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Abstract
We explore using body gestures for hidden emotional state analysis. As an important non-verbal communicative fashion,
human body gestures are capable of conveying emotional information during social communication. In previous works,
efforts have been made mainly on facial expressions, speech, or expressive body gestures to interpret classical expressive
emotions. Differently, we focus on a specific group of body gestures, called micro-gestures (MGs), used in the psychology
research field to interpret inner human feelings. MGs are subtle and spontaneous body movements that are proven, together
with micro-expressions, to be more reliable than normal facial expressions for conveying hidden emotional information. In
this work, a comprehensive study of MGs is presented from the computer vision aspect, including a novel spontaneous micro-
gesture (SMG) dataset with two emotional stress states and a comprehensive statistical analysis indicating the correlations
between MGs and emotional states. Novel frameworks are further presented together with various state-of-the-art methods
as benchmarks for automatic classification, online recognition of MGs, and emotional stress state recognition. The dataset
and methods presented could inspire a new way of utilizing body gestures for human emotion understanding and bring a new
direction to the emotion AI community. The source code and dataset are made available: https://github.com/mikecheninoulu/
SMG.
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1 Introduction

Human beings are innately able to express and interpret emo-
tional expressions via various non-verbal communication
(Shiffrar et al. 2011), which should also be an indispens-
able part of intelligent agents. As an important non-verbal
communicative fashion, human body gestures are capable of
conveying rich emotional information during social commu-
nication (Aviezer et al. 2012). However, as shown in Fig. 1a,
when it comes to machines, analyzed emotional cues were
mostly limited to human facial expressions and speech (El
Ayadi et al. 2011; Li and Deng 2020).

Compared to other modalities, body gestures have sev-
eral advantages in emotion recognition tasks. Firstly, the
data acquisition of body gestures is more accessible, espe-
cially when high-resolution surveillance cameras or portable
microphones are not available for capturing facial expres-
sions or speech in public areas (e.g., airports, metro, or
stadiums). With the recent success of deep learning on large-
scale datasets, concerns about privacy protection and ethical
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Fig. 1 a Taxonomy of emotional cues. MGs serve as one of the non-
verbal communicative cues for emotional understanding. b Example
scenarios to which MG recognition can be applied. In the interview or
game, the subjects tend to hide their intentions, while MGs can leak
their hidden emotions

issues have started to emerge (Oh et al. 2016). Meanwhile,
body gestures involve less identity information, which is
promising. Lastly, studies (Ekman 2004) showed that when
people were trying to hide their emotions, most of them
would attempt to tune their facial expressions but could not
prohibit their micro-expressions. Besides, only a few people
referred to the need to manage their body movements. Thus,
it would be encouraging to use gestures to capture people’s
suppressed/hidden emotions.

With the above observations, this study focuses on a
specific group of gestures called Micro-Gesture (MG) for
emotional understanding. However, unlike any previous
research that uses expressive body gestures to interpret clas-
sical expressive emotions, we propose a brand new research
topic: analyzing people’s hidden emotional states with MGs.
MGs are defined as subtle and involuntary body movements
that reveal peoples’ suppressed/hidden emotions. They are
often used in the psychology research field to interpret inner

human feelings (Serge 1995). Although MGs cover a wide
group of gestures (e.g., scratching the head, touching the
nose, playingwith clothes), they share one important attribute
which differentiates them from other gestures: MGs are not
performed for any illustrative or communicational purposes
at all; they are spontaneous or involuntary body responses to
the onset of certain stimuli, especially negative ones. Mean-
while, ordinary gestures are usually performed to facilitate
communications, e.g., to illustrate specific semantic mean-
ings or to explicitly express one’s feelings or attitudes, which
are referred to as illustrative gestures or iconic gestures
(Khan and Ibraheem 2012). As shown in Fig. 1b, in high-
stake situations such as interviews and games, although the
subjects try to conceal or suppress their true feelings for
either gaining advantage (win the game) or avoiding loss
(keep social image), they spontaneously initiate some body
gestures responding to the stimuli. Studies (Pentland 2008)
showed that these gestures are important clues in revealing
people’s hidden emotional status, especially negative feel-
ings such as stress, nervousness, and fear, which can be used
to detect anomalous mental status, e.g., for Alzheimer’s or
autism diagnosis. Expectedly, automaticMG recognition has
great potential in applications, i.e., human-computer interac-
tion, social media, public safety, and health care (Krakovsky
2018).

The study aims to answer this research question: How
to train a machine to recognize and better understand
hidden human emotions via body gestures like a trained
expert?Specifically,we break down this question into several
sub-problems with corresponding solutions: (1) Unlike the
Action Units (AU) in facial action coding system (FACS)
(Ekman 1997), a common standard is absent for body
gesture-based emotionmeasurement. The lack of this empiri-
cal guidance leaves even psychological professionalswithout
complete agreement on annotating bodily expressions (Luo
et al. 2020). Thus, we present a novel dataset of MGs, which
was collected under objective proxy tasks to stimulate two
states of emotional stress. (2) The high heterogeneity in the
same gesture class makes the classification of MG much
more complicated than ordinary gestures. Thus, we provide
various state-of-the-art models from recent top computer
vision venues to demonstrate the benchmark. (3) Accurately
spotting MGs from unconstrained streams is another highly
challenging task, as MGs are subtle and rapid body move-
ments that can easily be submerged in other unrelated body
movements. To this end, we propose a novel online detect-
ing method that has a parameter-free attention mechanism to
differentiateMGs fromnon-MGs adaptively. (4) The conven-
tional paradigm that imposes each gesture with an emotional
state does not resemble real-world scenarios, we explore
a new paradigm that achieves emotional understanding by
holistically considering all the MGs.
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Fig. 2 The overview of the main research topics of this work. a A
novel SMG dataset with a comprehensive statistical analysis. b Multi-
ple benchmarks on the SMG dataset. c A novel online MG recognition

framework for complicated gesture transition patterns. d Baselines and
a newly proposed framework for emotional state recognition

As shown in Fig. 2, this work consists of four main
research topics for comprehensively researching MGs from
the computer vision aspect, and the contributions of each
topic can be summarized as follows:

1. To the best of the authors’ knowledge, this is the firstwork
to investigate MGs with computer vision technologies
for hidden emotional state analysis. A new MG dataset
is built through interdisciplinary efforts, which contains
rich MGs towards spontaneous body emotional stress
states understanding.

2. Comprehensive statistical analysis is conducted on the
relationship between body gestures and emotional stress
states, investigating the various features of MGs. Various
benchmark results for classifying and online recogniz-
ing MGs are reported based on multiple state-of-the-art
methods.

3. A hidden Markov model (HMM) recurrent network
for online MG recognition is proposed with a novel
parameter-free attention mechanism. The method is
intensively validated on three online gesture recognition
datasets with competitive performances.

4. A novel paradigm is explored via a spectral graph-based
model to infer the emotional states via MGs clues of the
holistic videos, instead of the previously prevailing one-
gesture-one-emotion paradigm.

This research is based on our previous work (Chen et al.
2019), but extended in several aspects: 1) more compre-
hensive dataset statistical analysis, 2) extensive benchmark
experimental results with state-of-the-art methods, 3) an
HMM recurrent network with a novel parameter-free atten-
tion mechanism validated on three datasets, and 4) a spectral
graph neural network as a baseline for emotional stress state
recognition.

The rest of this paper is structured as follows. Section2
reviews related work in the literature. The SMG dataset and
its analysis are presented in Sect. 3. Benchmarks ofMG clas-
sification are provided in Sect. 4. Section5 focuses on the
online GM recognition task with a newly proposed method.
Body gesture-based emotional stress state recognition is con-
ducted in Sect. 6, and we conclude the work in Sect. 7.

2 RelatedWork

2.1 Body Gesture Recognition in Computer Vision

Accurate recognition is the foundation of all the further
implementations of body gestures, such as gesture lan-
guage recognition, human-robot interaction, and also emo-
tional gesture recognition (Carreira and Zisserman 2017;
Shahroudy et al. 2016; Soomro et al. 2012).Over the decades,
human gesture recognition has been intensively researched
in the field of computer vision. From the machine learn-
ing point of view, body gesture recognition can be sorted
into two settings: 1) the classification of pre-segmented body
gestures and 2) temporal body gesture detection and recogni-
tion upon the long non-stationary sequence. The former task
that conducts the classification of the pre-segmented clips
drawsmore attention from researchers, andmost of the exist-
ing state-of-the-art technologies can achieve considerably
promising performances. Towards video-based resources
such as RGB, depth, and optical flow data, classical mod-
els for the body action and gesture classifications mainly
includes 2DCNN families (Lin et al. 2019; Wang et al. 2018;
Xu et al. 2019a) and 3DCNN families (Carreira and Zis-
serman 2017; Hara et al. 2018; Tran et al. 2015). Based on
skeleton resources obtained from such as Kinect (Shotton
et al. 2011) or OpenPose (Cao et al. 2019), state-of-the-art
methodsnowadays aremainlyderived fromgraph-based con-
volutional networks (Cheng et al. 2020; Liu et al. 2020; Peng
et al. 2020; Shi et al. 2019; Yan et al. 2018). Methods are also
proposed to fuse different resources and modalities (Crasto
et al. 2019; Sun et al. 2018; Yu et al. 2020). When it comes
to the latter online recognition setting, research efforts are
relatively few due to the computational complexity (Chen
et al. 2020; Li et al. 2016; Liu et al. 2018; Neverova et al.
2016; Wu et al. 2016; Xu et al. 2019b). Different from other
gesture recognition tasks such as gesture language recogni-
tion, the recognition of emotional body gestures and MGs
has its specific challenges: (1) the duration ranges from sev-
eral frames to hundreds of frames; (2) the kinetic scale varies
from only subtle finger movements to overall body changes;
(3) the variations of the movements associated with a ges-
ture can be large due to the individual differences of subjects
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and (4) meaningful emotional gestures are submerged within
plenty of irrelevant body movements.

2.2 Human Emotion Recognitionwith Body Gestures

Recognizing emotional states through body movements has
been researched for decades (Noroozi et al. 2018). Previ-
ous works are mainly based on one-gesture-one-emotion
assumptions with two kinds of emotional modeling theories
(Noroozi et al. 2018): the categorical and dimensional mod-
els. In the categorical model-based methods (Ginevra et al.
2008; Gunes and Piccardi 2006; Mahmoud et al. 2011), each
emotion was imposed with a meaningful gesture, and partic-
ipants were asked to act on those emotions with their body
gestures. Recently, some researchers have explored the pos-
sibility of analyzing bodily expression with a dimensional
model (Kipp and Martin 2009; Luo et al. 2020). In the work
of Luo et al. (2020), the emotions of body gestures collected
frommovie clips are definedby the dimensions of arousal and
valence. However, an essential feature of emotional gestures
is neglected in all of these works: not all the body move-
ments are highly emotion-driven (Pentland 2008) and body
language could be interpreted differently by subject differ-
ences (Yu 2008). Thus, it is not convincing and accurate to
interpret each isolated gesture as an emotional state and not
consider subject differences. As expected, the agreement on
the interpretation of one bodily expression between annota-
tors is considerably low. For instance, during the emotion
annotation in the work of Luo et al. (2020), annotators still
primarily rely on facial expressions rather than gestures. This
issue makes the research limited to be extended to real-world
implementation.

2.3 Emotional Body Gesture Datasets

Compared to regular human gesture analysis, such as body
pose, action, or sign language recognition, research efforts
devoted to using gestural behaviors to interpret human emo-
tion or affection are relatively few (Noroozi et al. 2018).
The pioneering work for gesture-based emotion recogni-
tion in the computer vision field can go back more than 20
years ago (Ginevra et al. 2008; Gunes and Piccardi 2006;
Schindler et al. 2008; Wallbott 1998). Wallbott (1998) col-
lected 224 videos and, in each of their records, an actor acting
a body gesture representing an emotional state through a sce-
nario approach. In the work of Schindler et al. (2008), an
image-based dataset was collected in which emotions were
displayed by body language in front of a uniform background
and different poses could express the same emotion. Gunes
and Piccardi (2006) introduced a Bimodal face and body
gesture database, called FABO, including facial and gestu-
ral modalities. Different from the above laboratory settings,
Kipp and Martin (2009) proposed a Theater corpus based on

The observer

Two synchronized

Kinect V2 devices

Participants 

Monitoring screens

Real-time monitoring

or replaying

Multi-modality

displaying

Fig. 3 Acquisition setup for the elicitation and recording of micro-
gestures

two movie versions of the play Death of a Salesman trying to
explore the correlations between basic gesture attributes and
emotion. It also provided the emotiondimensions of pleasure,
arousal, and dominance instead of emotion-specific discrete
expression models. Similarly, Luo et al. (2020) collected a
large-scale dataset called BoLD (Body Language Dataset)
that also includes both discrete emotions and dimensional
emotions. In the BoLD dataset, each short video clip has
been annotated for emotional body expressions as perceived
by viewers via a crowd-sourcing strategy. However, those
datasets were all designed for classical expressive emotions,
and none of them is specifically for hidden emotional state
understanding.

3 The SMGDataset

This section introduces the whole collecting procedure and
details of the SMG dataset, from the psychological back-
ground, the elicitation design and the annotation to the final
collected dataset and its statistics.

3.1 Psychological Background for Micro-gestures

The term “micro-gesture” was first used in the psycholog-
ical work (Serge 1995) for assisting doctors in diagnosing
patients’ mental conditions via body gestures and later could
also be found in popular science works (Kuhnke 2009;
Navarro and Karlins 2008). The first work formally studying
spontaneous gestures for hidden emotion understanding can
trace back to Ekman (2004) where they found that spon-
taneous body gestures (e.g., “a fragment of a shrugging
gesture”), together withmicro-expressions, are more reliable
clues to interpret hidden human emotions than intentionally
performed facial expressions. Furthermore, the fight, flight,
and freeze system proposed by Gray (1982) mediates reac-
tions to aversive stimuli and threats, which reasons those
spontaneous body movements from the aspect of brain sci-
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ence. The three factors, fight, flight, and freeze, can cause
specific human behaviors at the onset of certain stimuli,
including the freezing body (e.g., holding the breath), dis-
tancing behaviors (e.g., putting hands or objects to block
faces or bodies) and guarding behaviors (e.g., puffing out the
chest). Besides, to transfer from discomfort to comfort states,
human beings develop a natural reaction, so-called pacifying
actions, that tries to suppress the negative feelings induced by
the above three factors (Panksepp 1998). Other psychologi-
cal research related to MG can also be found in early work
(de Becker 1997; Burgoon et al. 1994) and the most recent
work (Kita et al. 2017; Pouw et al. 2016).

In total, based on the above psychology theoretical sup-
ports, we try to define theMG categories for computer vision
studywith criteria as (1) covering allMGs that could possibly
occur on the SMG dataset, (2) corresponding to psychologi-
cal theories and functions, and (3) being “properly specific”
(e.g., “touching” would be too general, “scratching the left
cheek” would be too specific) for a computational model to
recognize. Finally, we summarized 16 types of MGs for our
SMG dataset including fight patterns (e.g., “folding arms”),
flight patterns (e.g., “moving legs”), freeze patterns (e.g.,
“turtling neck and shoulder”), and pacifying patterns (e.g.,
“scratching head and hand rubbing”). Non-micro gestures
were also labeled as an independent category for illustrative
gestures or sign gestures. The entire list of MGs and non-
MGs that we collected and their psychological attributes are
provided in Fig. 4a andTable 1. The 16 categories could cover
the most common MGs on the SMG dataset but there might
be some rare cases that were not observed in the current
experimental scenario of the SMG dataset. We will further
enrich theMGcollection andmakemore comprehensive lists
in future work.

3.2 Elicitation of Micro-gestures

Referring to the above supporting psychological theories, we
design the procedure for the elicitation of MGs to create our
SMG dataset as follows.
Eliciting Tasks. We designed two proxy tasks for stimulat-
ing the corresponding emotional stress states and eliciting
micro-gestures. Precisely, the two proxy tasks are (i) given
a true story with a title and detailed content, repeating the
content of the story, as the “baseline stimuli”, and (ii) given
an empty story with only a title and no content, making up a
fake story off-the-cuff, as the “deviation stimuli”. The stories
are short newscasts or reports with an average of 141 words
and with rich details (see more detailed design principles in
“Appendix B”). Participants have to repeat (baseline stimuli)
or make up (deviation stimuli) the content of the story, and
they need to prove that they knew the story content, respec-
tively, no matter which task they were assigned. Participants
were told that there would be a punishment for them if they

ID 1 ID 2 ID 3 ID 4 ID 5 ID 6

ID 7 ID 8 ID 9 ID 10 ID 11 ID 12

ID 13 ID 14 ID 15 ID 16 Non-MG

RGB video

(1920*1080)

Depth Video 

(512*424)

Silhouette  

(512*424)

Skeleton  

( 25 coordinates)

(a) A list of the micro-gestures in the SMG dataset

(c) Sample frames of the four different modalities 

Gender

Age Ethnicity

Others: 10.5%

Middle East: 35.0%

Europe: 17.5%

East Asia: 37.5%

22<Age< 28: 50%

Age> 28: 20%
Age< 22: 30%

Female: 32.5%

Male: 67.5%

(b) The distribution of participants’ demographic

Fig. 4 Overview of MGs labeled in our SMG dataset. a Examples of
annotatedMGs and non-micro-gestures. For privacy concerns, wemask
the faces of the participants here. b The distribution of participants’
demographic. c The four modalities collected in our SMG dataset

got caught, so they had to conceal their emotions, especially
for the “deviation stimuli” ones. Compared to repeating a
true story (baseline stimuli, which can be regarded as the
counterpart of the placebo group in the psychological field),
creating a fake story off-the-cuff (deviation stimuli) needs
higher mental-load requirements and more inner activities
with mental presence and emotional involvement (Palena
et al. 2018). In this way, the two emotional stress states are
obtained for our SMG dataset as the hidden emotional states.
For ease of the reader, we denote the two states as NES (non-
stressed emotional state) and SES (stressed emotional state)
for short.
Participants. In total, 40 participants were recruited for our
dataset collection (age: M = 25.8, SD = 4.87). They are
27 men and 13 women from multicultural backgrounds (16
countries). The distribution of participants’ demographic is
given in Fig. 4b. They were recruited via advertisements, and
no specific educational major was restricted. Although some
of the participants were familiar with machine learning and
computer vision, none of the participants were privy to the
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Fig. 5 Visualized distribution ofMGs among different emotional stress
states. The size of the blocks stands for the amount of the MGs. We can
observe that, MGs are rare and fine-grained compared to ordinary ges-
tures. There are multiple types of fine-grained MGs under each coarse
category. MGs can be easily submerged by non-MGs

workings of the machine learning algorithm of the study we
were conducting.
Apparatus. Two Kinect V2 sensors were placed two meters
away in front of the participants to capture their whole body
movements, with the RGB resolution of 1920× 1080 pixels
at 28 frames per second. The resulting modalities are RGB,
silhouette, depth videos, and skeleton coordinates, as shown
in Fig. 4c. The smoothing function ofKinect V2was disabled
to obtain detailed and subtle body movements as much as
possible due to the particularity of MGs.
Procedure. The data collection was carried out in a normal
office room of a college, as shown in Fig. 3. Two participants
took turns telling stories, and an observer monitored them
behind the scenes to ensure that participants felt the need to
conceal their true emotions. For one round experiment, two
participants were assigned two different (SES/NES) stimuli,
respectively, and they needed to persuade the observer to
believe that they knew the content. We ensure that the round
numbers of NES and SES collected from each participant
is the same. In other words, the numbers of NES and SES
instances are evenly distributed in the SMGdataset. The time
duration of one complete round is controlled in six minutes.

3.3 Data Annotation and Quality Control

Our SMG dataset’s annotation contains two levels: (1) the
temporal allocation andMG categories and (2) the emotional
state categories.
MG Labeling. Four human annotators were assigned to go
through long video sequences to spot and annotate all the 16
categories ofMGs (as well as all the non-MGs). To guarantee
the quality of annotation,we arranged two rounds of labeling.
In the first round, the four annotators were trained on how
to spot and classify MGs based on the MG list (see Table
1) and related psychological theories. After confirming the
labeling criteria, they annotated the MGs separately based
on their judgments of the collected video sequences. The

MG category labels of the four annotators were summarized
and cross-checked, and majority voting decided inconsistent
cases. In the second round, the temporal labeling ofMG clips
was cross-checked to ensure that the labeling style of the
start and endpoints of the MGs are unified at the frame level.
Finally, we have all theMGs clips with start-, end-points, and
their categories among the collected long video sequences.
Emotional Stress State Annotation. The emotional stress
states in our SMG dataset are straightforward and objective
based on the two proxy tasks, i.e., NES and SES are naturally
assigned based on the corresponding task.

3.4 SMG Dataset Statistics

Dataset Structure. The final SMG dataset comprises 414
long video instances (around one minute for each instance)
from 40 participants, resulting in 821,056 frames in total
(more than 488min). Each long video instance has one of
the two emotional states (NES or SES). The video instances
are evenly distributed in the two emotional states (207 v.s.
207). Among those 414 long-video instances, 3712MG clips
were labeled out, and the average length of thoseMGs is 51.3
frames (with the shortest MG as 8 frames), which is signifi-
cantly shorter than the length of common gestures collected
in other datasets like 100–300 frames (Escalera et al. 2015;
Li et al. 2016). The distribution of MGs in the two emotional
stress states can be seen in Fig. 5.
Correlations of MGs and Emotional States. We validate
the MG distributions in the two emotional stress states using
the t-test after a placebo-controlled study. The detailed sta-
tistical results are given in Table 2 as a quantitative report.
Specifically, we deploy the paired sample t-test, using T -
distribution (two-tailed) to compare MG distributions over
the two emotional stress states among the 40 participants.
From the last line of Table 2, we can see that, there was a sig-
nificant increase in the volume ofMGs performed under SES
(M= 38.58, SD= 32.5095) compared toNES (M= 24.50, SD
= 20.8671), t(39) = 4.6300, p < 0.0001. The result rejected
the null hypothesis, thus a significant correlation between
MGs and emotional stress states is found. When it comes to
non-MGs, it shows that no significant changes are foundwith
t(39) = 0.9198, p < 0.3633.
Visualized MG Distributions. We present a visualized dis-
tribution of MGs on the two emotional stress states as shown
in Fig. 5. We observe certain features of MG patterns. The
first and most prominent feature is that non-MGs and whole-
body MGs occupy the majority of the body movements,
demonstrating it is challenging to efficiently distinguish rare
MGs from unconstrained upcoming streams as they can be
easily submerged among the dominating amount of non-
MGs. Secondly, although MGs cover a large range of body
gestures, the major categories are extremely fine-grained:
six kinds of MGs in “hand-body” interactions and four in
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Table 2 The statistical
distribution of gestures over the
two states of emotional stress

MG type Emotional stress state
NES SES t value p value
S M SD S M SD

Non-MGs 518 12.95 12.61 589 14.72 13.81 0.9198 0.3633

MGs 980 24.50 20.87 1543 38.58 32.51 4.6300 <0.0001

S, M, and SD stand for “sum”, “mean” and “standard deviation”. The significance level equals to 0.01 and
the significant terms are marked in bold. Note that the total number of gestures is not equal to 3712, because
some gestures are in the transitions between two emotional stress states, which are not counted

“hand-hand” interactions. Thus, compared to other body
gesture/action recognition tasks, MGs require a more fine-
grained and accurate recognizing ability from the machine
learning aspect.
Relationship Between MGs and Subjects. As mentioned,
the use of body gestures to interpret emotions could be heav-
ily affected by individual differences. Here, we conduct a
qualitative analysis of MG patterns of different subjects.
Specifically, Pearson’s correlation coefficient is used tomea-
sure the correlation of differentMGperforming patterns from
40 subjects in our SMG dataset. The MG performing pattern
is presented by the frequency distribution of 17 MGs of a
given subject. Pearson’s correlation coefficient varies from
−1 to 1, and the higher it is, the stronger the evaluated cor-
relation is. According to the statistic calculation, the average
Pearson’s correlation coefficient of these 40 subjects is 0.456,
with the highest one of 0.966 and the lowest one of−0.240. It
indicates a trend that subjects share MGs patterns, especially
in the exposing frequency of MGs, while individual incon-
sistency of theMG patterns is still not negligible. As a result,
although the above t-test proves the effectiveness of SES for
eliciting MGs, it is necessary to emphasize the inconsistency
of MG performing patterns brought by different subjects.

4 Micro-gesture Classification

In this section, we focus on the task of classification of pre-
segmented MG clips from our SMG dataset. Analogous to
the classical action/gesture recognition task, algorithms need
to classify a given sequential clip into the correct MG cat-
egory, from a certain data modality, such as RGB, depth,
optical flows, or body skeletons. In order to set up the bench-
mark of MG classification, we select over ten state-of-the-art
models for the classical action recognition task from recent
top venues like AAAI, ECCV, ICCV, CVPR, and TPAMI,
and evaluate them on the SMG dataset, including two repre-
sentative modalities as RGB and skeleton. We first report the
evaluation protocols and introduce the models used for MG
classification on the two modalities. At last, we present the
experimental results and related analysis.

Table 3 MG classification performance on the test set of the SMG
dataset

Method Modality Accuracy
Top-1 Top-5

ST-GCN (Yan et al. 2018) Skeleton 41.48 86.07

2S-GCN (Shi et al. 2019) 43.11 86.90

Shift-GCN (Cheng et al. 2020) 55.31 87.34

GCN-NAS (Peng et al. 2020) 58.85 85.08

MS-G3D (Liu et al. 2020) 64.75 91.48

R3D (Hara et al. 2018) RGB 29.84 67.87

I3D (Carreira and Zisserman 2017) 35.08 85.90

C3D (Tran et al. 2015) 45.90 79.18

TSN (Wang et al. 2018) 50.49 82.13

TSM (Lin et al. 2019) 58.69 83.93

TRN (Xu et al. 2019a) 59.51 88.53

TSN* (Wang et al. 2018) 53.61 81.98

TRN* (Xu et al. 2019a) 60.00 91.97

TSM* (Lin et al. 2019) 65.41 91.48

In total 11 state-of-the-art models for RGB and skeleton modalities are
reported. Methods with stars are pretrained on large-scale datasets
Methods with the best performance are marked in bold

4.1 MG Classification Benchmark Setup

We propose the benchmark of classification MGs on SMG
dataset with twomodalities. Given 3712 pre-segmentedMGs
clips with their labels, the task is to achieve accurate clas-
sification among 16MG classes and non-MG classes. We
implement a cross-subject protocol that the 2470+632MG
clips from 30+5 subjects are used for training+validating,
and 610 clips from the remaining five subjects are used for
testing. The overall accuracy on the testing set is reported as
results. Eleven state-of-the-art models are provided for this
task, including RGB and skeleton modalities.
RBG-based MG Classification. For RGB modality-based
gesture classification, we adopt six state-of-the-art models
which arewell known in the action recognition research field.
Those models can be sorted into two groups. The first group
is 2DCNNs basedmodels that capture the temporal informa-
tion from features learned via 2DCNNs, including Temporal
segment networks (TSN) (Wang et al. 2018), Temporal shift
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module (TSM) (Lin et al. 2019) and Temporal Relation Net-
works (TRN) (Xu et al. 2019a). The second group is the
3DCNN family that directly learns the temporal information
from features learned through 3DCNNs, including 3DCNNS
(C3D) (Tran et al. 2015), 3D ResNets (R3D) (Hara et al.
2018), Inflated 3D ConvNet (I3D) (Carreira and Zisserman
2017).
Skeleton-based MG Classification. For MG classifica-
tion with skeleton modality, Graph Convolutional Networks
(GCNs) are the main stream architectures to deal with
skeleton joint data. Here, we implement five recent graph
convolutional-based methods that all achieved state-of-the-
art performance on large-scale action datasets, like NTU
(Shahroudy et al. 2016) and Kinetic (Carreira and Zisserman
2017). Themodels include Spatial Temporal GCN (STGCN)
(Yan et al. 2018), Two-Stream Adaptive GCN (2S-AGCN)
(Shi et al. 2019), Shift-GCN(Shift-GCN) (Cheng et al. 2020),
GCNs with Neural Architecture Search (GCN-NAS) (Peng
et al. 2020) and Multi-scale Unified Spatial-temporal GCN
(MS-G3D) (Liu et al. 2020).

4.2 Evaluation Results

The experimental results are given in Table 3. As shown
in Table 3, we can observe that MS-G3D (Liu et al. 2020)
achieves the best performance (top-1 64.75%, top-5 91.48%)
than RGBmodality basedmodels (with best model TRN (Xu
et al. 2019a) of top-1 59.51%, top-5 88.53%) and generally
skeleton-modality basedmethods outperformRGB-modality
based methods. Possible reasons include (1) compared to
the RGB modality, skeleton data collected from Kinect con-
tains more detailed and accurate depth information. This is
critical for distinguishing subtle differences of MGs such as
“touching or covering suprasternal notch” and “illustrative
hand gestures”, (2) GCN-based models with a compact net-
work structure and efficient skeleton-based representations
can prevent overfitting issue thus does not severely reply on
a large number of training samples as 3DCNN basedmodels.
This overfitting problem can be spotted also on R3D (Hara
et al. 2018) (top-1 29.84%, top-5 67.87%) and I3D (Carreira
and Zisserman 2017) (top-1 35.08%, top-5 85.90%) which
might need pre-training on large-scale datasets. Thus, we
further conducted extra experiments that explore the impact
of pretrained training strategy on the performances of those
models by selecting several representative models, includ-
ing TSN, TRN, and TSM. The results are presented with
methods marked with stars in Table 4.1. From the results
we can observe that, after initializing the model with weight
trained on an action recognition dataset, the performances
indeed can increase to some extent. Lastly, we can see that
even though the Top-5 accuracy of the MG classification can
reach 90%, the Top-1 accuracy of all methods is still below

Fig. 6 The HMMmodel for online recognizing MGs. Our method can
adaptively conduct the HMM decoding with a parameter-free attention
mechanism

66%. As shown, our SMG dataset is challenging, especially
for inter-class and long-tail issue handling.

5 Online Micro-gesture Recognition

In this section, we take one step further by providing the
benchmark of online MG recognition, i.e., processing raw,
unsegmented sequences containing multiple body gestures,
including MGs and non-MGs, on the SMG dataset. First,
we discuss the specific challenges of online MG recognition.
Then, we propose a novel HMM-DNN network for the task
with parameter-free attention mechanism. At last, the evalu-
ation metrics, together with the evaluating results of various
methods on three online gesture recognition datasets, are pre-
sented.

5.1 Challenges of Online MG Recognition

The online recognition of MG has two parallel sub-tasks:
detecting the potential body gestures from upcoming frames
and classifying the ongoing body gestures into correspond-
ing MG categories. However, some challenges make online
recognition of MG different from other ordinary gestures.
First, although some existing methods (Liu et al. 2018; Wu
et al. 2016; Xu et al. 2019b) can achieve the detection and
classification of actions/gestures, they all need various redun-
dant post-processing procedures to optimize the predictions,
which is not practical for online detection task. Meanwhile,
it is proven that sequential aligning models such as HMM
and Connectionist Temporal Classification (CTC) can pro-
vide transition priors to reason and enhance predictions from
neural networks (Kuehne et al. 2019; Richard et al. 2018),
which enable the online recognition of gesture/action to be
more robust and accurate. However, we argue that in the
dataset with spontaneous MGs, like SMG, the prior learned
by sequential aligning models from training sets could be
biased, and lead to inferior recognizing results to some
extent. For instance, there could be a lot of “rubbing hands”
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after “touching nose” in training subjects, while the testing
subjects could perform no “rubbing hands” at all. Second,
the “non-movement” interval, the so-called Ergodic state,
was introduced in most of the previous works (Neverova
et al. 2016; Wu et al. 2016) to achieve accurate alloca-
tion and segmentation of gestures. Meanwhile, MGs usually
occur continuously without any “non-movement” intervals
and sometimes can be incompletely performed. Therefore, a
moreflexible and efficient transition scheme is needed.Lastly
andmost importantly, MGs are rare and subtle. How to boost
the HMM decoding escaping from local optimal brought by
the dominating amount of the Ergodic states (irrelevant/noisy
body movements) and non-MGs, is exceptionally challeng-
ing.

5.2 A Parameter-Free Ergodic-Attention HMM
Network for Online MG Recognition

Mathematical Framework. We chose the sequences of the
3D skeletal stream as inputs because its lower dimensionality
is suitable for online processing tasks and the reliable per-
formance shown in the MG classification task. Similarly to
the work of Chen et al. (2020), we model the local temporal
dynamics with an attention-based Long Short-TermMemory
(BiLSTM) network (giving an initial prediction of the current
frame) and use an HMMmodel to enhance inference reason-
ing (finalizing the prediction of the current frame with priors
in the past frames), shown in Fig. 6. The full probability of
the is specified as follows:

p(x1, x2, . . . , xT , h1, h2, . . . , hT )

= p(h1)p(x1|h1)
T∏

t=2

p(xt |ht )p(ht |ht−1),
(1)

where T is the total length of the sequence, p(h) and p(x)
stand for the probabilities of hidden state and observed states,
respectively. p(ht |ht−1) is the transition matrix to reason for
the alignment on the long sequence. The emission probability
p(xt |ht ) can be expended as:

p(xt |ht ) = w(ht |xt )p(xt )/p(ht ), (2)

where p(ht ) is the prior probability of hidden states that
corrects the prediction when the classes are imbalanced (we
argue this raw prior is biased and insufficient, see next sec-
tion). p(xt ) is a constant value that does not depend on the
class. At last, w(ht |xt ) is the posterior probability which is

estimated by a trained BiLSTM network:

w(ht |xt ) =

⎡

⎢⎢⎣

p1
p2
. . .

pM+1

⎤

⎥⎥⎦ =
[
W1:M
WM+1

]
, M = N × C, (3)

where C is the total number of gesture classes (as 17 in prac-
tice, including MGs and non-MGs), N is the HMM state
number used to present one gesture (set as 5 for the best per-
formance) and M is the resulting total HMM state number
(85 in practice). We take an additional HMM state M+1 (86
in practice) as the “non-movement” state. Then, W1:M and
WM+1 stands for the probability distribution of the HMM
states of all the gestures (MGs and non-MGs) and the “non-
movement” state, respectively.
ANovelParameter-freeAttentionMechanismforErgodic
HMM Decoding. Based on the above HMM full proba-
bility, we find that although the prior p(ht ) is to correct
the data imbalance, this prior is not strong enough or even
harmful. The MGs are still submerged in the dominating
noisy/irrelevant body movements. Thus, we propose a novel
method to address this issue, called Attention-Based Ergodic
Decoding (AED), that has a parameter-free self-attention
mechanism tomodeling theHMMalignment. It has two folds
of improvements based on the conventional HMM frame-
work (Wuet al. 2016): an attentionmechanismonW1:M to lift
the probability of meaningful gestures, and an inhibition on
WM+1 for the probability of noisy body movements. Specifi-
cally, we exploit the AED by replacing w(ht |xt )/p(ht ) with
a new form of posterior probability w′(ht |xt ) that have a
more effective prior ability:

w′(ht |xt ) =
[
W ′

1:M
W ′

M+1

]

=
[
μ · so f tmax(W1:M � W1:M ) � W1:M + W1:M

W λ
M+1

]
.

(4)

For the top part W ′
1:M in the formula, we obtain it by cal-

culating the self-attention map from the Hadamard product
� of W1:M itself, weighing the softmax result of this atten-
tion map with a scale parameter μ, and then performing an
element-wise sum operation with the original distribution
W1:M to obtain the updated distribution W ′

1:M . For the bot-
tom part W ′

M+1, we suppress it by adding WM+1 to the λth
power. We do not use the dot product in the original attention
version (Vaswani et al. 2017) because the Hadamard product
has both the calculating efficiency and better performances
under a non-parameter setting,while the dot productwill lead
to inferior results according to our experiments. In this way,
we exploit the attention mechanism to the posterior probabil-
ity and the problem of subject-dependent MG patterns were
made possible.
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Inference. After BiLSTM is trained to give an estimation of
each upcoming frame with a SoftMax probability w(ht |xt )
of the HMM state, we can conduct the inference together
with the learnt transition probability p(ht |ht−1). During the
testing phase, we want to solve the decoding of hidden state
sequence ĝ to obtain themost likely explanation (namely, the
gesture alignment), which is determined as:

ĝ = arg max
h

p(x1, x2 . . . xT , h1, h2 . . . hT )

∼= arg max
h

π0

T∏

t=2

w′(xt |ht )p(ht |ht−1),
(5)

where π0 stands for the constant value. By using Eq.5, we
can break down the problemof solving the utmost probability
of a long non-stationary sequence into continuously solving
HMM states probability with hidden states h1:T . While the
HMM states are aligned in real-time, the testing sequence
can be inferred for both segmentation (non-movement) and
recognition (MGs and non-MGs). Finally, we improved the
method proposed by (Wu et al. 2016) by treating not only the
“non-movement” state but also the middle HMM states of
every gesture as ergodic states. In this way, the segmentation
of several continuous incomplete gestures becomes possible.

The complete network structures and technical implemen-
tation details of our AED method, such as the value of μ

and λ are given in “Appendix F”. Note that w′(ht |xt ) is cal-
culated based on w(ht |xt ) which is given by the BiLSTM
output without any fine-tuning. Thus, our proposed attention
scheme can be used directly in the testing phase without
extra-training and extra-parameters, which is parameter-
free and can be plugged into other existing models for online
gesture recognition.

5.3 Evaluation on SMGDataset

Evaluation Metrics. Following the protocols used in online
action detection from the work of Li et al. (2016), we
jointly evaluate the detection and classification performances
of algorithms by using the F1 score measurement defined
below:

F1score = 2Precision ∗ Recall

Precision + Recall
, (6)

given a long video sequence that needs to be evaluated,
Precision is the fraction of correctly classified MGs among
all gestures retrieved in the sequence by algorithms, while
Recall (or sensitivity) is the fraction of MGs that have been
correctly retrieved over the total amount of annotated MGs.

Also, we define a criterion to determine a correct detection
with the overlapping ratio αth between the predicted gesture
intervals and ground truth intervals. The overlapping ratio

SMG dataset

T

HMM states

Raw prior

Our AED

T

T

T

HMM states

HMM states

HMM states

Raw prior

Our AED

iMiGUE dataset

Fig. 7 Visualized HMM decoding of failure cases. We present the
HMM decoding of sample sequence #36 in the SMG dataset and #72
in the iMiGUE dataset, using raw prior (top) and our AED (bottom).
The x-axis represents time, and the y-axis represents the hidden states
of all classes. The cyan lines represent the highest probability given by
networks, while red lines denote the ground truth labels, and the blue
lines are the predictions

αth is defined as follows,

αth = |Igt ∩ Ipred |
|Igt ∪ Ipred | , (7)

where Ipred and Igt denote the predicted gesture and ground
truth intervals, respectively. If αth is greater than a threshold,
we say that it is a correct detection. In practice, we set αth to
0.3 as default (see ablation studies of different αth values in
“Appendix F”).
Performances on the SMG Dataset. As a comparison
to the MG online recognition performance of our HMM
BiLSTM-AED, we also implemented four related methods
as baselines: FCN-sliding window (Chen et al. 2019), DBN-
HMM (Wu et al. 2016) and STABNet-MES (Chen et al.
2020). The results of online recognition of both our method
and the baselines compared are shown inTable 4.Ourmethod
is considerably effective in recognizing continuous gestures
in unconstrained long sequences (accuracy of 0.173, recall
of 0.245, and F1 score of 0.203). Technical implementa-
tion details of all the compared methods are available in
“Appendix E”.

5.4 AED-BiLSTM on Other Datasets

We also evaluate our proposed AED-BiLSTM framework on
two other existing online detection datasets, iMiGUE (Liu
et al. 2021) and OAD (Li et al. 2016) to verify its generaliz-
ability.
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Table 4 MG online recognition performances on the test sets of SMG and iMiGUE datasets

Online recognition method SMG dataset iMiGUE dataset
Accuracy Recall F1-score Accuracy Recall F1-score

FCN-sliding window (Chen et al. 2019) 0.082 0.110 0.094 0.059 0.067 0.063

DBN-HMM (Wu et al. 2016) 0.128 0.167 0.145 – – –

STABNet (Chen et al. 2020) 0.206 0.164 0.182 0.137 0.082 0.103

AED-BiLSTM (Ours) 0.173 0.245 0.203 0.166 0.177 0.171

Methods with the best performance are marked in bold

iMiGUE Dataset is a newly published dataset that also
focuses on involuntary micro-gestures occurring during the
post-match interview of tennis players. There are 359 videos
of post-match press conferences. The videos’ duration varies
with an average length of 350s, and the total length is 2
092min. A total of 18 499MG samples were labeled out
with the multi-label annotation, which means there could
be multiple MGs labeled for one frame. It has more than 70
subjects that contain 32 categories ofMGswith 25 joints esti-
mated by OpenPose (Cao et al. 2019). We follow the same
cross-subject protocol provided by Liu et al. (2021) that uses
255 long video sequences (with 13,936MG samples) from
37 selected subjects for training and 104 sequences (with
4,563MG samples) from the remaining 35 subjects for test-
ing. We removed all the samples with null skeleton joints for
the robust training for both compared methods and ours for
a fair comparison.
OAD Dataset includes 10 daily human action categories.
It was captured as long skeleton sequences with Kinect v2.
The annotation of start and end frames are provided within
peak duration (not a from-none-to-action pattern), similar to
the work of Chen et al. (2020), we compensate 12 frames
to the beginning of actions to learn pre-action information
for better online recognition. “MovingPose” (Zanfir et al.
2013) is also adopted to generate features for each frame.
There are more than 50 long sequences in total, and 30 of
them are used for training, 20 for testing, and the remaining
sequences are for processing speed validation. In the OAD
dataset, we use the same protocol as Liu et al. (2018) that
sets different observation ratios to validate the algorithm.
Thus the accuracy is reported for this dataset.
Performance Discussion. The experimental results are pre-
sented in Tables 4 and 5. As shown, our AED-BiLSTM
outperforms all othermethodswith significantmargins (2.1%
on SMG and 6.8% on iMiGUE) on the MG online recog-
nition task. Our AED-BiLSTM brings a huge improvement,
especially in the iMiGUE dataset, because the skeleton joints
in this dataset are extracted from OpenPose, which are rela-
tively noisy.Byusing our enhancedprior to suppressing those
noisy body movements, the results are effectively improved.
From Table 5, we can see that our AED-BiLSTM frame-
work can also efficiently improve the performance of online

Table 5 The early online detection performances on the OAD dataset

Observational Ratio 10% 50% 90%

ST-LSTM (Liu et al. 2016) 60.0% 75.3% 77.5%

Attention Net (Liu et al. 2017) 59.0% 75.8% 78.3%

JCR-RNN (Li et al. 2016) 62.0% 77.3% 78.8%

SSNet (Liu et al. 2018) 65.6% 79.2% 81.6%

STABNet (Chen et al. 2020) 87.2% 92.0% 93.1%

AED-BiLSTM (ours) 88.1% 93.4% 94.2%

Results of accuracy are reported
Methods with the best performance are marked in bold

recognition for regular gestures (88.1%, 93.4%, 94.2% in
an observational ratio of 10%, 50%, 90%). As we can see,
our method achieves superior results to StabNet on all met-
rics for SMG and iMiGUE datasets, except for accuracy on
SMG where it is considerably lower than StabNet. Essen-
tially, our AEDmodule works as a regulation to suppress the
non-MG and putting attention to MGs. It behaves as a ten-
dency to weight MGs while neglect non-MGs, resulting in
a higher recall of those MGs. The high recall will naturally
lead to the situation that many non-MGs are suppressed and
misclassified as MGs, resulting in a relatively low accuracy.
Failure Case Analysis. From Fig. 7, we visualize the HMM
decoding path to analyze the failure cases. As we can see,
online recognition of in-the-wild body gestures is chal-
lenging due to the complicated transition patterns between
gestures and the high requirements for accurate temporal
allocation. Even though, our AED method, with its atten-
tion mechanism, has a better correcting performance than
the raw prior. For instance, around frames 11,500-11,600
of the SMG case, AED can help to escape from the false
positive prediction of “non-movement” intervals and give
potential MG predictions, while around frames 100–600 in
the iMiGUE case, the AED can help to emphasize the true
positive prediction of the MGs with self-attention. At last,
the visualization of the attention maps is presented in Fig. 8,
which also shows that our AED can effectively suppress the
biased priors brought by certain classes (yellow color means
lower probability) thus can better handle long-tail class dis-
tribution.
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Fig. 8 Visualized attentionmap. We present the attentionmap of sam-
ple #72 in the iMiGUE dataset, using raw prior (top) and our AED
(bottom). The x-axis represents time, and the y-axis represents the hid-
den states of all classes. The value of matrix is the probability given by
networks, we take the log value for a better visualization and computa-
tional convenience in Viterbi decoding. The last line is the probability
of non-movement state. Thewhite spot on thematrix stands for the NaN
value when taking the logarithm operation

6 Body Gesture-Based Emotional Stress
State Recognition

In this section, we conduct experiments on body gesture-
based recognition of the emotional stress state. The task is
defined as predicting the emotional stress state (i.e., SES or
NES) within the context of the body gestures with a given
video sequence.We first introduce the benchmark for evalua-
tions by implementing several state-of-the-art models. Then,
we present a new graph-based network for this task with a
better performance compared to others.

6.1 Evaluation Protocols and Human Evaluation

Two Evaluation Protocols. As discussed in Sect. 2 and
Sect. 3, subject differences could bring considerable influ-
ence to gesture-based emotion recognition. Thus, we define
two types of evaluation protocols: subject-independent (SI)
and semi-subject-independent (semi-SI). In SI evaluation,
we use the same protocol as the classification and online
recognition tasks that split the 40 subjects into 30+5 for
training+validating (with 294 emotional state instances) and
the remaining five for testing (with 90 instances). In semi-
SI evaluation, we select 294 emotional state instances from
all the 40 subjects for training+validating and the remaining
90 instances for testing. Each instance belongs to a specific
emotional stress state (NES/SES). The emotional states of
the instances are evenly distributed in the testing set, i.e., 45-

Fig. 9 The GUI of the human evaluation test for emotional state recog-
nition. A screenshot of one sample is shown. For each video clip,
evaluators are asked to go through the video and annotate the emotional
state as a comparison of our methods

45 for SES-NES. We report the emotional state recognition
accuracy in percentage for each of these two protocols.

Human Evaluation. We assess the difficulty of the
emotional state recognition task by enrolling human eval-
uators to observe the emotional instances and give their
predictions. Sixteen ordinary college students with different
academicmajors were recruited as normal human evaluators.
Another three university staff were trained to recognizeMGs
with related psychological backgrounds as expert evaluators.
These evaluators were offered both skeleton/RGB videos to
conduct the task ( skeleton modality was always presented
first and then theRGBmodality to avoid any significant learn-
ing effect). The GUI of the human test is shown in Fig. 9 and
the results are shown in Table 6.

The human evaluatorswere also interviewed after the eval-
uation test. Most of the testers claimed that it was tough only
to use gestures (the skeleton modality) to infer, and it was a
random guess. Meanwhile, for RGB videos, people tend to
use multiple cues such as facial expressions and even overall
impressions (e.g., if the subject looks confident) to determine
the emotional stress states. We can also observe that trained
evaluators perform better than ordinary people (accuracy of
0.75 for emotional stress states) as they know how to utilize
MGs as clues to infer emotional states. As discussed above,
MGs are often neglected by humans in interactions. Thus
using body gestures for emotional state recognition, espe-
cially hidden ones, is a significantly challenging task.
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Fig. 10 Spectral decomposition of the graph network for emotional state recognition

Table 6 Body gesture-based emotional state recognition results of
human evaluators

Human evaluator Modality Emotion state
recognition accu-
racy

Random guess – 0.50

Common people Skeleton 0.48

RGB 0.53

Trained evaluators Skeleton 0.66

RGB 0.75

6.2 Emotional State Recognition with
State-of-the-Art Methods

As introduced in Sect. 3, instead of using a conventional
paradigm thatmaps one gesture into one emotional status (Gu
et al. 2013;Gunes and Piccardi 2006), we use two proxy tasks
to present the emotional states. Thus, the task of emotional
state recognition in SMGdataset is to predict the correspond-
ing emotional state on a given long video sequence (the state
of proxy task, NES/SES). Intuitively, there are two direc-
tions to approach this problem, one is raw context-based
recognition that directly conducts the inference on the whole
sequence and the other one is MG context-based recogni-
tion that predicts the emotional states based on the MGs on
the sequences. Here we provide six machine learning-based
methods for emotional state recognition, including both of
these two kinds of methods.

Raw Context Recognition. Three state-of-the-art mod-
els for the skeleton-based action recognition task, ST-GCN
(Yan et al. 2018), NAS-GCN (Peng et al. 2020) and MS-
G3D (Liu et al. 2020) are provided as baselines that infer the
emotional state based on the raw long instances. The input of
the models is the full sequence of the body skeleton streams,
which is to validate if the emotional patterns can be captured
via body movements straightforwardly. The network struc-
ture is end-to-end whose hyper-parameters are the same for
the task of MG classification mentioned in Sect. 4.1 aside
from the output head dimensions (as NES/SES). The perfor-
mances of the three baseline methods are presented in the

“Sequence+NN” group of Table 7. As shown in the table,
the three baseline methods (46%, 46%, and 50%) cannot
even exceed the random selecting rate (50%). As expected,
the inference based on raw video sequences involves many
redundant, irrelevant bodymovements and easily fails to cap-
ture desired body movements (such as MGs) for emotional
stress state recognition. Thus, conducting the recognition on
long video sequences performs poorly (near random guess-
ing) with existing state-of-the-art models.

MG-based Recognition. Unlike the above raw context
recognition methods, we also present several MG-based
methods for emotion understanding. A baseline strategy that
uses the Bayesian network to encode the distribution vectors
of MGs (with dimensions of 1 × N , N is the MG num-
ber) was provided in our previous work (Chen et al. 2019). It
experimentally validated the contribution thatMGs can bring
to the emotion understanding context. In Table 7 bottom
part (“MG+classifier” group), we can observe that micro-
gesture is beneficial for the emotional state inference from the
BayesianNet (0.59&0.66). Besides, we go one step further
by encoding the MG relationships on a long sequence into
graph representation (with dimensions of N × N ) so that the
transitions of MGs are also involved with node relationships.
Intuitively, this should bring more gains as the information
of the feature increases, and we selected two state-of-the-
art high-dimensional graph convolutional networks L2GCN,
BGCN (You et al. 2020; Zhang et al. 2019) to verify it.
However, as shown in Table 7, we find that for these two
high-dimensional models, the emotional state performances
(0.44&0.47 and 0.54&0.53) are not as competitive as the sim-
ple BayesianNet. Thus, in the next section, we try to tackle
the issue and propose a customized graph network for better
mining the potential of the graph-based representations.

6.3 AWeighted Spectral Graph Network for
Emotional State Recognition

We find that existing graph representation learning meth-
ods all rely on high-dimensional weight parameters. Limited
sample amount easily leads to over-fitting on these mod-
els (Scarselli et al. 2008) (e.g., in our cases, a graph with

123



1360 International Journal of Computer Vision (2023) 131:1346–1366

Table 7 Body gesture-based
emotional state recognition
results of the proposed method
and compared baselines

Methods Framework Emotion state recognition accuracy
Subject-independent Semi subject-independent

Random guess – 0.50 0.50

ST-GCN (Yan et al. 2018) Sequence +NN 0.46 0.42

MS-G3D (Liu et al. 2020) 0.46 0.49

NAS-GCN (Peng et al. 2020) 0.50 0.52

MG+L2GCN (You et al. 2020) MG +classifier 0.44 0.47

MG+BGCN (Zhang et al. 2019) 0.54 0.53

MG+BayesianNet (Chen et al. 2019) 0.59 0.66

MG+WSGN (ours) 0.65 0.68

Note that ”MG“ includes both MG and non-MG instances as the input feature
Methods with the best performance are marked in bold

only 17 nodes of MGs) as shown in Table 7. Meanwhile,
classical spectral graph handling methods like the Laplacian
operator (de Lara and Pineau 2018) are suitable for insuffi-
cient samples to get node “gradients” without the need for
high-dimensional weights. Thus, we utilize the strength of
classical Laplacian operator to obtain the measurements of
the “gradients” of each node and extend it to the directed,
weighted graph case to better fit the task. The whole frame-
work is presented in Fig. 10.

We give the mathematical definition of a graph as G =
(V , E,W ) to represent the relationship of MGs. With the
MGs of number N as graph nodes V = {vp|p = 1, . . . , n}
and the transitions between MGs as graph edges E =
{eq |q = 1, . . . ,m}, the input is therefore the transition fre-
quency vectors as the weights on the graph edges W =
{wi, j |i, j = 1, . . . , n}, where wi, j is obtained by count-
ing the transition number between MG i and j . In this way,
we map the distribution of MGs into raw graph data with
the dynamic transition patterns between MGs maintained by
W . Specifically, to tackle the directed graph issue, consider
the vertex space RV with standard basis {e1, . . . , en} and, a
n×n matrix N can be defined as for N = {ni = e j − ek |i =
1, . . . ,m and j, k = 1, . . . , n}. This matrix N is called the
signed vertex edge incidence matrix of the original G (with
respect to the fixed orientation). The key fact is that theLapla-
cianLof theG is the (transposeof the)Grammatrix of N , that
is, L=NNT with which the directed graph can be deployed.
Now recall that W is the weight matrix of G. Then we can
define the Laplacian of G as the matrix product NWNT

where N is the signed vertex-edge incidence matrix of the
underlying unweighted graph ofG. In thisway, the Laplacian
operator can be exploited to extract “gradient” features from
the MG graph representation. The resulting feature vectors
from Laplacian operator are fed into the classifiers to predict
the final emotional state ĉ. Eventually, the whole formulation
of our proposed weighted spectral graph network (WSGN)
is given as follows:

ĉ = fclassi f ier (L(NWNT )), (8)

where for fclassi f ier , we experimented with different stan-
dard classifiers combined to our spectral embedding. That
is, Multi-layer Perceptron with Relu non-linearity (MLP)
(Rumelhart et al. 1986), k-nearest neighbors (kNN) (Fix and
Hodges 1989), RandomForest (RF) (Ho 1995), andAdaptive
Boosting (AdaBoost) (Schapire 2013).

6.4 Discussion and Limitations

The experimental results for emotional state recognition are
shown in Table 7. In practice,MLP outperforms other classi-
fiers, which is reported in Table 7 as a result of our proposed
WSGN. The detailed experimental settings can be found in
the “Appendix G”. Besides, extra experimental results (see
“Appendix H”) show that taking natural states (the non-
movement snippets) into account as an extra MG in the
transition representation will bring an improvement to the
results, as well as the Laplacian operation. In the last line of
Table 7, we can observe that our proposed WSGNN model
outperforms all the compared methods, which further ver-
ifies that the MG-based analysis is beneficial to the final
emotion understanding. By comparing the performances of
MG+classifier frameworks and Sequence+NN frameworks,
we can observe that the MG-based feature vectors are more
beneficial to the present emotional states. This proves that
MG-based analysis, with its effective representation capa-
bility of emotional state, can be a better option for emotional
understanding. We believe that this can bring inspiration and
new paradigms to the community over bodily emotion under-
standing.

The limitationof this experiment couldbe that the stakes of
the subjects’ emotional states were relatively low. Thus, this
might decrease the distinction between baselines and devi-
ations. Additionally, the sample size was relatively limited.
Therefore, more research should explore how the similarity
scoring system performs when more extensive samples are
used.
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7 Conclusions and FutureWork

Weproposed anovel, psychology-based and reliable paradigm
for body gesture-based emotion understanding with com-
puter visionmethods. To our knowledge, our effort is the first
to interpret hidden emotion states via MGs, with both quan-
titative investigations of human body behaviors and machine
vision technologies. A related spontaneous micro-gesture
dataset towards hidden emotion understanding is collected.A
comprehensive static analysis is performed with significant
findings for MGs and emotional body gestures. Benchmarks
for MG classification, MG online recognition, and body
gesture-based emotional stress state recognition are provided
with state-of-the-art models. Our proposed AED-BiLSTM
framework can efficiently provide a more robust correction
to the prior with a parameter-free mechanism. Experiments
show that AED-BiLSTM can efficiently improve online
recognition performance in a practice closer to a real-world
setting. Moreover, a graph-based network is proposed for the
MG pattern representations to better analyze the emotional
states.

This work involves and bridges the interdisciplinary
efforts of psychology, affective computing, computer vision,
machine learning, etc. We wish to break the fixed research
paradigm of emotional body gestures which is limited to
classical expressive emotions and argue for more diverse
research angles for emotional understanding. Thus, we pro-
pose our spontaneous micro-gestures for hidden emotion
understanding. We believe that the SMG dataset and pro-
posed methods could inspire new algorithms for the MG
recognition tasks from the machine learning aspect, such
as combining more non-verbal cues such as facial expres-
sions with MGs using the RGBmodality in the SMG dataset
to improve emotional recognition performance. The work
can also facilitate new advances in the emotion AI field
and inspire new paradigms for analyzing human emotions
with computer vision methods. The community can be bene-
fited fromMGswith significant application potential inmany
fields, e.g., using machines to automatically detect MGs to
enhance people’s communicative skills, or assist experts in
conducting Alzheimer’s and autism disease diagnoses.

Acknowledgements This work was supported by the Academy of
Finland for Academy Professor project EmotionAI (Grants 336116,
345122), project MiGA (grant 316765), the University of Oulu & The
Academy of Finland Profi 7 (grant 352788), Postdoc project 6+E (Grant
323287) and ICT 2023 project (grant 328115), and by Ministry of Edu-
cation and Culture of Finland for AI forum project. As well, the authors
wish to acknowledge CSC - IT Center for Science, Finland, for com-
putational resources.

Funding Open Access funding provided by University of Oulu includ-
ing Oulu University Hospital.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A SMG Evaluation Protocols

In the proposed SMG dataset, the criteria of the three bench-
marks (MG classification, MG online recognition, and emo-
tional state recognition) are provided. Specifically, for the
MG classification and online recognition tasks, we utilized
the subject-independent evaluation protocol, while for the
emotional state recognition task, both subject-independent
and -dependent evaluation protocols are used.
Subject-independent protocol. In this protocol, we divide
the 40 subjects into a training group of 30 subjects, a vali-
dating group of 5 subjects, and a testing group of 5 subjects.

The subject IDs of training and testing are:
Training set: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30};
Validating set: {31, 32, 33, 34, 35};
Testing set: {36, 37, 38, 39, 40}.
Under this protocol, MG classification task has 2417MG

clip samples for training, 632 for validating and 593 for test-
ing (each for around 50 frames); MG online recognition task
has 30 long MG sequences for training, five for validating
and five for testing (each for around 25,000 frames); and
emotional state recognition task has 294 videos (i.e., emo-
tional state instances) for training and 60 for validating and
60 for testing (each for around 8000 frames), respectively.
Semi-subject-independent Protocol. In this protocol, we
selected 294 + 60 videos (147 + 30 SES and 147 + 30 NES
instances) from all the 40 subjects as the training + vali-
dating sets, and the remaining 60 videos (30 SES and 30
SES instances) as the testing set. The participants’ emotional
states (SES/NES) are recognized via analysis of micro-
gestures.

The video IDs of training and testing are:
Training set: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
79, 80, 81, 82, 83, 96, 97, 98, 99, 100, 101, 108, 109, 110,
111, 112, 113, 120, 121, 122, 123, 124, 125, 132, 133, 134,
135, 136, 137, 156, 157, 158, 159, 160, 161, 168, 169, 170,
171, 172, 173, 180, 181, 182, 183, 184, 185, 192, 193, 194,
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195, 196, 197, 204, 205, 206, 207, 208, 209, 216, 217, 218,
219, 220, 221, 228, 229, 230, 231, 232, 233, 237, 238, 239,
243, 244, 245, 249, 250, 251, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272,
273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284,
285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296,
297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308,
309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320,
321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332,
333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344,
345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356,
357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368,
369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380,
381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392,
393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404,
405, 406, 407, 408, 409, 410, 411, 412, 413, 144, 145, 146,
147, 148, 149, 150, 151, 152, 153, 154, 155, 162, 163, 164,
165, 166, 167, 174, 175, 176, 177, 178, 179, 186, 187, 188,
189, 190, 191, 198, 199, 200, 201, 202, 203, 210, 211, 212,
213, 214, 215, 222, 223, 224, 225, 226, 227, 234, 235, 236,
240, 241, 242, 246, 247, 248, 252, 253, 254};

Validating set: {144, 145, 146, 147, 148, 149, 150, 151,
152, 153, 154, 155, 162, 163, 164, 165, 166, 167, 174, 175,
176, 177, 178, 179, 186, 187, 188, 189, 190, 191, 198, 199,
200, 201, 202, 203, 210, 211, 212, 213, 214, 215, 222, 223,
224, 225, 226, 227, 234, 235, 236, 240, 241, 242, 246, 247,
248, 252, 253, 254};

Testing set: {84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
102, 103, 104, 105, 106, 107, 114, 115, 116, 117, 118, 119,
126, 127, 128, 129, 130, 131, 138, 139, 140, 141, 142, 143,
150, 151, 152, 153, 154, 155, 162, 163, 164, 165, 166, 167,
174, 175, 176, 177, 178, 179, 186, 187, 188, 189, 190, 191}.

Appendix B Materials for Stress Emotional
States

We set up two proxy tasks for stimulating the emotional
stress states and eliciting micro-gestures based on the find-
ings in related research: (1) only a comparable truth condition
(“baseline stimuli”, and “deviation stimuli”) rather than
casual small talk can induce emotional difference between
truth tellers and story makers (Palena et al. 2018) and (2)
complications of the truth (more details of the story) can help
to differ the truth tellers and story makers (Vrij et al. 2018,
2020). Thus, we selected five short reports and newscasts
with full details as the materials. The five stories are “world’s
largest swimming pool” (119 words), “world’s longest hair”
(170 words), “world’s biggest dog” (155 words), “world’s
hottest chilli” (133 words) and “world’s largest pizza” (129
words). Excerpts from the story (world’s longest hair) are as
follows: “…She washes the hair once a week, using up to
six bottles of shampoo at a time. Then it takes two days for

the hair to dry – and they weigh 25 pounds when wet. She
says that the extra weight of her hair makes her doctors very
concerned. They seem to think that she has a curvature of her
spine due to the length and weight of her hair.” Before the
experiment, participants were told that if they got caught they
would have a punishment, i.e., to fill in a long questionnaire
which contains more than 500 questions, so they had to try
their best when making up a story (deviation stimuli), pre-
tend to be telling/reading a given one (baseline stimuli). The
long questionnaire works as the ’punishment’ or a ’pressure’,
aiming to stimuli and elicit the emotional states and micro-
gestures, and there was no actual punishment conducted after
the data collection.

Appendix C Relationship Between MGs and
Subjects

We visualize the Pearson’s correlation coefficient of the MG
performing patterns from 40 subjects in our SMG dataset as
shown in Fig. 11.

Appendix D Experimental Settings for MG
Classification on SMG

In the practical implementation of RGBmodality based base-
lines,we trained all themodels on SMGdatasetwith the same
protocol as: 120 epochs are trained on the TSN, TRN, and
TSM models; the batch size is set to 64 for TSN and TRN,
and set to 32 for TSM; the base learning rate is set to 0.001 for
all three models, and the learning rate is scaled with a factor

Fig. 11 The correlation distribution of MG patterns between subject
pairs in our SMG dataset. The correlation factor is calculated by Pear-
son’s correlation coefficient based on MG distribution of 40 subject
pairs. We can see that, the MG performing patterns can vary a lot over
some subject pairs
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Table 8 The ablation study of
AED-BiLSTM under different
values of λ on SMG dataset. μ
is fixed as 0.0

λ Raw prior 0.7 1.0 2.0 2.1 2.2 3.0 4.0

F1-score 0.1825 0.1461 0.1958 0.1986 0.2020 0.2006 0.1823 0.1749

�We show the most representative values that cause F1-score to change considerably
Methods with the best performance are marked in bold

Table 9 The ablation study of
AED-BiLSTM under different
values of μ on SMG dataset. λ
is set as 2.1 to obtain the best
performance

μ Raw prior −5.0 −4.0 −2.5 −0.5 0.0 1.0

F1-score 0.1825 0.2006 0.2026 0.2030 0.2023 0.2020 0.2017

�We show the most representative values that cause F1-score to change considerably
Methods with the best performance are marked in bold

of 0.1 at epoch 50 and 100, respectively. For C3D, R3D, and
I3D, 60 epochs are trained for each model; the batch size is
set to 128 for C3D and R3D, 48 for I3D; and the learning
rate is set to 0.0002 for all models. The optimizer is SGD
which is consistent to the settings of all the models. The loss
function is Categorical Cross Entropy. The training platform
was Pytorch (Paszke et al. 2019) with a single GPU: NVidia
Titan (24 GB).

In the practical implementationof skeletonmodality based
baselines, we trained all the models on the SMG dataset with
the same protocol: 30 training epochs (all fully converged),
batch sizes of 32, the base learning rate of 0.05, and weight
decay of 0.0005. Prepossessing was conducted for all the
baselines: null-frame padding, translating to the center joint,
and paralleling the joints to the corresponding axis. Input
length is set as 60 frames. For all the remaining network
hyperparameters, we kept their original settings (e.g., for
MSG3D, the numbers of GCN scales and G3D scales are
kept as 13 and 6). The optimizer is SGD which is consistent
to the settings of all the models. The loss function is Categor-
ical Cross Entropy. The training platform was with a single
GPU: NVidia Titan (24 GB).

For pretraining the models for RGB modality, we used
Resnet50 (He et al. 2016) as the backbone pretrained on
something-something v2 (Goyal et al. 2017) dataset as it
has been commonly used for all the three methods and the
trained weighs are available. The hyperparameters are set as
the same as the original work.

Appendix E Experimental Details for Online
Recognition

We first conduct the same pre-processing of the skeleton
streams on the three validating datasets. Since pre-segmented
clips and their global temporal information of ongoing ges-
tures, are not available in online recognition tasks, it’s
demanding to have an efficient local temporal feature extrac-
tion. For skeleton joint feature extraction, we followed the
work of (Zanfir et al. 2013). “MovingPose” are features that

Table 10 The online recognition performances ofAED-BiLSTMunder
different threshold values of αth on SMG dataset

Threshold of αth 10% 30% 50% 70% 90%

F1-score 0.312 0.203 0.087 0.030 0.004

utilize 3D position difference characters of joints to gener-
ate spatio-temporal information with efficient dimensional
requirements.

For the training phase, our AED-BiLSTM network was
trained with a batch size of 32, the learning rate as 0.01
(reducing LR factor as 0.5, patience as 3 epochs) for 20
epochs on the SMG dataset, with a batch size of 64, the
learning rate as 0.01 (reducing LR factor as 0.5, patience as
3 epochs) for 80 epochs on the iMiGUEdataset and 40 epochs
on the OAD dataset. The optimizer is RMSprop, following
the setting of Chen et al. (2020). he structure of AED-
BiLSTM is consistent with the STABNet (Chen et al. 2020).
Specifically, RMSprop is used as optimizer. The structure of
STABNet is given as: a two-layer BiLSTMwith 2000 GRUs
and 1000 GRUs separately. A spatial attention layer and a
temporal attention layer are attached before and between the
two BiLSTM layers, respectively. The dense layer of 1000
units is stacked with the sigmoid activation to the BiLSTM
layers, followed by a output layer with units as the total hid-
den state number (MG class number* HMM state number
used for representing each MG, 16*5 in practice).Since the
skeleton joints of the iMiGUE dataset are extracted from
OpenPose (Cao et al. 2019) which contains noises, we fil-
tered out all the training sampleswith null skeleton joints. For
the compared methods, we use the same training scheme and
ensure themodels are converged. The training time of a single
BiLSTM is around three hourswith over 18,000/8,000 (train-
ing/validating) frame-level samples in our SMG dataset and
around six hourswith over 47,000/5,000 (training/validating)
frame-level samples in the iMiGUE dataset. The loss func-
tion is Categorical Cross Entropy. The training platform was
Tensorflow with a single GPU: NVidia Titan (24 GB).
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Table 11 Ablation study of
WSGN

Methods Emotion state recognition accuracy
k-NN Random Forest AdaBoost MLP

Basic graph 0.50 0.45 0.48 0.45

+ LP 0.50 0.50 0.48 0.45

+ SFFS 0.50 0.50 0.50 0.50

+ TS 0.56 0.51 0.38 0.51

+ LP & SFFS 0.50 0.50 0.50 0.50

+ LP & TS 0.57 0.42 0.48 0.50

+ SFFS & TS 0.47 0.62 0.62 0.60

+ SFFS & TS & LP (full model) 0.53 0.65 0.65 0.65

LP: Laplacian operation, TS: transition state embedding, and SFFS: sequential forward floating selection
Methods with the best performance are marked in bold

For testing and post-processing, the threshold of the min-
imal frames to filter out noisy gestures is set as 14 frames for
all the methods. The values of λ and μ are set as −2.5/2.1,
−1.0/3.0 and−0.2/2.0 for SMG, iMiGUEandOADdatasets.

Appendix F Ablation Study of Online Recog-
nition

Although our AED is parameter-free and can be directly
exploited to the inference, the correct value setting of λ and
μ will affect the performance of the AED. Thus, we present
the ablation study of AED-BiLSTM under different values
of λ and μ, as shown in Tables 8 and 9.

Note that the λ will affect the inhibition of the “non-
movement”s, which determines the segmentation results.
Meanwhile, μ for the attention of the MGs will affect the
classification results. Thus, we fix μ as 0.0 to conduct the
ablation study to obtain the best value of λ, then get the best
value of μ with obtained λ.

The online recognition performances of AED-BiLSTM
under different threshold values of overlapping ratio αth is
shown inTable 10.Thehigher theαth is, themore challenging
the task is, as it requires more accurate temporal allocation
of the frame boundaries. When it comes to 90%, it means the
temporal allocation of theMGs should be extremely accurate.
This is especially challenging due to the subtle and swift
nature of MGs.

Appendix G Experimental Settings for Stress
Emotional State Recognition

RGB modality was not used as it might bring unnecessary
texture patterns like facial information into neural networks
and makes the analysis contested. We focus on the skele-
ton modality in order to specifically explore the relationship

between gestures and stress states. All the settings usedCross
Entropy as the loss function.
Full Context Recognition. In practical implementation, we
trained the baseline methods with the same protocols as the
classification task (e.g., training epoch number, batch size,
etc.). Besides, the input is the long skeleton sequence of an
emotional state instance with a frame number of 90 via linear
down-sampling. The dimension of the output layers of net-
works are modified into two in relation to the two emotional
states.
MG-based Context Recognition.We construct the for hid-
den emotional recognition. The transition of the middle
state (non-movements) is enabled, and the transition direc-
tion is enabled. Bayesian prior is added. Sequential Forward
Floating Selection (SFFS) strategy was used for selecting
MGs with the most contributions. From SFFS, “Turtling
neck and shoulder”, “Rubbing eyes and forehead”, “Fold-
ing arms behind body” and “Arms akimbo” are the most
contributed features for the emotional state recognition in
the subject-independent protocol;meanwhile, “Rubbing eyes
and forehead”, “Moving legs”, “Arms akimbo” and “Scratch-
ing or touching facial parts other than eyes” are the most
contributed features for the semi-subject-independent proto-
col.

Appendix H Extra Experimental Results of
WSGN

Ablation study. We present the contribution of each compo-
nent in the WSGN with an ablation study as shown in Table
11 in the subject-independent protocol on the SMG dataset.
As we can see, the three components (Laplacian operation,
SFFS and transition state embedding) can jointly contribute
to the performance.
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