the field 140 

of hydrology and beyond [Kuczera, 1999]. 141 

2.1. Bayesian Inference 142 

Bayesian inference systematically incorporate new information, as they become available, 143 

to update the probability of a hypothesis. Bayes’ theorem conveniently assumes model 144 

parameters are the sole source of uncertainty, and estimates posterior probability of a 145 

hypothesis, 𝑝(𝜽, 𝑫̃), through multiplication of prior probability, 𝑝(𝜽), likelihood value, 146 

𝐿(𝜽|𝑫̃), and inverse of evidence, 𝑝(𝑫̃), 147 

𝑝(𝜽, 𝑫̃) =  
𝑝(𝜽)𝐿(𝜽|𝑫̃)

𝑝(𝑫̃)
.         (2) 148 

In this equation, evidence, 𝑝(𝑫̃), is a constant value, and can be conveniently excluded 149 

from the formula if estimation of posterior probability of the hypothesis is merely intended, 150 



𝑝(𝜽, 𝑫̃)  ∝  𝑝(𝜽)𝐿(𝜽|𝑫̃).        (3) 151 

 152 

In the field of environmental science, it is a common practice to assume a uniform prior 153 

distribution for model parameters, 𝑝(𝜽), in the absence of any useful information 154 

[Thiemann et al., 2001]. The second element of equation 3, likelihood function 𝐿(𝜽|𝑫̃) 155 

characterizes the distance between model simulations and observations. There is a lot of 156 

discussion in the literature on how to formulate the likelihood function that sufficiently 157 

characterizes the probabilistic characteristics of forcing, model, and calibration data errors 158 

[Schoups and Vrugt, 2010]. However, it is noteworthy to acknowledge a simple likelihood 159 

function that assumes error residuals are uncorrelated, homoscedastic, Gaussian distributed 160 

with zero mean is probably most widely used in the field of hydrology and environmental 161 

science [Thyer et al., 2009; Sadegh et al., 2017]. Such a residual-based Gaussian likelihood 162 

function is formulated as, 163 

𝐿(𝜽|𝑫̃) =  ∏
1

√2𝜋𝜎̃2
𝑛
𝑡=1 exp {−

1

2
𝜎̃−2[𝑑̃𝑡 − 𝑑𝑡(𝜽)]

2
},     (4) 164 

where 𝜎̃ signifies measurement error, 𝑛 denotes length of observational data, and 165 

𝑑̃𝑡 and 𝑑𝑡(𝜽) represent observed and simulated streamflow at time step 𝑡. 166 

 167 

In a common Bayesian inference problem, we wish to estimate the posterior distribution of 168 

model parameters, 𝑝(𝜽, 𝑫̃), through equation 3. Analytical solution to the Bayes’ equation 169 

is, however, not always warranted. Hence, a numerical solution is often required to estimate 170 

the posterior distribution of model parameters given the observed data. Markov Chain 171 



Monte Carlo (MCMC) simulation has emerged as a powerful statistical tool to sample from 172 

high dimensional, multimodal, complex distributions [Andrieu and Thomas, 2008], and 173 

can be readily applied to solve the Bayes’ rule. In this paper, we employ the state of the art 174 

hybrid-evolution MCMC algorithm of Sadegh et al., 2017 (Algorithm 1) that utilizes 175 

adaptive proposal distributions, namely Adaptive Metropolis (AM), Differential Evolution 176 

(DE), and snooker update, to search the prior space [Gilks et al., 1994; Storn and Price, 177 

1995, 1997; Roberts and Sahu, 1997; Haario et al., 1999, 2001; ter Braak, 2006; Roberts 178 

and Rosenthal, 2009].  179 

 180 

In words, this algorithm starts as random search with 20 ∗ 𝑑 samples (𝑑: number of model 181 

parameters) selected through Latin Hypercube Sampling (LHS). These samples then drive 182 

the RR model and calculate the associated likelihood value. Next step is to randomly assign 183 

these samples to 𝑁 = 2 ∗ 𝑑 complexes, in which the best sample (highest likelihood) is 184 

selected as the starting point for Markov chains. Then, parallel (with a probability of 90%) 185 

and snooker (with a probability of 10%) direction updates are employed to propose new 186 

samples, acceptance/rejection of which is determined through Metropolis ratio. To 187 

diversify the jump algorithm, we assign one chain to use Adaptive Metropolis and the rest 188 

to employ Differential Evolution. Finally, Gelman-Rubin ℛ̃ statistics is used to monitor 189 

the convergence of Markov chains [Gelman and Rubin, 1992]. For more information 190 

regarding the MCMC algorithm, interested readers are referred to Algorithm 1 of Sadegh 191 

et al. [2017]. 192 

  193 



Convergence speed of MCMC simulation provides a proxy diagnostic measure for the 194 

information content of data and the simplicity to extract this information. Filtering data 195 

through a context which potentially extracts more pieces of independent information from 196 

the data provides the MCMC algorithm a higher power to reconcile model with data, and 197 

hence increases the convergence speed of the MCMC simulation. Our MCMC simulation 198 

formally maintains detailed balance, and we therefore argue that the convergence speed is 199 

a proxy statistic to determine the relative information content of data. In order to 200 

demonstrate the effects of data transformations on model parameter identifiability and 201 

predictive capability, as well as convergence speed of MCMC simulation, two hydrological 202 

models, namely GR4J and HyMod, are calibrated against data from three watersheds in the 203 

U.S., details of which are provided later in this section. In the following paragraphs, 204 

different data transformations and hydrological models, used in this study, are explained 205 

in detail. 206 

2.2 Data Transformations 207 

In principle, there are infinite number of data transformations. In this paper, we restrict our 208 

attention to six commonly used class of transformations in the field of hydrology, namely 209 

square root, BoxCox, flow duration curve, normal quantile transform, spectral analysis and 210 

wavelet spectral analysis. In this section, we first demonstrate how a data transformation 211 

affects calibration of a simple hydrological model, and then describe different data 212 

transformations in detail. 213 

 214 



As an intuitive example, consider a very simple, three parameters “abc” hydrological 215 

model as following [Fiering, 1967; Mantovan and Todini, 2006]: 216 

{
𝑑𝑡 = (1 − 𝑎 − 𝑏) × 𝑝𝑡 + 𝑐 × 𝑠𝑡−1

𝑠𝑡 = (1 − 𝑐) × 𝑠𝑡−1 + 𝑎 × 𝑝𝑡        
,       (5) 217 

in which 𝑝𝑡, 𝑑𝑡 and 𝑠𝑡 represent precipitation, discharge and aquifer storage at time 𝑡, 218 

respectively. In this model, discharge consists of a direct runoff component (as a result of 219 

precipitation) and a baseflow component (as a result of aquifer storage). Aquifer storage at 220 

each time step, 𝑡, depends on storage at the previous time step as well as precipitation at 221 

the current time.  We use a simple and yet frequently used quadratic objective function of 222 

Sum of Squared Residuals (SSR = ∑(𝑑𝑡 − 𝑑̅𝑡)2), to calibrate this hydrological model. In 223 

this equation, 𝑑𝑡 and 𝑑̅𝑡 represent simulated and measured discharge at time 𝑡, 224 

respectively. The idea is to study model response sensitivity to the aquifer storage 225 

parameter (𝑐), as a result of an extreme precipitation event.  In a hypothetical rainfall time 226 

series, consider an extreme precipitation that mainly contributes to direct runoff, and results 227 

in an extreme flow discharge of 200 m3/s. Also, suppose a long period of dryness which 228 

makes the effect of precipitation on the discharge negligible and consider a hypothetical 229 

discharge of 10 m3/s, primarily due to baseflow.   230 

 231 

A change of 10% in the discharge during the extreme precipitation event (e.g., observation 232 

of 200 m3/s and simulation of 180 m3/s) would induce a change of 400 units in the objective 233 

function, while a change of 10% in the discharge during the dry period (e.g., observation 234 

of 10 m3/s and simulation of 9 m3/s) would result in a 1 unit change in the objective 235 

function. During the extreme precipitation event, the dominant parameter is the direct 236 



runoff parameter, while in the dryness period the baseflow parameter is dominant. In this 237 

example, model would be insensitive to the parameter representing baseflow ( c ), because 238 

of the trivial impact of this parameter on the objective function comparing to the direct 239 

runoff parameter.  240 

 241 

Given this forcing, a square root transformation will alleviate the dominant effect of 242 

extreme event on the objective function; as a change of 10% in the discharge during the 243 

extreme precipitation (dominated by direct runoff) would prompt a change of 0.53 units in 244 

the objective function; while a change of 10% in discharge during the dry period 245 

(dominated by baseflow) would generate a 0.03 unit change in the objective function. In 246 

other words,  square root transformation gives higher importance to lower discharge values 247 

comparing to the original data, and enhance model sensitivity to the parameter representing 248 

baseflow. In the following sections, different data transformations are explained, and 249 

consequently applied to two conceptual models of streamflow prediction.  250 

2.2.1 Square root transformation 251 

Square root transformation is a simple square root of the discharge data, which help 252 

decrease the dominant effects of extreme peak events in the calibration process, and is 253 

denoted by SQRT hereafter in this paper. 254 

2.2.2 Flow duration curve transformation 255 

Flow duration curve (FDC) is a cumulative distribution function that depicts the 256 

relationship between the magnitude of a certain flow event and its frequency. The FDC 257 



transformation exhibits the percentage of time that discharge equals or exceeds a particular 258 

value, and associates each discharge value to an exceedance probability [Vogel and 259 

Fennessey, 1994].  260 

 261 

According to Vogel and Fennessey, 1994, “FDC provides a simple, yet comprehensive, 262 

graphical view of the overall historical variability associated with stream-flow in a river 263 

basin”. However, removing temporal order of events can be regarded as a potential 264 

drawback of this transformation. In the field of hydrology and water resources, FDCs are 265 

widely used for planning purposes [Mitchell, 1957; Searcy, 1959; Male and Ogawa, 1984; 266 

Gordon et al. 1992]. Blazkova and Beven [2009] utilized information summary of FDCs 267 

to test a rainfall-runoff model performance.  268 

 269 

Computing FDC involves the following steps: 270 

1) Sort discharge values in a descending order and rank them 1 to 𝑛 (sample size). 271 

2) Compute exceedance probability associated with each discharge value: 272 

𝑃 = 100 ×
𝑖𝑡

𝑛+1
,         (6) 273 

in which, 𝑖𝑡 is rank of discharge 𝑑𝑡. 274 

2.2.3 Normal quantile transformation 275 

Normal Quantile Transform (NQT), also referred to as Inverse Normal Score, is a strong 276 

statistical method to alter the form of a cumulative distribution, 𝑝(𝑫 ≤ 𝑑𝑡), in the field of 277 



hydrology [Moran, 1970; Kelly and Krzysztofowicz, 1997; Hosking and Wallis, 1998]. 278 

NQT is usually denoted as [Kelly and Krzysztofowicz, 1997; Montanari and Brath, 2004]:  279 

𝑁𝑃(𝑡) = 𝑄−1[𝑝(𝑫 ≤ 𝑑𝑡)]        (7) 280 

 281 

In which 𝑁𝑃(𝑡) is the modified Gaussian distribution, 𝑝(𝑫 ≤ 𝑑𝑡) is the marginal 282 

cumulative distribution of variable 𝑑𝑡, and 𝑄−1 represents the inverse of the standard 283 

normal distribution. We follow Montanari and Brath [2004] in implementing NQT: 284 

1) Compute cumulative frequency 𝐹(𝑑𝑡) based on Weibull plotting position: 285 

 𝐹(𝑑𝑡) =
𝑖𝑡

𝑛+1
.         (8) 286 

2) Compute normal quantile 𝑁𝑃(𝑡) for each frequency 𝐹(𝑑𝑡), and assign it to the 287 

associated 𝑑𝑡. 288 

2.2.4 BoxCox transformation 289 

BoxCox transformation is a strong tool to eliminate the heteroscedasticity of data and 290 

stabilize the variance of a time series [Sorooshian and Dracup, 1980]. Heteroscedastic 291 

model residuals are prevalent in hydrological modeling, in contrast to the homoscedasticity 292 

assumption of the statistical inference approaches. To solve this problem, and to alleviate 293 

the assumption of Gaussianity, it is assumed that there is a BoxCox transformation with an 294 

unknown parameter 𝜆 that generates a set of more likely normally distributed values with 295 

𝑁 constant variances. BoxCox transformation is defined for positive values as [Box and 296 

Cox, 1964]: 297 



 298 

𝑑𝑡
(𝜆)

= {
(𝑑𝑡

𝜆−1)

𝜆
,                when    λ≠0  

log(𝑑𝑡),             when    λ=0
.      (9) 299 

 300 

Our investigation showed that choice of 𝜆 = 0.3 is proper to stabilize the total error 301 

variance and reduce heteroscedasticity, confirming previous studies of Misirli et al. [2003]; 302 

and Vrugt et al. [2006]. 303 

2.2.5 Spectral analysis 304 

One can adjust model parameters so that spectral properties of model simulations fit 305 

spectral properties of measurements, instead of fitting in the temporal domain [Pauwels 306 

and De Lannoy, 2011]. It is specifically useful in the case of scarce data or ungauged 307 

basins, as spectral properties of a process can be obtained through analyzing scarce, old 308 

and non-overlapping data [Montanari and Toth 2007]. Calibration in the spectral domain 309 

has been implemented by several researchers in the field of hydrology [Montanari et al., 310 

2000; Montanari, 2003; Montanari and Toth, 2007; Quets et al., 2010; Pauwels and De 311 

Lannoy, 2011].  312 

 313 

Spectral properties can be computed through Fourier transform, 𝐹(𝑑𝑡), of time series of 314 

observations and simulations. In case of constant time step measurements and no missing 315 

data, one can use a Fast Fourier Transform (FFT) to decompose a time series to its spectral 316 

components. In our study, we use FFT to change the time domain into frequency domain. 317 



Fourier amplitude spectra of a variable is estimated through FFT, which is in turn defined 318 

as: 319 

𝑋𝑘 = ∑ 𝑑𝑡𝜔𝑡×𝑘𝑁−1
𝑡=0       𝑘 = 0,1,2, … , 𝑛 − 1

𝜔 = 𝑒
−2𝜋𝑖

𝑛                                                          
      (10) 320 

in which, 𝑋𝑘 is the Fourier amplitude of the 𝑘th harmonic wave. To keep at least two 321 

samples for each wavelength, highest harmonic (𝑘) in this formula is chosen to be less than 322 

𝑛

2
 [Quets et al., 2010; Shannon, 1949]. We calibrate hydrological models in the spectral 323 

domain following suggestions of Quets et al [2010]; and Pauwels and De Lannoy [2011] 324 

using Fourier amplitude spectra (denoted by FFT). 325 

 326 

Spectral density of a process can also be approximated as square of the Fourier amplitude 327 

spectra. When the requirement of constant sampling time step is not met in the available 328 

data, spectral density can be defined as the Fourier transform of the autocorrelation 329 

function of the time series [Pauwels and De Lannoy, 2011]: 330 

𝑆𝑘 = 𝐹(𝑅𝜏(𝑑));   𝑅𝜏(𝑟𝑑) = 𝐸[𝑑(𝑡)𝑑(𝑡 − 𝜏)],     (11) 331 

in which, 𝑆𝑘 is the spectral density of the 𝑘th harmonic wave, 𝐹 represents the Fourier 332 

transform, and 𝑅𝜏(𝑑) is the autocorrelation function of the variable 𝑑. For more 333 

information refer to Quets et al. [2010]; and Pauwels and De Lannoy [2011]. Results of 334 

transformation of equation 11 are not presented in this paper, as they consistently 335 

deteriorate model performance for all watersheds.  336 



2.2.6 Wavelet spectral analysis 337 

Wavelet analysis provides time localized power spectra for each frequency/scale [Lane 338 

2007], as opposed to spectral analysis which yields a power spectrum for each frequency 339 

and loses time localization. Wavelet transform is able to decompose a signal into scaled 340 

and translated versions of a mother wavelet which are defined in a three-dimensional space: 341 

time, scale/frequency and power [Lafrenière and Sharp, 2003]. As stated by Dhanya and 342 

Kumar [2011], “localization property of wavelets, utilizing different dilation and 343 

translation parameters, helps in capturing most of the statistical properties of the observed 344 

data.”  Wavelet spectral analysis has  become a very attractive option in the field of 345 

hydrology to identify and analyze scale variability, long term oscillation and cycles of 346 

hydrological data [Torrence and Compo, 1998; Lafrenière and Sharp, 2003; Labat et al., 347 

2005; Lane, 2007; Schaefli et al., 2007; Dhanya and Kumar, 2011].  348 

 349 

Wavelet analysis is a useful tool in hydrological studies, since it enables us to discriminate 350 

between measurements and model simulations through time localization and 351 

scale/frequency decomposition of data series [Lane, 2007].  Continuous wavelet 352 

transformation of a discrete time series, 𝑑𝑡, with respect to a pre-specified wavelet function 353 

𝑔(𝑡) is defined as [Torrence and Compo, 1998]: 354 

𝑊𝑡(𝑠) = ∑ 𝑑𝑡′ 𝑔∗ [
(𝑡′−𝑡)

𝑠
𝛿𝑡] ,𝑛−1

𝑡′=0        (12) 355 

 

356 

 357 



where, 𝑔∗ represents a complex conjugate of wavelet function 𝑔, and 𝑠, 𝑡 and 𝛿𝑡 denote 358 

scale, time and measurement resolution, respectively. The so-called convolution (equation 359 

12) should be repeated 𝑛 times for each scale, where 𝑛 is the dimension of the time series. 360 

It is worth mentioning that wavelet transform can be implemented much faster in the 361 

Fourier space than the original domain. For more information refer to Torrence and Compo 362 

[1998].  363 

 364 

Wavelet functions can be generally characterized as follows [Torrence and Compo, 1998]: 365 

1. Orthogonal or nonorthogonal wavelets: Nonorthogonal wavelet functions are 366 

appropriate for time series analysis, and can be utilized for both continuous and 367 

discrete waveforms. Orthogonal wavelets, on the other hand, can only be used for 368 

discrete wavelet transforms. 369 

2. Complex or real-valued wavelet functions: Real wavelets only provide information 370 

on the power of a signal, whereas complex wavelets offer information on both 371 

power and phase of a signal, which is more informative for analyzing signal 372 

oscillations.  373 

3. Width: The balance between width in time and frequency spaces determines the 374 

resolution of a wavelet function. There is a trade-off between resolution in time and 375 

frequency; a narrow wavelet function in time has a high time resolution and a low 376 

frequency resolution, whereas a broad wavelet function is vice versa.  377 

4. Shape: Shape of wavelet function should represent structure, form and properties 378 

of the time series. 379 



 380 

One should consider different characteristics of wavelet functions and select an appropriate 381 

function for the studied data set. However, study of Torrence and Compo [1998] suggests 382 

choice of wavelet does not drastically affect the qualitative results of wavelet analysis. Two 383 

forms of wavelets namely Morlet wavelet (complex) [Lafrenière and Sharp, 2003; Labat 384 

et al., 2005] and Mexican Hat wavelet (real) [Lane, 2007] are most commonly in use in 385 

hydrological studies. These two wavelet functions will be utilized in this study.  386 

 387 

It is a common practice to use a set of scales, instead of one single scale. This helps generate 388 

a more comprehensive representation of the data set. Choice of scales for a wavelet 389 

transformation is arbitrary, and different suggestions can be found in the literature in this 390 

regard [Torrence and Compo, 1998; Lane, 2007]. A rough estimate of minimum scale for 391 

Morlet wavelet is 𝑠min = 2.06𝛿𝑡 and maximum scale is 𝑠max <
𝑛

2𝜖
𝛿𝑡 [Lane 2007]. Here, 392 

𝛿𝑡 and 𝜖 denote measurement resolution and cone of influence, respectively. 𝜖 is here set 393 

to √2𝑠  for both Morlet and Mexican Hat wavelets [Torrence and Compo, 1998]. Cone of 394 

influence represents the edge effect of data transformation. Due to inherent cyclic 395 

assumption of data in wavelet transformation, it does not yield accurate transformed values 396 

for the edge parts of a time series. In order to alleviate the impacts of edge effect errors, we 397 

followed Torrence and Compo [1998] to pad zeros to both sides of time series before 398 

applying the transformation. Added values are cut off afterwards. 399 

  400 



In order to satisfy the computational efficiency, one can choose a set of integer scale values 401 

between the minimum and maximum thresholds [Lane, 2007]. Our investigations show a 402 

scale set of {2, 4, 8, 16, 32} seems appropriate to represent almost all features of our data 403 

set.  In this scale set, the maximum value is carefully selected, since larger scale values 404 

require higher computational time with only marginal impact on model analysis. Each scale 405 

here provides a wavelet spectra series that complies with the length of the raw data set. In 406 

order to compare measurements with simulation results in our objective function, all the 407 

wavelet spectra with different scales are put in one vector of length 𝑚 ∗ 𝑛, in which 𝑛 is 408 

the length of measurement data and 𝑚 is the number of scales (in our study 𝑚 = 6). Note 409 

that wavelet analysis considerably increases the computational effort. Next, we discuss the 410 

conceptual hydrological models used in this study. 411 

2.3 Rainfall-Runoff Models 412 

Rainfall-Runoff (RR) models can be generally categorized into two classes of conceptual 413 

and physically-based models. In this study, we calibrate two lumped conceptual 414 

hydrological models, widely used in the literature, namely HyMod and GR4J against daily 415 

data from French Broad, Skykomish, and Rogue river watersheds, located in the U.S.  The 416 

two hydrological models are briefly explained in the following paragraphs. 417 

2.3.1 HyMod model 418 

HyMod is a five-parameter parsimonious conceptual RR model, developed by Boyle 419 

[2001]. HyMod has been extensively used in the field of hydrological science. This model 420 

consists of a nonlinear soil moisture storage compartment and two parallel series of linear 421 



reservoirs, forming a total of five storage compartments. Soil moisture storage processes 422 

evapotranspiration and excess rainfall, and feed the parallel slow (one storage 423 

compartment) and quick (three serial storage compartments) routing reservoirs. Input 424 

forcing of this model include mean areal precipitation and potential evapotranspiration, and 425 

its outputs are simulated streamflow discharge and evapotranspiration. For the sake of 426 

brevity, we refrain from explaining the model in more details and refer interested readers 427 

to Boyle [2001]; Wagener et al. [2001]; and Gharari et al. [2013] for more information. A 428 

schematic representation of HyMod is provided in Figure 1, and a short description of its 429 

parameters along with their feasible ranges are provided in Table 1. 430 

2.3.2 GR4J model 431 

Perrin [2000] introduced GR4J as a parsimonious RR model with a great flexibility to 432 

simulate a wide range of watersheds’ response to mean areal precipitation and potential 433 

evapotranspiration forcing. Perrin et al. [2003] argue that a model complexity of three to 434 

five parameters for rainfall-runoff transformation is adequate to obtain a satisfactory 435 

performance at a daily time step. GR4J consists of two storage compartments and a few 436 

transfer functions that are governed by a total of four tunable parameters and two fixed 437 

scalars. GR4J satisfies evapotranspirative demand first, and then routes net rainfall through 438 

a storage compartment (production store) that feeds two unit-hydrograph (UH) based 439 

transfer functions. One UH then feeds the routing store, whereas the other directly routes 440 

water to the catchment outlet. For a schematic representation of the GR4J model see Figure 441 

1, and for a detailed description refer to Perrin et al. [2001]; and Perrin et al. [2003]. Table 442 

2 provides a short description of the GR4J parameters along with their feasible ranges. 443 



2.3.3 Snow module 444 

A snow module is used in this study to classify precipitation into snow and rainfall 445 

categories based on observed temperature, before driving RR models. Precipitation 446 

accumulates as snow, if mean daily temperature is less than a freezing threshold, 𝑇0, and 447 

pass as rainfall when temperature is above the freezing threshold (𝑇0 = 0 degree Celsius, 448 

in this study). Snow melts based on a tunable degree-day factor parameter, and cumulative 449 

sum of snowmelt and rainfall drives the RR model(s). For more details regarding the snow 450 

module, refer to AghaKouchak and Habib [2010] and AghaKouchak et al. [2013].  451 

2.4 Case Studies 452 

In this study, we analyze three watersheds from the MOPEX dataset with different 453 

hydrological behavior, including French Broad river catchment near Newport, Tennessee, 454 

U.S. (USGS ID: 03455000), Skykomish river catchment near Gold Bar, Washington, U.S. 455 

(USGS ID: 12134500), and Rogue river at Raygold near Central Point, Oregon, U.S.  456 

(USGS ID: 14359000). Historical data consists of daily mean areal precipitation (mm/day), 457 

potential evapotranspiration (mm/day), maximum and minimum daily temperature (℃) and 458 

streamflow (m3/s). Table 2 presents a concise description of these watersheds’ hydrological 459 

characteristics. We calibrate GR4J and HyMod RR models against five years of observed 460 

data (01/01/1949-12/31/1953) from each watershed, and evaluate the calibrated models 461 

against five years of out of sample independent observations (01/01/1954-12/31/1958).  462 

 463 



Bayesian inference was repeated for each model and watershed with all the aforementioned 464 

data transformations. In a quest for sufficient hydrological signatures, we transform 465 

observed and simulated streamflow data prior to likelihood evaluation. To further 466 

investigate the influence of data transformation on Bayesian inference, we also evaluate 467 

the performance of each transformation for synthetic data. We generate time series of 468 

synthetic data with known randomly selected parameter sets for each model and each 469 

watershed. These synthetic observations are in turn corrupted with a red noise (random 470 

error series drawn from a Gaussian distribution centered at zero with a variance of 20% of 471 

original flow values) to represent real-world errors. Similar time periods as that of the real-472 

world observations are used for Bayesian analysis of the synthetic data. 473 

3 RESULTS AND DISCUSSION 474 

In this section, we present results of numerical simulation of French Broad, Skykomish, 475 

and Rogue river basins with GR4J and HyMod models. Posterior distribution of model 476 

parameters for each watershed is inferred using a state of the art hybrid-MCMC algorithm 477 

with 35,000 function evaluations, through calibration against synthetic and real-world 478 

observed data. Hybrid-MCMC algorithm of Sadegh et al., 2017 maintains detailed balance, 479 

and equilibrium state of this algorithm accurately represents the posterior distribution of 480 

model parameters. Last 20% draws of Markov chains, satisfying the convergence criteria, 481 

were used to form the posterior distributions, which are in turn used for predictive analysis. 482 

The so-derived posterior distributions of model parameters contain enough information to 483 

characterize model predictive uncertainty ranges. As discussed earlier, Bayesian inference 484 

attribute the modeling uncertainties to parameters, and hence the estimated predictive 485 



uncertainty ranges include only the influence of parameter uncertainty. Assuming the 486 

remaining unexplained uncertainty is additive, we then perturb each model simulation run 487 

with a residual error series, 𝜀~ 𝑁(0, 𝜎𝑣
2), to obtain total predictive uncertainty ranges. 488 

RMSE of best model realization is used as an intuitive approximation of measurement error 489 

variance, 𝜎𝑣
2. Note that we drive RR model with posterior parameter sets and observed 490 

forcing to obtain model simulation runs. 491 

 492 

In this study, we used a likelihood function based on a simple quadratic objective function 493 

of Sum of Square Residuals (equation 3) to minimize the influence of complex objective 494 

function assumptions on the posterior results; and to ensure that results are maximally 495 

reflecting the impacts of data transformations. We acknowledge that the underlying 496 

assumptions of our likelihood function (residuals being uncorrelated, homoscedastic, 497 

Gaussian distributed with mean zero) influence the posterior results, but this is minimal 498 

compared to other choices. More complex objective functions would interact with data 499 

transformations, leaving detection of the pure impacts of data transformations very 500 

difficult, if not impossible. In the following paragraphs, the results of parameter inference 501 

against synthetic and real data are described in detail. 502 

 503 

Figure 2 depicts the posterior distribution of maximum capacity of the production store 504 

parameter (S1max) of GR4J calibrated against synthetic data of French Broad river 505 

catchment, using different data transformations. The “true” parameter value (used to 506 

generate the synthetic data) is portrayed in each plot with a red square. Each plot shows 507 



the results of one data transformation, as described in the title. Most conspicuous in this 508 

figure is the distorted posterior distributions of S1max in cases of FDC and FFT 509 

transformations. Indeed, FDC’s results show multimodality in posterior S1max parameter 510 

distribution, and FFT derived parameters are limited to a few samples. Latter observation 511 

might suggest that MCMC has reached premature convergence for the FFT transformed 512 

data, but a closer look (not presented herein) shows that Markov chains representing S1max 513 

parameter indeed have explored the entire prior space and converged to a few points 514 

without much diversity. We attribute this behavior to the impact of FFT transformation in 515 

distorting the information content of data, which in turn is manifested in rejecting almost 516 

all the proposed samples. 517 

 518 

It is also noticeable in Figure 2 that the posterior distributions of S1max parameter derived 519 

with no transformation (None), as well as BoxCox, SQRT and NQT transformations 520 

encompass “true” parameter value, demonstrated with red box in each plot. It is interesting 521 

that the mode of distribution, which represents the parameter with highest likelihood, 522 

coincides with the true parameter value using NQT transformation. This is a desired 523 

behavior, but further investigation of the results of NQT transformation reveals that the 524 

overall influence of this transformation is disruptive on the calibration results. We will 525 

revisit this issue later in this section. SQRT transformation and original data (no 526 

transformation) are both able to nicely recover the “true” posterior distribution of this 527 

parameter, with the most likely parameter (mode of the distribution) closely positioned 528 

around the “true” parameter value. Posterior distributions derived by both wavelet 529 

transformations (Mexican Hat, MexH, and Morlet, Morl, wavelets), on the contrary, fail to 530 



encompass the “true” parameter value. It is noteworthy, however, that posterior 531 

distributions of these transformations are very tight, partially explaining why wavelet 532 

transformation did not recover the “true” parameter value. Indeed, both wavelet 533 

transformations, in the employed format, significantly reduce the variance of the posterior 534 

parameter distribution for all watersheds and both models.  535 

 536 

Similar conclusions can be drawn for the HyMod model’s results. Figure 3 presents the 537 

residence time of quick flow reservoir (Rq) parameter of the HyMod model, calibrated 538 

against five years of synthetic data from the Skykomish river catchment in Washington, 539 

U.S. For this parameter, results of the original data (no transformation), as well as BoxCox 540 

and SQRT transformations nicely converge to the “true” parameter value, with distribution 541 

mode coinciding with the “true” parameter. NQT transformation also returns a desirable 542 

posterior distribution, whereas FDC and FFT transformations distort the parameter 543 

distributions, as also observed in Figure 2. Expectedly, Mexican Hat wavelet 544 

transformation derives a tight distribution without encompassing the “true” parameter 545 

value. Morlet wavelet transformation, however, shows a surprising behavior in yielding a 546 

bimodal posterior distribution with its mode coinciding with the “true” parameter value.  547 

 548 

As previously discussed in the illustrative example, data transformations can affect the 549 

identifiabilty of model parameters. SQRT transformation, for example, enhance the weight 550 

of low flow values (baseflow, for example) in the objective function, and improve the 551 

identifiability of associated model parameters. Figure 4 shows the marginal distribution of 552 



the residence time of slow flow reservoir (Rs) parameter of the HYMOD model calibrated 553 

against synthetic data from the Rogue river basin in Oregon, U.S. SQRT transformation 554 

helps identify the “true” parameter value of Rs, while mode of posterior distribution of Rs 555 

derived with the original data and other transformations do not coincide with the “true” 556 

parameter value. Rs governs baseflow generation in HyMod, impacts of which are 557 

accentuated using the SQRT transformation.  558 

 559 

To further analyze the impacts of data transformation on the predictive performance of 560 

GR4J and HyMod models, Table 3 presents 95% predictive uncertainty ranges due to 561 

parameter and total uncertainty of the GR4J model for the Skykomish river catchment. This 562 

table also details the associated coverage of synthetic streamflow observations in the 95% 563 

parameter and total predictive uncertainty ranges, as well as root mean square error 564 

(RMSE) associated with best parameter set, and mean RMSE of model predictions driven 565 

by posterior parameters. These results also depict the poor performance of FFT and FDC 566 

transformations in terms of predictive performance of the calibrated GR4J model. Best and 567 

mean RMSE values for both transformations in calibration and evaluation periods are 568 

significantly higher compared to the original data results. In more details, best RMSE value 569 

of FDC and FFT transformations manifest values of 118.30 and 94.30 m3/s, respectively, 570 

compared to that of 78.82 m3/s for the original data in the calibration period. Coverage of 571 

synthetic observed streamflow in 95% predictive uncertainty ranges is also poor for both 572 

transformations. FDC and FFT’s total predictive uncertainty ranges cover 87.02% and 573 

90.42% of observations, whereas the original data results cover 93.54% of observed data. 574 



Note, however, that the total predictive uncertainty ranges for these two transformations 575 

are also marginally smaller than that of the original data (None). 576 

 577 

Mexican Hat and Morlet wavelet transformations return comparable results in terms of best 578 

and mean RMSE in both calibration and evaluation periods to that of the original data. This 579 

moderates the concerns regarding the posterior parameter distribution of the wavelet 580 

transformed data not coinciding with the “true” parameter values seen in Figures 2-4. 581 

However, in terms of predictive uncertainty ranges due to parameter uncertainties, both 582 

wavelet transformations return much tighter uncertainty ranges compared to the original 583 

data results in both calibration and evaluation periods (2.97 [2.97] m3/s for Mexican Hat 584 

and 7.78 [8.01] m3/s for Morlet wavelets, as opposed to that of 12.37 [12.46] m3/s for 585 

original data; evaluation period statistics are presented within brackets). This is 586 

accompanied with lower coverage of observed data (2.41% [1.92%] for Mexican Hat and 587 

6.52% [5.59%] for Morlet wavelets, as opposed to that of 8.93% [7.56%] for original data; 588 

evaluation period statistics are presented within brackets), which shadows the superiority 589 

of tighter predictive uncertainty ranges of the wavelet transformed analysis. NQT 590 

transformation, contrary to the results of Figures 2-4, show a much higher 95% predictive 591 

uncertainty range due to parameter impacts compared to that of the original data (37.56 592 

[39.83] m3/s versus 12.37 [12.46] m3/s), which is associated with higher coverage in the 593 

predictive uncertainty range. Higher best and mean RMSE values for NQT analysis 594 

compared to that of the original data (84.29 [88.02] m3/s versus 78.82 [80.41] m3/s), 595 

however, conclusively manifest the disruptive impacts of NQT transformation on Bayesian 596 

inference. Finally, SQRT and BoxCox transformations show a rather similar behavior to 597 



that of the original data in terms of predictive uncertainty ranges, and coverage of observed 598 

data within the 95% uncertainty range. RMSE values associated with the BoxCox and 599 

SQRT transformations are expectedly marginally higher than that of the original data, since 600 

they highlight sections of the streamflow distribution that might not necessarily hold 601 

highest weight for RMSE computation. Likelihood function of equation 3 intrinsically 602 

minimizes RMSE, and hence Bayesian inference with this objective function and original 603 

data yields the most preferred RMSEs. 604 

 605 

We now focus our attention on the results of analyzing real-world data from these three 606 

watersheds. Overall, we notice that the effects of data transformations on the calibration 607 

procedure are magnified using real-world historical data. For example, NQT 608 

transformation’s results for synthetic data in terms of predictive uncertainty spread, 609 

associated coverage of streamflow observation, RMSE, and parameter identifiability do 610 

not greatly diverge from those obtained from the original data; but the NQT derived model 611 

performance deteriorates greatly for real-world historical data. This is manifested in 612 

increasing the 95% predictive uncertainty spread, as well as best and mean RMSE of model 613 

predictions. Figure 5 presents the convergence speed of MCMC simulation of GR4J model 614 

for the Rogue river catchment in terms of minimum RMSE in a moving window of 50 615 

Markov chain samples. We argue that convergence speed of MCMC simulation can be one 616 

proxy indicator, among others, of the quantity/quality of information extracted from the 617 

data. Our MCMC simulation formally maintains detailed balance and we therefore argue 618 

that the convergence speed is a proxy statistic to determine the relative information content 619 

of the calibration data. The speculation behind data transformation is that it changes the 620 



context in which information is presented and transferred, and it potentially unveils 621 

multiple independent pieces of information in the calibration data which helps the model 622 

inference procedure. Figure 5, however, reveals that MCMC simulation with original data 623 

(black solid line, “None” in the legend) converges to its stable state faster than any 624 

transformation-based analysis. This rejects the underlying hypothesis that data 625 

transformation can improve model inference procedure through unveiling extra 626 

independent pieces of information in the calibration data in a formal Bayesian framework. 627 

 628 

Figure 5 also confirms our previous findings that FDC and FFT transformations distort 629 

information extraction from calibration data, leaving the model performance significantly 630 

inferior to that of the original data.  FDC transformation not only converges to a higher 631 

RMSE than other transformations and result in higher uncertainty spread, but also shows 632 

an erratic behavior in its convergence when calibration is repeated several times (results 633 

not shown herein). This behavior can be interpreted by time disaggregation property of 634 

FDC that prompts a substantial loss of information in the calibration procedure. Indeed, in 635 

a synthetic case study if the temporal distribution of a time series is distorted, its FDC 636 

transformed series will be identical to that of the original series. Recent literature has shown 637 

a lot of interest in using FDC as one important hydrological signature for model inference 638 

and analysis purposes [Westerberg et al., 2011; Euser et al., 2013; Vrugt and Sadegh, 2013; 639 

Sadegh et al., 2016], but our results confirm the argument of Vogel and Fennessey [1995] 640 

that FDC is inadequate as main descriptor of hydrological behavior of watersheds.  FFT 641 

transformation, on the other hand, changes the time domain to frequency domain, and 642 

associates each frequency with an amplitude spectrum. The calibration algorithm, then, 643 



compares the amplitude spectra of measurements and simulations in order to infer 644 

parameter values. Our results both for real and synthetic data and for both models show 645 

that FFT transformation degrades model performance in the time domain, which 646 

controverts the findings of Quets et al. [2010]. We also attribute this behavior to the loss 647 

of information associated with temporal disaggregation in FFT transformation, as observed 648 

for FDC. We repeated calibration endeavor with square root of FFT and FFT 649 

transformation of autocorrelation coefficients, both of which significantly deteriorated 650 

model performance in terms of RMSE and coverage of observation points in 95% 651 

predictive uncertainty range (not showed herein). 652 

 653 

Poor performance of NQT transformation is most conspicuous in Figure 5, in which RMSE 654 

decreases to around 50 m3/s in the begining of the MCMC search, but then increases as 655 

search algorithm progresses, and converges to about 70 m3/s. This is much higher than 656 

the best RMSE value of roughly 45 m3/s derived from model inference with the original 657 

data. Such behavior is explained by distortion of information content of calibration data 658 

through NQT transformation, which shadows parameter identifiability and degrades model 659 

performance. The SQRT and BoxCox transformations, in agreement with the results of 660 

synthetic analyses, both expectedly converge to a slightly higher RMSE than that of the 661 

original data. Most important note in case of these two transformations, in this figure, is 662 

that convergence is marginally slower for the transformed data compared to the original 663 

data. This is a rather undesirable behavior. For the wavelet transformations, Mexican Hat 664 

wavelet converges to the vicinity of RMSE obtained from the original data, while Morlet 665 



wavelet converges to a relatively higher RMSE. Both wavelet transformations slow down 666 

the convergence speed of MCMC simulation. 667 

 668 

To further demonstrate the influence of data transformations on model inference, Table 4 669 

details the model performance in the calibration and evaluation periods for the GR4J model 670 

calibrated against real-world historical data from the Rogue river catchment. Expectedly, 671 

inferred model realization with original data outperform all data transformation runs in 672 

terms of best and mean posterior RMSE in the calibration and evaluation periods, with one 673 

exception in the evaluation period in which Mexican Hat wavelet results marginally 674 

outperform the original data in terms of both best and mean posterior RMSE. This is a 675 

rather interesting result showing the consistency of model performance derived from 676 

wavelet analysis (with Mexican Hat mother wavelet) over the calibration and evaluation 677 

periods. Indeed, wavelet analysis shows a great promise, compared to other data 678 

transformations in this study, to improve model inference practice. However, given the 679 

results of synthetic analysis (Figures 2-4), in which posterior parameter distributions from 680 

the wavelet transformation analysis do not encapsulate the “true” parameter value, we 681 

suggest retaining a level of caution in employing wavelet transformed data as sole source 682 

of information in the model data synthesis practice. It is also noticed in the calibration 683 

period that SQRT and BoxCox results are marginally superior to that of original data in 684 

covering a higher percentage of observation data in the 95% parameter predictive 685 

uncertainty ranges (10.24% and 10.13% for SQRT and BoxCox, respectively, versus 686 

5.37% for the original data). Moreover, SQRT’s results are superior to that of BoxCox, 687 

since a higher rate of coverage (10.24% for SQRT versus 10.13% BoxCox) is obtained in 688 



a smaller predictive uncertainty spread (7.84 m3/s  vs 9.13 m3/s). The superiority of 689 

SQRT and BoxCox transformations over original data, however, does not hold in the 690 

evaluation period, as results of the original data analysis outperform their SQRT and 691 

BoxCox transformed counterparts in coverage of observed streamflow in the 95% 692 

parameter predictive uncertainty range (8.38% for the original data, versus 7.17% for 693 

SQRT and 5.31% for BoxCox). FDC, FFT and NQT transformations, as expected, 694 

consistently deteriorate model performance in terms of predictive uncertainty ranges and 695 

associated coverage of observational data, as well as best and mean posterior RMSE. 696 

 697 

In general, results of this study show that transformation of calibration data imposes a 698 

significant impact on identifiability of hydrological model parameters, and its 699 

corresponding predictive performance. Data manipulation may not significantly help 700 

extract information more readily from the data, and the major influencing source of 701 

information for the calibration remains the original (raw) data. Some data transformations 702 

such as SQRT and BoxCox might improve model predictive performance in the calibration 703 

period, but this superiority does not extend to the evaluation period. Other transformations, 704 

such as wavelet families, reduce posterior parameter uncertainty ranges at the expense of 705 

not encapsulating the “true” parameter value (as in synthetic studies). Finally, some data 706 

transformations, such as FDC and NQT lose important pieces of information during the 707 

data manipulation process, returning significantly inferior results than that of the original 708 

data. Hence, choice of data transformation needs an extra attention.  709 

 710 



Note that spectral, and wavelet spectral analysis have some interesting characteristics 711 

which can be helpful for hydrological modeling. Spectral analysis can be used for 712 

calibrating ungauged basins where only scarce and old data is available. In this case, 713 

spectral density of measurements, which can also be calculated using data from similar 714 

basins, is compared with the spectral density of simulations [Montanari and Toth, 2007; 715 

Quets et al., 2010]. Moreover, the ability of wavelet transformation to decompose a time 716 

series to time and scale/frequency localized components enables the modeler to diagnose 717 

model inaccuracies, insufficiencies and errors based on different scales, as well as the 718 

temporal scale in which mismatch between measurements and simulations occurred. 719 

However, one should notice that decomposing a time series to several components and 720 

compare the constituent components in the likelihood function increases the computational 721 

cost of the parameter estimation algorithm.  722 

 723 

The commonly used likelihood/objective functions in the field of hydrology aggregate 724 

discrepancies at different time steps into one single value, and make it impossible to take 725 

full advantage of the wavelet analysis. One suggestion is to develop new objective 726 

functions that keep the frequency and time localization. Lane [2007] suggested that the 727 

most appropriate way to employ wavelet analysis might be using a set of objective 728 

functions to choose a cluster of “plausible” model predictions, and then use the wavelet-729 

based objective functions to act as a diagnostic measure to help improve the model, and 730 

also help realize the impacts of each parameter set on model prediction. So future research 731 

should focus on developing one/multiple objective function(s) which can use the 732 



localization feature of wavelet spectral analysis to constrain model parameters, and capture 733 

a more complete set of watershed characteristics.   734 

 735 

To sum up, the choice of data transformation requires attention. The framework in which 736 

hydrological signatures (acquired through data transformation) are used for model 737 

inference also plays a pivotal role on the parameter identifiability and model predictive 738 

performance. While our previous research signifies the importance of FDC, as one 739 

hydrological signature in a cohort of metrics, in the approximate Bayesian framework 740 

[Vrugt and Sadegh, 2013; Sadegh and Vrugt, 2013; Sadegh and Vrugt, 2014; Sadegh et al., 741 

2015], our current study shows FDC transformation of data when used within the Bayesian 742 

context with a residual-based likelihood function is indeed disruptive to the model 743 

calibration process.  Moreover, some data transformations in a single objective formal 744 

Bayesian context introduce parameter multimodality, and distort the marginal posterior 745 

parameter distributions. We suggest using data transformations within a multi-objective 746 

calibration framework that can separately capture and retain different pieces of information 747 

for model analysis. Finally, some data transformations might suggest more potential for 748 

model evaluation and analysis, than model calibration. 749 

5 CONCLUSIONS 750 

In this paper, we analyzed the impacts of data transformations on the posterior parameter 751 

distributions, and convergence rate of the MCMC simulation. This latter analysis is used 752 

to assess how readily the information contained in the discharge time series can be 753 

extracted for parameter estimation purposes.  Two relatively simple hydrological models 754 



were used to illustrate our results. Our analysis shows that calibrating a hydrological model 755 

in time domain, depending on the calibration framework, is generally superior to the 756 

spectral or wavelet spectral domains. Our results also convincingly demonstrate that 757 

transformations that disaggregate the temporal order of the calibration data are not 758 

recommended, as they deteriorate the model performance. One such transformation is 759 

FDC, which is finding increasing use in hydrological modeling as a hydrological signature. 760 

Sole use of this hydrological signature is not productive. Square root and BoxCox 761 

transformations can help solve the parameter identifiability problem, especially those 762 

parameters that hold low sensitivity in a quadratic objective function. It is most productive 763 

to use data transformations in a multi-objective optimization framework that can extract 764 

and retain multiple pieces of information. Finally, some data transformations might suggest 765 

more potential for model evaluation and analysis, rather than calibration. 766 
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 1034 

Table 1. Parameter description of HYMOD and GR4J models, Snow Module, and their 1035 

description and prior range. 1036 

 1037 

 Description Minimum Maximum Units 
 

HyMod 

Cmax Maximum storage in watershed 1 500 mm 

bexp Spatial variability of soil moisture storage 0.1 2.00 - 

𝛼 Distribution factor between two reservoirs 0.1 0.99 - 

Rs Residence time of slow flow reservoir 0.001 0.1 days 

Rq Residence time of quick flow reservoir 0.1 0.99 days 

 

GR4J 

S1max Maximum storage in watershed 0 1500 mm 

Exch Spatial variability of soil moisture storage -10 10 mm 

S2max Distribution factor between two reservoirs 1 500 mm 

UHB Residence time slow flow reservoir 0.5 8 days 

 

Snow Module 

DD Degree-day factor 0.01 7 mm/℃ 

 1038 

  1039 



 1040 

Table 2. Description of watersheds used in this study, including their USGS ID, catchment 1041 

area (km2), mean annual precipitation (P, mm), mean annual potential evapotranspiration 1042 

(PET, mm), and mean annual runoff ratio (RR, -). 1043 

 1044 

Watershed USGS ID Area (𝐤𝐦𝟐) P (mm) PET (mm) RR (-) 

French Broad 03455000 4812.20 1402.64 771.25 0.40 

Skykomish 12134500 1385.64 2701.65 668.82 0.66 

Rogue 14359000 5317.25 1052.09 849.71 0.48 

  1045 



 1046 

Table 3. Parameter and total predictive uncertainty spread (PUS and TPUS, respectively, 1047 

m3/s) of 95% streamflow prediction ranges, and associated coverage of observation points, 1048 

as well as best and mean RMSE (m3/s) of the posterior samples for the GR4J model 1049 

calibrated against synthetic data from the Skykomish river basin. 1050 

 PUS 

(m3/s) 

TPUS 

(m3/s) 

Coverage 

in PUS (%) 
Coverage in 

TPUS (%) 
Best RMSE 

(m3/s) 

Mean RMSE 

(m3/s) 

 

Calibration period 

None 12.37 225.29 8.93 93.54 78.82 78.93 

FDC 1.19 219.46 0.60 87.02 118.30 118.50 

BoxCox 10.22 206.34 6.13 93.43 81.97 84.25 

SQRT 9.66 213.74 5.70 94.41 80.44 81.45 

NQT 37.56 198.68 16.98 92.17 84.29 91.73 

MexH wavelet 2.97 219.65 2.41 93.70 78.94 79.09 

Morl wavelet 7.78 229.34 6.52 92.99 78.95 79.38 

FFT 32.49 218.33 13.03 90.42 94.30 101.74 

 

Evaluation period 

None 12.46 228.94 7.56 93.04 80.41 80.95 

FDC 1.13 220.44 0.16 86.36 113.96 114.26 

BoxCox 10.61 208.96 6.13 91.62 85.18 88.13 

SQRT 9.87 217.10 5.53 92.55 83.23 84.60 

NQT 39.83 200.40 17.96 90.69 88.02 96.96 

MexH wavelet 2.97 223.49 1.92 93.04 81.17 81.43 

Morl wavelet 8.01 233.21 5.59 93.59 80.77 80.95 

FFT 33.69 222.7 13.2 89.98 94.39 102.7 

 1051 

  1052 



 1053 

Table 4. Parameter and total predictive uncertainty spread (PUS and TPUS, respectively, 1054 

m3/s) of 95% streamflow prediction ranges, and associated coverage of observation points, 1055 

as well as best and mean RMSE (m3/s) of the posterior samples for the GR4J model 1056 

calibrated against real-world historical data from the Rogue river basin. 1057 

 PUS 

(m3/s) 

TPUS 

(m3/s) 

Coverage in 

PUS (%) 
Coverage in 

TPUS (%) 
Best RMSE 

(m3/s) 

Mean RMSE 

(m3/s) 

 

Calibration period 

None 7.00 154.81 5.37 95.56 47.98 48.06 

FDC 2.14 159.01 2.57 94.30 55.68 56.13 

BoxCox 9.13 171.82 10.13 94.36 51.33 52.23 

SQRT 7.84 162.85 10.24 94.74 49.54 50.32 

NQT 35.73 155.85 14.07 93.76 63.49 67.66 

Mexh wavelet 5.27 155.16 2.85 95.24 49.80 50.47 

Morl wavelet 3.56 159.81 1.53 95.24 58.65 60.3 

FFT 10.94 192.04 7.28 94.74 70.91 72.76 

 

Evaluation period 

None 7.11 156.50 8.38 94.96 55.84 57.31 

FDC 2.20 160.65 2.46 93.32 68.20 69.08 

BoxCox 10.03 172.78 5.31 91.35 65.76 67.72 

SQRT 8.70 164.30 7.17 91.84 61.84 63.92 

NQT 38.69 159.72 15.39 97.43 60.82 65.16 

Mexh wavelet 6.17 157.24 5.31 96.00 53.46 53.93 

Morl wavelet 3.92 162.67 1.7 96.88 56.72 57.87 

FFT 13.17 192.53 8.11 92.77 83.41 86.46 
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 1060 

  1061 

Figure 1. Schematic representation of Snow Module, HyMod and GR4J conceptual RR 1062 

models. 1063 
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  1065 



 1066 

Figure 2. Posterior distribution of first parameter (S1max, maximum capacity of the 1067 

production store) of the GR4J model, inferred through MCMC simulation with different 1068 

transformations of synthetic data from the French Broad river catchment. Red square on 1069 

top of each plot shows the “true” parameter value used to generate the synthetic data. Each 1070 

plot represents results of a data transformation, as described in the plot’s title.  1071 



 1072 

 1073 

Figure 3. Posterior distribution of fifth parameter (Rq, residence time of quick flow 1074 

reservoir) of the HyMod model, inferred by MCMC simulation using different 1075 

transformations of synthetic data from the Skykomish river catchment. Red square on top 1076 

of each plot shows the “true” parameter value used to generate the synthetic data. Each plot 1077 

represents results of a data transformation, as described in the plot’s title. 1078 

  1079 



 1080 

 1081 

Figure 4. Posterior distribution of fourth parameter (Rs, residence time of slow flow 1082 

reservoir) of the HyMod model, inferred by MCMC simulation using different 1083 

transformations of synthetic data from the Rogue river catchment. Red square on top of 1084 

each plot shows the “true” parameter value used to generate the synthetic data. Each plot 1085 

represents results of a data transformation, as described in the plot’s title. 1086 
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 1089 

Figure 5. Evolution of moving minimum RMSE values derived from MCMC samples for 1090 

the GR4J model analyzing the Rogue river catchment. Minimum RMSE in a sliding 1091 

window of 50 Markov chain samples is presented in this figure, which is a proxy for the 1092 

convergence speed of MCMC simulation. We only present, in this figure, the first 10,000 1093 

iterations of the total 35,000 iterations used for inference, as Markov chains reach their 1094 

stable state in this range. 1095 
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