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Abstract
Texture is a fundamental characteristic of many types of images, and texture representation is one of the essential and
challenging problems in computer vision and pattern recognition which has attracted extensive research attention over several
decades. Since 2000, texture representations based on Bag of Words and on Convolutional Neural Networks have been
extensively studied with impressive performance. Given this period of remarkable evolution, this paper aims to present a
comprehensive survey of advances in texture representation over the last two decades. More than 250 major publications are
cited in this survey covering different aspects of the research, including benchmark datasets and state of the art results. In
retrospect of what has been achieved so far, the survey discusses open challenges and directions for future research.

Keywords Texture classification · Feature extraction · Deep learning · Local descriptors · Bag of Words · Computer vision ·
Visual attributes · Convolutional Neural Network

1 Introduction

Our visual world is richly filled with a great variety of tex-
tures, present in images ranging from multispectral satellite
data tomicroscopic images of tissue samples (seeFig. 1).As a
powerful visual cue, like color, texture provides useful infor-
mation in identifying objects or regions of interest in images.
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Texture is different from color in that it refers to the spatial
organization of a set of basic elements or primitives (i.e.,
textons), the fundamental microstructures in natural images
and the atoms of preattentive humanvisual perception (Julesz
1981).A textured regionwill obey some statistical properties,
exhibiting periodically repeated textons with some degree of
variability in their appearance and relative position (Forsyth
and Ponce 2012). Textures may range from purely stochastic
to perfectly regular and everything in between (see Fig. 1).

As a longstanding, fundamental and challenging problem
in the fields of computer vision and pattern recognition, tex-
ture analysis has been a topic of intensive research since the
1960s (Julesz 1962) due to its significance both in under-
standing how the texture perception process works in human
vision as well as in the important role it plays in a wide
variety of applications. The analysis of texture traditionally
embraces several problems including classification, segmen-
tation, synthesis and shape from texture (Tuceryan and Jain
1993). Significant progress has been made since the 1990s
in the first three areas, with shape from texture receiving
comparatively less attention. Typical applications of texture
analysis include medical image analysis (Depeursinge et al.
2017; Nanni et al. 2010; Peikari et al. 2016), quality inspec-
tion (Xie andMirmehdi 2007), content based image retrieval
(Manjunath and Ma 1996; Sivic and Zisserman 2003; Zheng
et al. 2018), analysis of satellite or aerial imagery (Kan-
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Fig. 1 Texture is an important characteristic of many types of images

daswamy et al. 2005; He et al. 2013), face analysis (Ahonen
et al. 2006b;Ding et al. 2016; Simonyan et al. 2013; Zhao and
Pietikäinen 2007), biometrics (Ma et al. 2003; Pietikäinen
et al. 2011), object recognition (Shotton et al. 2009; Oyal-
lon and Mallat 2015; Zhang et al. 2007), texture synthesis
for computer graphics and image compression (Gatys et al.
2015, 2016), and robot vision and autonomous navigation
for unmanned aerial vehicles. The ever-increasing amount of
image and video data due to surveillance, handheld devices,
medical imaging, robotics etc. offers an endless potential for
further applications of texture analysis.

Texture representation, i.e., the extraction of features that
describe texture information, is at the core of texture anal-
ysis. After over five decades of continuous research, many
kinds of theories and algorithms have emerged, with major
surveys and some representative work as follows. Themajor-
ity of texture features before 1990 can be found in surveys
and comparative studies (Conners and Harlow 1980; Haral-
ick 1979; Ohanian and Dubes 1992; Reed and Dubuf 1993;
Tuceryan and Jain 1993; Van Gool et al. 1985; Weszka
et al. 1976). Tuceryan and Jain (1993) identified five major
categories of features for texture discrimination: statistical,
geometrical, structural, model based, and filtering based fea-
tures. Ojala et al. (1996) carried out a comparative study
to evaluate the classification performance of several texture
features. Randen and Husoy (1999) reviewed most major
filtering based texture features and performed a compara-
tive performance evaluation for texture segmentation. Zhang
and Tan (2002) reviewed invariant texture feature extraction
methods. Zhang et al. (2007) evaluated the performance of
several major invariant local texture descriptors. The 2008
book “Handbook of Texture Analysis” edited by Mirme-
hdi et al. (2008) contains representative work on texture
analysis—from 2D to 3D, from feature extraction to syn-
thesis, and from texture image acquisition to classification.
The book “ComputerVisionUsingLocal Binary Patterns” by
Pietikäinen et al. (2011) provides an excellent overviewof the
theory of Local Binary Patterns (LBP) and the use in solving
various kinds of problems in computer vision, especially in

biomedical applications and biometric recognition systems.
Huang et al. (2011) presented a review of the LBP variants
in the application area of facial image analysis. The book
“Local Binary Patterns: New Variants and Applications” by
Brahnam et al. (2014) is a collection of several newLBP vari-
ants and their applications to face recognition.More recently,
Liu et al. (2017) conducted a taxonomy of recent LBP vari-
ants and performed a large scale performance evaluation of
forty texture features. Researchers (Raad et al. 2017; Akl
et al. 2018) presented a review of exemplar based texture
synthesis approaches.

The published surveys (Conners and Harlow 1980; Har-
alick 1979; Ohanian and Dubes 1992; Reed and Wechsler
1990; Reed and Dubuf 1993; Ojala et al. 1996; Pichler et al.
1996; Tuceryan and Jain 1993; Van Gool et al. 1985) mainly
reviewed or compared methods prior to 1995. Similarly, the
articles (Randen and Husoy 1999; Zhang and Tan 2002) only
covered approaches before 2000. There are more recent sur-
veys (Brahnam et al. 2014; Huang et al. 2011; Liu et al. 2017;
Pietikäinen et al. 2011), however they focused exclusively on
texture features based on LBP. The emergence of many pow-
erful texture analysis techniques has given rise to a further
increase in research activity in texture research since 2000,
however none of these published surveys provides an exten-
sive survey over that time. Given recent developments, we
believe that there is a need for an updated survey, motivating
this present work. A thorough review and survey of existing
work, the focus of this paper, will contribute tomore progress
in texture analysis. Our goal is to overview the core tasks and
key challenges in texture representation approaches, to define
taxonomies of representative approaches, to provide a review
of texture datasets, and to summarize the performance of the
state of the art on publicly available datasets. According to
the different visual representations, this survey categorizes
the texture representation literature into three broad types:
Bag of Words (BoW)-based, Convolutional Neural Network
(CNN)-based, and attribute-based. The BoW-based methods
are organized according to their key components. The CNN-
based methods are categorized into one of pretrained CNN
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models, finetuned CNN models, or handcrafted deep convo-
lutional networks.

The remainder of this paper is organized as follows.
Related background, including the problem and its appli-
cations, the progress made during the past decades, and the
challenges of the problem, are summarized in Sect. 2. From
Sects. 3 to 5 we give a detailed review of texture represen-
tation techniques for texture classification by providing a
taxonomy to more clearly group the prominent alternatives.
A summarization of benchmark texture databases and state
of the art performance is given in Sect. 6. Section 7 con-
cludes the paper with a discussion of promising directions
for texture representation.

2 Background

2.1 The Problem

Texture analysis can be divided into four areas: classification,
segmentation, synthesis, and shape from texture (Tuceryan
and Jain 1993). Texture classification (Lazebnik et al. 2005;
Liu and Fieguth 2012; Tuceryan and Jain 1993; Varma and
Zisserman 2005, 2009) deals with designing algorithms for
declaring a given texture region or image as belonging to one
of a set of known texture categories of which training sam-
ples have been provided. Texture classification may also be
a binary hypothesis testing problem, such as differentiating
a texture as being within or outside of a given class, such
as distinguishing between healthy and pathological tissues
in medial image analysis. The goal of texture segmentation
is to partition a given image into disjoint regions of homo-
geneous texture (Jain and Farrokhnia 1991; Manjunath and
Chellappa 1991; Reed and Wechsler 1990; Shotton et al.
2009). Texture synthesis is the process of generating new
texture images which are perceptually equivalent to a given
texture sample (Efros and Leung 1999; Gatys et al. 2015;
Portilla and Simoncelli 2000; Raad et al. 2017; Wei and
Levoy 2000; Zhu et al. 1998). As textures provide power-
ful shape cues, approaches for shape from texture attempt to
recover the three dimensional shape of a textured object from
its image. It should be noted that the concept of “texture”
may have different connotations or definitions depending on
the given objective. Classification, segmentation, and synthe-
sis are closely related and widely studied, with shape from
texture receiving comparatively less attention. Nevertheless,
texture representation is at the core of these four problems.
Texture representation, together with texture classification,
will form the primary focus of this survey.

As a classical pattern recognition problem, texture classifi-
cation primarily consists of two critical subproblems: texture
representation and classification (Jain et al. 2000). It is gen-
erally agreed that the extraction of powerful texture features

plays a relatively more important role, since if poor features
are used even the best classifier will fail to achieve good
results. While this survey is not explicitly concerned with
texture synthesis, studying synthesis can be instructive, for
example, classification of textures via analysis by synthesis
(Gatys et al. 2015) in which a model is first constructed for
synthesizing textures and then inverted for the purposes of
classification. As a result, we will include representative tex-
ture modeling methods in our discussion.

2.2 Summary of Progress in the Past Decades

Milestones in texture representation over the past decades
are listed in Fig. 2. The study of texture analysis can be
traced back to the earliest work of Julesz (1962), who stud-
ied the theory of human visual perception of texture and
suggested that texture might be modelled using kth order
statistics—the cooccurrence statistics for intensities at k-
tuples of pixels. Indeed, early work on texture features in
the 1970s, such as the well known Gray Level Cooccur-
renceMatrix (GLCM)method (Haralick et al. 1973;Haralick
1979), were mainly driven by this perspective. Aiming at
seeking essential ingredients in terms of features and statis-
tics in human texture perception, in the early 1980s Julesz
(1981), Julesz and Bergen (1983) proposed the texton theory
to explain texture preattentive discrimination, which states
that textons (composed of local conspicuous features such as
corners, blobs, terminators and crossings) are the elementary
units of preattentive human texture perception and only the
first order statistics of textons have perceptual significance:
textures having the same texton densities could not be dis-
criminated. Julesz’s texton theory has been widely studied
and has largely influenced the development of texture anal-
ysis methods.

Research on texture features in the late 1980s and the early
1990s mainly focused on two well-established areas:

1. Filtering approaches, which convolve an image with a
bank of filters followed by some nonlinearity. One pio-
neering approach was that of Laws (1980), where a bank
of separable filters was applied, with subsequent filter-
ing methods including Gabor filters (Bovik et al. 1990;
Jain and Farrokhnia 1991; Turner 1986), Gabor wavelets
(Manjunath and Ma 1996), wavelet pyramids (Freeman
and Adelson 1991;Mallat 1989), and simple linear filters
like Differences of Gaussians (Malik and Perona 1990).

2. Statistical modelling, which characterizes texture images
as arising fromprobability distributions on randomfields,
such as a Markov Random Field (MRF) (Cross and Jain
1983; Mao and Jain 1992; Chellappa and Chatterjee
1985; Li 2009) or fractal models (Keller et al. 1989;Man-
delbrot and Pignoni 1983).
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Fig. 2 The evolution of texture representation over the past decades (see discussion in Sect. 2.2)

At the end of the last century there was a renaissance of
texton-based approaches, including Wu et al. (2000); Xie
et al. (2015); Zhu et al. (1998, 2000, 2005); Zhu (2003)
on the mathematical modelling of textures and textons. A
notable stride was the Bag of Textons (BoT) (Leung and
Malik 2001) and later Bag of Words (BoW) (Csurka et al.
2004; Sivic and Zisserman 2003; Vasconcelos and Lippman
2000) approaches, where a dictionary of textons is gener-
ated, and images are represented statistically as orderless
histograms over the texton dictionary.

In the 1990s, the need for invariant feature representations
was recognized, to reduce or eliminate sensitivity to varia-
tions such as illumination, scale, rotation, viewpoint etc. This
gave rise to the development of local invariant descriptors,
particularlymilestone texture features such as Scale Invariant
Feature Transform (SIFT) (Lowe 2004), Speeded Up Robust
Features (SURF) (Bay et al. 2006) and LBP (Ojala et al.
2002b). Such local handcrafted texture descriptors domi-
nated many domains of computer vision until the turning
point in 2012 when deep Convolutional Neural Networks
(CNN) (Krizhevsky et al. 2012) achieved record-breaking
image classification accuracy. Since that time the research
focus has been on deep learning methods for many problems
in computer vision, including texture analysis (Cimpoi et al.
2014, 2015, 2016).

The importance of texture representations [such as Gabor
filters (Manjunath and Ma 1996), LBP (Ojala et al. 2002b),
BoT (Leung and Malik 2001), Fisher Vector (FV) (Sanchez
et al. 2013), and wavelet Scattering Convolution Networks
(ScatNet) (Bruna and Mallat 2013)] is that they were found
to be well applicable to other problems of image under-

standing and computer vision, such as object recognition
(Everingham et al. 2015; Russakovsky et al. 2015), scene
classification (Bosch et al. 2008; Cimpoi et al. 2016; Kwitt
et al. 2012;Renninger andMalik 2004) and facial image anal-
ysis (Ahonen et al. 2006a; Simonyan et al. 2013; Zhao and
Pietikäinen 2007). For instance, recently many of the best
object recognition approaches in challenges such as PAS-
CAL VOC (Everingham et al. 2015) and ImageNet ILSVRC
(Russakovsky et al. 2015) were based on variants of tex-
ture representations. Beyond BoT (Leung and Malik 2001)
and FV (Sanchez et al. 2013), researchers developed Bag
of Semantics (BoS) (Dixit et al. 2015; Dixit and Vasconce-
los 2016; Kwitt et al. 2012; Li et al. 2014; Rasiwasia and
Vasconcelos 2012) which requires classifying image patches
using BoT or CNN and considers the class posterior prob-
ability vectors as locally extracted semantic descriptors. On
the other hand, texture representations optimized for objects
were also found to performwell for texture-specific problems
(Cimpoi et al. 2014, 2015, 2016). As a result, the division
between texture descriptors andmore generic image or video
descriptors has been narrowing. The study of texture repre-
sentation continues to play an important role in computer
vision and pattern recognition.

2.3 Key Challenges

In spite of several decades of development, most texture fea-
tures have not been capable of performing at a level sufficient
for real-world textures and are computationally too com-
plex to meet the real-time requirements of many computer
vision applications. The inherent difficulty in obtaining pow-
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Fig. 3 Illustrations of challenges in texture recognition. Dramatic intr-
aclass variations: a illumination variations, b view point and local
nonrigid deformation, c scale variations, and d different instances from
the same category. Small interclass variations make the problem harder
still: e images from the FMD database, and f images from the LFMD
database (photographed with a light-field camera). The reader is invited

to identify the material category of the foreground surfaces in each
image in (e, f). The correct answers are (from left to right): e glass,
leather, plastic, wood, plastic, metal, wood, metal and plastic; f leather,
fabric, metal, metal, paper, leather, water, sky and plastic. Sect. 6 gives
details regarding texture databases

erful texture representations lies in balancing two competing
goals: high quality representation and high efficiency.

High Quality related challenges mainly arise due to the
large intraclass appearance variations caused by changes in
illumination, rotation, scale, blur, noise, occlusion, etc. and
potentially small interclass appearance differences, requiring
texture representations to be of high robustness and distinc-
tiveness. Illustrative examples are shown in Fig. 3. A further
difficulty is in obtaining sufficient training data in the form
of labeled examples, which are frequently available only in
limited amounts due to collection time or cost.

HighEfficiency related challenges include the potentially
large number of different texture categories and their high
dimensional representations. Here we have polar opposite
motivations: that of big data, with associated grand chal-
lenges and the scalability/complexity of huge problems, and
that of tiny devices, the growing need for deploying highly
compact and efficient texture representations on resource-
limited platforms such as embedded and handheld devices.

3 Bag of Words based Texture
Representation

The goal of texture representation or texture feature extrac-
tion is to transform the input texture image into a feature

vector that describes the properties of a texture, facilitating
subsequent tasks such as texture classification, as illustrated
in Fig. 4. Since texture is a spatial phenomenon, texture rep-
resentation cannot be based on a single pixel, and generally
requires the analysis of patterns over local pixel neighbor-
hoods. Therefore, a texture image is first transformed to a
pool of local features, which are then aggregated into a global
representation for an entire image or region. Since the prop-
erties of texture are usually translationally invariant, most
texture representations are based on an orderless aggregation
of local texture features, such as a sum or max operation.

Early in 1981, Julesz (1981) introduced “textons”, which
refer to basic image features such as elongated blobs, bars,
crosses, and terminators, as the elementary units of preat-
tentive human texture perception. However Julesz’s texton
studies were limited by their exclusive focus on artificial tex-
ture patterns rather than natural textures. In addition, Julesz
did not provide a rigorous definition for textons. Subse-
quently, texton theory fell into disfavor as a model of texture
discrimination until the influential work by Leung andMalik
(2001) who revisited textons and gave an operational defini-
tion of a texton as a cluster center in filter response space.
This not only enabled textons to be generated automatically
from an image, but also opened up the possibility of learning
a universal texton dictionary for all images. Texture images
can be statistically represented as histograms over a texton
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Fig. 4 The goal of texture representation is to transform the input tex-
ture image into a feature vector that describes the properties of the
texture, facilitating subsequent tasks such as texture recognition. Usu-
ally a texture image is first transformed into a pool of local features,
which are then aggregated into a global representation for an entire
image or region

dictionary, referred to as the Bag of Textons (BoT) approach.
Although BoT was initially developed in the context of tex-
ture recognition (Leung andMalik 2001;Malik et al. 1999), it
was introduced/generalized to image retrieval (Sivic and Zis-
serman 2003) and classification (Csurka et al. 2004), where
it was referred to as Bag of Features (BoF) or, more com-
monly, Bag of Words (BoW). The research community has
since witnessed the prominence of the BoW model for over
a decade during which many improvements were proposed.

3.1 The BoW Pipeline

The BoW pipeline is sketched in Fig. 5, consisting of the
following basic steps:

1. Local Patch Extraction For a given image, a pool of
N image patches is extracted over a sparse set of points of
interest (Lazebnik et al. 2005; Zhang et al. 2007), over a fixed
grid (Kong and Wang 2012; Marszałek et al. 2007; Sharan
et al. 2013), or densely at each pixel position (Ojala et al.
2002b; Varma and Zisserman 2005, 2009).

2. Local Patch Representation Given the extracted N
patches, local texture descriptors are applied to obtain a set
or pool of texture features of D dimension. We denote the
local features of N patches in an image as {xi }Ni=1, xi ∈ R

D .
Ideally, local descriptors should be distinctive and at the same
time robust to a variety of possible image transformations,
such as scale, rotation, blur, illumination, and viewpoint
changes. High quality local texture descriptors play a crit-
ical role in the BoW pipeline.

3. Codebook Generation The objective of this step is
to generate a codebook (i.e., a texton dictionary) with K
codewords {wi }Ki=1, wi ∈ R

D based on training data. The
codewords may be learned [e.g., by kmeans (Lazebnik et al.
2003; Varma and Zisserman 2005)] or in a predefined way
[such as LBP (Ojala et al. 2002b)]. The size and nature of
the codebook affects the representation followed and thus
the discrimination power. The key here is how to generate a
compact and discriminative codebook so as to enable accu-
rate and efficient classification.

4. Feature Encoding Given the generated codebook and
the extracted local texture features {xi } from an image,
feature encoding represents each local feature xi with the
codebook, usually by mapping each xi to one or a num-
ber of codewords, resulting a feature coding vector vi (e.g.
vi ∈ R

K ). Of all the steps in theBoWpipeline, feature encod-
ing is a core component which links local representation

Fig. 5 General pipeline of the BoW model. See Table 1, and also refer
to Sect. 3 for detail discussion. Features are computed from handcrafted
detectors for descriptors like SIFT and RIFT, and densely applied local
texture descriptors like handcrafted filters or CNNs. The CNN features

can also be computed in an end-to-end manner using finetuned CNN
models. These local features are quantized to visualwords in a codebook
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and feature pooling, greatly influencing texture classifica-
tion in terms of both accuracy and speed. Thus, many studies
have focused on developing powerful feature encoding, such
as vector quantization/kmeans, sparse coding (Mairal et al.
2008, 2009; Peyré 2009), Locality constrained Linear Cod-
ing (LLC) (Wang et al. 2010), Vector of Locally Aggregated
Descriptors (VLAD) (Jegou et al. 2012), and Fisher Vector
(FV) (Cimpoi et al. 2016; Perronnin et al. 2010; Sanchez
et al. 2013).

5. Feature Pooling A global feature representation y is
produced by using a feature pooling strategy to aggregate
the coded feature vectors {vi }. Classical pooling methods
include average pooling, max pooling, and Spatial Pyramid
Pooling (SPM) (Lazebnik et al. 2006; Timofte and Van Gool
2012).

6. Feature Classification The global feature is used as
the basis for classification, for which many approaches are
possible (Jain et al. 2000; Webb and Copsey 2011): Near-
est Neighbor Classifier (NNC), Support Vector Machines
(SVM), neural networks, and random forests. SVM is one
of the most widely used classifiers for the BoW based repre-
sentation.

The remainder of this section will introduce the methods
in each component, as summarized in Table 1.

3.2 Local Texture Descriptors

All local texture descriptors aim to provide local representa-
tions invariant to contrast, rotation, scale, and possibly other
criteria. The primary categorization is whether the descriptor
is applied densely, at every pixel, as opposed to sparsely, only
at certain locations of interest.

3.2.1 Sparse Texture Descriptors

To develop a sparse texture descriptor, a region of interest
detector must be designed which is able to reliably detect
a sparse set of regions, reliably and stably, under various
imaging conditions. Typically, the detected regions undergo
a geometric normalization, after which local descriptors are
applied to encode the image content. A series of region
detectors and local descriptors has beenproposed,with excel-
lent surveys (Mikolajczyk and Schmid 2005; Mikolajczyk
et al. 2005; Tuytelaars et al. 2008). The sparse approach was
introduced to texture recognition by Lazebnik et al. (2003),
Lazebnik et al. (2005) and followed by Zhang et al. (2007).

In (Lazebnik et al. 2005) two types of complementary
region detectors, the Harris affine detector of Mikolajczyk
and Schmid (2002) and the Laplacian blob detector of Gård-
ing andLindeberg (1996),were used to detect affine covariant
regions, meaning that the region content is affine invari-
ant. Each detected region can be thought of as a texture
element having a characteristic elliptic shape and a distinc-

tive appearance pattern. In order to achieve affine invariance,
each elliptical region was normalized and then two rotation
invariant descriptors, the spin image (SPIN) and the Rotation
Invariant Feature Transform (RIFT) descriptor, were applied.
As a result, for each texture image four feature channels were
extracted (two detectors × two descriptors), and for each
feature channel kmeans clustering is performed to form its
signature. The Earth Mover’s Distance (EMD) (Rubner et al.
2000) was used for measuring the similarity between image
signatures and NNC was used for classification. The Harris
affine regions and Laplacian blobs in combination with SPIN
and RIFT descriptors (i.e. the (H+L)(S+R) method) have
demonstrated good performance (listed in Table 4) in classi-
fying textures with significant affine variations, evidenced by
the classification rate 96.0% on UIUC with a NNC classifier.
Although this approach achieve affine invariance, they lack
distinctiveness since some spatial information is lost due to
their feature pooling schemes.

Following Lazebnik et al. (2005), Zhang et al. (2007)
presented an evaluation of multiple region detector types,
levels of geometric invariance,multiple local texture descrip-
tors, and SVM classifier with kernels based on two effective
measures for comparing distributions (signatures and EMD
distance vs. standard BoW and the Chi Square distance) for
texture and object recognition. Regarding local description,
Zhang et al. (2007) also used the SIFT descriptor1 in addition
to SPIN and RIFT. With SVM classification, Zhang et al.
(2007) showed significant performance improvement over
that of Lazebnik et al. (2005), and reported classification
rates of 95.3% and 98.7% on CUReT and UIUC respec-
tively. They recommended that practical texture recognition
should seek to incorporate multiple types of complementary
features, but with local invariance properties not exceeding
those absolutely required for a given application. Other local
region detectors have also been used for texture description,
such as the Scale Descriptors which measure the scales of
salient textons (Kadir and Brady 2002).

3.2.2 Dense Texture Descriptors

The number of features derived from a sparse set of interest-
ing points is much smaller than the total number of image
pixels, resulting a compact feature space.However, the sparse
approach can be inappropriate formany texture classification
tasks:

• Interest point detectors typically produce a sparse output
and could miss important texture elements.

1 Originally, SIFT is comprised of a detector and descriptor, but which
are used in isolation now; in this survey, if not specified, SIFT refers to
the descriptor, a common practice in the community.
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Table 1 A summary of components in the BoW representation pipeline, as was sketched in Fig. 5

Step Approach Highlights

Local Texture
Descriptors (Sect. 3.2)

Sparse Descriptors

(Harris + Laplacian) (RIFT + SPIN) (Lazebnik
et al. 2005)

Keypoint detectors plus novel descriptors SPIN and
RIFT

(Harris + Laplacian) (RIFT + SPIN + SIFT)
(Zhang et al. 2007)

A comprehensive evaluation of multiple keypoint
detectors, feature descriptors, and classifier kernels

Dense Descriptors

Gabor Wavelets Joint optimum resolution in time and frequency;
Multiscale and multiorientation analysis

LMfilters (Leung and Malik 2001) First to propose Bag of Texton (BoT) model (i.e. the
BoW model)

Schmid Filters Gabor like filters; Rotation invariant

MR8 (Varma and Zisserman 2005) Rotationally invariant filters and low-dimensional
filter response space

Patch Intensity (Varma and Zisserman 2009) Challenge the dominant role of filter descriptors and
propose image raw intensity feature

LBP (Ojala et al. 2002b) Fast binary features with gray scale invariance;
Predefined codebook

Random Projection (Liu and Fieguth 2012) First to introduce compressive sensing and random
projection into texture classification

Sorted Random Projection (Liu et al. 2011a) Efficient and effective approach for random
projection to achieve rotation invariance

Basic Image Features (BIFs) (Crosier and Griffin
2010)

Introduce BIFs of Griffin and Lillholm into texture
classification; Predefined codebook

Weber Local Descriptor (WLD) (Crosier and Griffin
2010)

A descriptor based on Weber’s Law

Fractal Based Descriptors

MultiFractal Spectrum (Xu et al. 2009b) Invariant under the bi-Lipschitz mapping

Codebook Generation
(Sect. 3.3)

Predefined (Crosier and Griffin 2010; Ojala et al.
2002b)

No codebook learning step; Computationally
efficient

kmeans clustering (Csurka et al. 2004; Leung and
Malik 2001)

Most commonly used method; Cannot capture
overlapping distributions in the feature space

GMM modeling (Cimpoi et al. 2016; Perronnin et al.
2010; Sharma and Jurie 2016)

Considers both cluster centers and covariances
which describe the spreads of clusters

Sparse Coding based learning (Peyré 2009; Skretting
and Husøy 2006)

Sparse representation based; Minimize
reconstruction error of data; Computationally
expensive

Feature Encoding
(Sect. 3.4)

Voting Based Methods Require a large codebook (usually learned by
kmeans); Usually combine with nonlinear SVM

Hard Voting (Leung and Malik 2001; Varma and
Zisserman 2005)

Quantize each feature to nearest codeword; Fast to
compute; Codes are sparse and high dimensional

Soft Voting (Ahonen and Pietikäinen 2007; Ren
et al. 2013; Van Gemert et al. 2008)

Assigns each feature to multiple codewords; Does
not minimize reconstruction error

Fisher Vector (FV) Based Methods Require a small codebook; Very high dimension;
Combines with efficient linear SVM

FV (Perronnin and Dance 2007) GMM-based; Encodes higher order statistics;
Efficient to compute

Improved FV (IFV) (Cimpoi et al. 2014; Perronnin
et al. 2010; Sharma and Jurie 2016)

Uses signed square rooting and L2 normalization;
State of the art performance in texture classification

VLAD (Jegou et al. 2012; Cimpoi et al. 2014) A simplified version of FV
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Table 1 continued

Step Approach Highlights

Reconstruction Based Methods Enforce sparse representation; Explores the manifold
structure of data; Minimize reconstruction error

Sparse Coding (Peyré 2009; Skretting and Husøy
2006; Yang et al. 2009)

Leverage that fact that natural images are sparse;
Optimization is computationally expensive

Local constraint Linear Coding (LLC) (Cimpoi et al.
2014; Wang et al. 2010)

Local smooth sparsity; Fast computation through
approximated LLC

Feature Pooling
(Sect. 3.5)

Average Pooling The most widely used pooling scheme in texture
representation

Max Pooling Usually used in combination with sparse coding and
LLC

Spatial Pyramid Pooling (SPM) Preserving more spatial information; Higher feature
dimensionality

Classifier (Sect. 3.5) Nearest Neighbor Classifier (NNC) (Liu and Fieguth
2012; Varma and Zisserman 2005)

Simple and elegant nonparametric classifier; Popular
in texture classification

Kernel SVM (Zhang et al. 2007) Usually in combination with Chi Square for BoW
based representation

Linear SVM (Cimpoi et al. 2016) Suitable for high-dimensional feature representation
like FV and VLAD

Fig. 6 Illustration of the Gabor wavelets used in Manjunath and Ma
(1996). a Real part, b Imaginary part

• A sparse output in a small image might not produce suf-
ficient regions for robust statistical characterization.

• There are issues regarding the repeatability of the detec-
tors, the stability of the selected regions and the instability
of orientation estimation (Mikolajczyk et al. 2005).

As a result, extracting local texture features densely at each
pixel is the more popular representation, the subject of the
following discussion.

(1) Gabor Filters are one of the most popular texture
descriptors, motivated by their relation to models of early
visual systems of mammals as well as their joint optimum
resolution in time and frequency (Jain and Farrokhnia 1991;
Lee 1996; Manjunath and Ma 1996). As illustrated in Fig. 6,
Gabor filters can be considered as orientation and scale
tunable edge and bar detectors. The Gabor wavelets are
generated by appropriate rotations and dilations from the fol-
lowing product of an elliptical Gaussian and a complex plane
wave:

φ(x, y) = 1

2πσxσy
exp

[
−

(
x2

2σ 2
x

+ y2

2σ 2
y

)]
exp( j2πω),

whose Fourier transform is

φ̂(x, y) = exp

[
−

(
(u − ω)2

2σ 2
u

+ v2

2σ 2
v

)]
,

where ω is the radial center frequency of the filter in the
frequency domain, σx and σy are the standard deviations of
the elliptical Gaussian along x and y.

Thus, a Gabor filter bank is defined by its parameters
including frequencies, orientations and the parameters of
the Gaussian envelope. In the literature, different parame-
ter settings have been suggested, and filter banks created
by these parameter settings work well in general. Details
for the derivation of Gabor wavelets and parameter selec-
tion can be found in Lee (1996), Manjunath and Ma (1996),
Petrou and Sevilla (2006). Invariant Gabor representations
can be accessed in Han and Ma (2007). According to the
experimental study in Kandaswamy et al. (2011) and Zhang
et al. (2007), Gabor features (Manjunath and Ma 1996) fail
to meet the expected level of performance in the presence
of rotation, affine and scale variations. However, Gabor fil-
ters encode structural features frommultiple orientations and
over a broader range of scales. It has been shown (Kan-
daswamy et al. 2011) that for large datasets, under varying
illumination conditions, Gabor filters can serve as a prepro-
cessingmethod and combinewith LBP (Ojala et al. 2002b) to
obtain texture features with reasonable robustness (Pietikäi-
nen et al. 2011; Zhang et al. 2005).
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Fig. 7 The LMfilter bank has a mix of edge, bar and spot filters at
multiple scales and orientations. It has a total of 48 filters: 2 Gaussian
derivative filters at 6 orientations and 3 scales, 8 Laplacian of Gaussian
filters and 4 Gaussian filters

(2)FiltersbyLeungandMalik (LMFilters)Researchers
(Leung and Malik 2001; Malik et al. 1999) pioneered the
problem of classifying textures under varying viewpoint and
illumination. The LM filters used for local texture feature
extraction are illustrated in Fig. 7. In particular, they marked
a milestone by giving an operational definition of textons:
the cluster centers of the filter response vectors. Their work
has been widely followed by other researchers (Csurka et al.
2004; Lazebnik et al. 2005; Shotton et al. 2009; Sivic and
Zisserman 2003; Varma and Zisserman 2005, 2009). To han-
dle 3D effects caused by imaging, they proposed 3D textons
which were cluster centers of filter responses over a stack of
images with representative viewpoints and lighting, as illus-
trated in Fig. 8. In their texture classification algorithm, 20
images of each texture were geometrically registered and
transformed into 48D local features with the LM Filters.
Then the 48D filter response vectors of 20 selected images
of the same pixel were concatenated to obtain a 960D feature
vector as the local texture representation, subsequently input
into a BoW pipeline for texture classification. A downside
of the method is that it is not suitable for classifying a sin-
gle texture image under unknown imaging conditions, which
usually arises in practical applications.

(3) The Schmid Filters (S Filters) (Schmid 2001) consist
of 13 rotationally invariant Gabor-like filters of the form

φ(x, y) = exp

[
−

(
x2 + y2

2σ 2

)]
cos

(
πβ

√
x2 + y2

σ

)
,

where β is the number of cycles of the harmonic function
within the Gaussian envelope of the filter. The filters are
shown in Fig. 9; as can be seen, all of the filters have rota-
tional symmetry. The rotation-invariant S Filters were shown
to outperform the rotation-variant LM Filters in classifying
the CUReT textures (Varma and Zisserman 2005), indicating
that rotational invariance is necessary in practical applica-
tions.

(4) Maximum Response (MR8) Filters of Varma and
Zisserman (2005) consist of 38 root filters but only 8 filter
responses. The filter bank contains filters at multiple orien-
tations but their outputs are pooled by recording only the

Fig. 8 Illustration of the process of 3D texton dictionary learning pro-
posed by Leung and Malik (2001). Each image at different lighting and
viewing directions is filtered using the filter bank illustrated in Fig. 7.
The response vectors are concatenated together to form data vectors
of length N f il Nim . These data vectors are clustered using the kmeans
algorithm to obtain the 3D textons

Fig. 9 Illustration of the rotationally invariantGabor-like Schmidfilters
used in Schmid (2001). The parameter (σ, β) pair takes values (2,1),
(4,1), (4,2), (6,1), (6,2), (6,3), (8,1), (8,2), (8,3), (10,1), (10,2), (10,3)
and (10,4)

maximum filter response across all orientations, in order to
achieve rotation invariance. The root filters are a subset of
the LM Filters (Leung and Malik 2001) of Fig. 7, retaining
the two rotational symmetry filters, the edge filter, and the
bar filter at 3 scales and 6 orientations. Recording only the
maximum response across orientations reduces the number
of responses from 38 to 8 (3 scales for 2 anisotropic filters,
plus 2 isotropic), resulting the so called MR8 filter bank.

Realizing the shortcomings of Leung andMalik’s method
(2001), Varma and Zisserman (2005) attempted to improve
the classification of a single texture sample image under
unknown imaging conditions, bypassing the registration step,
instead learning 2D textons by aggregating filter responses
over different images. Experimental results (Varma and Zis-
serman 2005) showed thatMR8 outperformed the LMFilters
and S Filters, indicating that detecting better features and
clustering in a lower dimensional feature space can be advan-
tageous. The best results for MR8 are 97.4% obtained with
a dictionary of 2440 textons and a Nearest Neighbor Clas-
sifier (NNC) (Varma and Zisserman 2005). Later, Hayman
et al. (2004) showed that SVM could further enhance the
texture classification performance of MR8 features, giving a
98.5% classification rate for the same setup used for texton
representation.
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Fig. 10 Illustration for the Patch Descriptor proposed in Varma and
Zisserman (2009): the raw intensity vector is used directly as the local
representation

(5) Patch Descriptors of Varma and Zisserman (2009)
challenged the dominant role of the filter banks (Mellor
et al. 2008; Randen and Husoy 1999) in texture analysis,
and instead developed a simple Patch Descriptor, keeping
the raw pixel intensities of a square neighborhood to form a
feature vector, as illustrated in Fig. 10. By replacing the filter
responses such as LM Filters (Randen and Husoy 1999), S
Filters (Schmid 2001) andMR8 (Varma andZisserman 2005)
with the Patch Descriptor in texture classification, Varma and
Zisserman (2009) observed very good classification perfor-
mance using extremely compact neighborhoods (3× 3), and
that for any fixed size of neighborhood the Patch Descriptor
leads to superior classification compared to filter banks with
the same support.

Two variants of the Patch Descriptor, the Neighborhood
Descriptor and the MRF Descriptor, were developed. For
the Neighborhood Descriptor, the central pixel is discarded
and only the neighborhood vector is used for texton rep-
resentation. Instead of ignoring the central pixel, the MRF
Descriptor explicitly models the joint distribution of the cen-
tral pixels and its neighbors. The best result 98.0% is given
by theMRFDescriptor using a 7×7 neighborhoodwith 2440
textons and 90 bins and aNNCclassifier.Note that the dimen-
sionality of this MRF representation is very high: 2440×90.
A clear limitation of the Patch, Neighborhood and MRF
Descriptors is sensitivity to nearly any change (brightness,
rotation, affine etc.). Varma and Zisserman (2009) adopted
the method of finding the dominant orientation of a patch
and measuring the neighborhood relative to this orientation
to achieve rotation invariance, and reported a 97.8% classifi-
cation rate on the UIUC dataset. It is worth mentioning that
finding the dominant orientation for each patch is computa-
tionally expensive.

(6) Random Projection (RP) and Sorted Random Pro-
jection (SRP) features of Liu and Fieguth (2012) were
inspired by theories of sparse representation and compressed
sensing (Candes andTao2006;Donoho2006). Taking advan-

(a) (b) (c)

Fig. 11 An illustration of SRP descriptor: extracting SRP features on
an example local image patch of size 7× 7. a Sorting pixel intensities;
b, c sorting pixel differences

tage of the sparse nature of textured images, a small set of
random features is extracted from local image patches by pro-
jecting the local patch feature vectors to a lower dimensional
feature subspace. The random projection is a fixed, distance-
preserving embedding capable of alleviating the curse of
dimensionality (Baraniuk et al. 2008; Giryes et al. 2016).
The random features are embedded into BoW to perform tex-
ture classification. It has been shown that the performance of
RP features is superior to that of the Patch Descriptor with
equivalent neighborhoods (Liu and Fieguth 2012); a clear
indication that the RP matrix preserves the salient infor-
mation contained in the local patch and that performing
classification in a lower feature space is advantageous. The
best result 98.5% is achieved using a 17× 17 neighborhood
with 2440 textons and a NNC classifier.

Like the Patch Descriptors, the RP features remain sen-
sitive to image rotation. To further improve robustness, Liu
et al. (2011a, 2012) proposed sorting theRP features, as illus-
trated in Fig. 11, whereby rings of pixel values are sorted,
without any reference orientation, ensuring rotation invari-
ance. Two kinds of local features are used, one based on raw
intensities and the other on gradients (radial differences and
angular differences). Random functions of the sorted local
features are taken to obtain SRP features. It was shown that
SRP outperformed RP significantly for robust texture classi-
fication (Liu et al. 2011a, 2012), producing state of the art
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classification results on CUReT (99.4%)KTHTIPS (99.3%),
and UMD (99.3%) with a SVM classifier (Liu et al. 2011a,
2015).

(7) Local Binary Patterns of Ojala et al. (1996) marked
the beginning of the LBPmethodology, followed by the sim-
pler rotation invariant version of Pietikäinen et al. (2000),
and later “uniform” patterns to reduce feature dimensional-
ity (Ojala et al. 2002b).

Texture representation generally requires the analysis of
patterns in local pixel neighborhoods, which are comprehen-
sively described by their joint distribution. However, stable
estimation of joint distributions is often infeasible, even for
small neighborhoods, because of the combinatorics of joint
distributions. Considering the joint distribution:

g(xc, x0, . . . , xp−1) (1)

of center pixel xc and {xn}p−1
n=0 , p equally spaced pixels on a

circle of radius r , Ojala et al. (2002b) argued that much of
the information in this joint distribution is conveyed by the
joint distribution of differences:

g(x0 − xc, x1 − xc, . . . , xp−1 − xc). (2)

The size of the joint histogram was greatly minimized by
keeping only the sign of each difference, as illustrated in
Fig. 12.

A certain degree of rotation invariance is achieved by
cyclic shifts of the LBPs, i.e., grouping together those LBPs
that are actually rotated versions of the same underlying pat-
tern. Since the dimensionality of the representation (which
grows exponentially with p) is still high, Ojala et al. (2002b)
introduced a uniformity measure to identify p(p − 1) + 2
uniform LBPs and classified all remaining nonuniform LBPs
under a single group. By changing parameters p and r , we
can derive LBP for any quantization of the angular space and
for any spatial resolution, such thatmultiscale analysis can be
accomplished by combining multiple operators of varying r .
The most prominent advantages of LBP are its invariance to
monotonic gray scale change, very low computational com-
plexity, and ease of implementation.

Fig. 12 A circular neighborhood used to derive an LBP code: a central
pixel xc and its p circularly and evenly spaced neighbors on a circle of
radius r

Fig. 13 LBP and its representative variants (see text for discussion)

Since (Ojala et al. 2002b), LBP started to receive increas-
ing attention in computer vision and pattern recognition,
especially texture and facial analysis, with the LBP mile-
stones presented in Fig. 13. AsGabor filters and LBP provide
complementary information (LBP captures small and fine
details, Gabor filters encode appearance information over a
broader range of scales), Zhang et al. (2005) proposed Local
Gabor Binary Pattern (LGBP) by extracting LBP features
from images filtered by Gabor filters of different scales and
orientations, to enhance the representation power, followed
by subsequent Gabor-LBP approaches (Huang et al. 2011;
Liu et al. 2017; Pietikäinen et al. 2011). Additional impor-
tant LBP variants include LBP-TOP, proposed by Zhao and
Pietikäinen (2007), a milestone in using LBP for dynamic
texture analysis; the Local Ternary Patterns (LTP) of Tan
and Triggs (2007), introducing a pair of thresholds and a
split coding scheme which allows for encoding pixel simi-
larity; the Local Phase Quantization (LPQ) by Ojansivu and
Heikkilä (2008),Ojansivu et al. (2008) quantizing the Fourier
transform phase in local neighborhoods which is, by design,
tolerant tomost common types of image blurs; theCompleted
LBP (CLBP) ofGuo et al. (2010), encoding not only the signs
but also the magnitudes of local differences; and the Median
RobustExtendedLBP (MRELBP)ofLiu et al. (2016b)which
enjoys high distinctiveness, low computational complexity,
and strong robustness to image rotation and noise.

LBP has also led to compact and efficient binary feature
descriptors designed for image matching, with noticeable
ones including Binary Robust Independent Elementary Fea-
tures (BRIEF) (Calonder et al. 2012), Oriented FAST and
Rotated BRIEF (ORB) (Rublee et al. 2011), Binary Robust
Invariant Scalable Keypoints (BRISK) (Leutenegger et al.
2011) andFast RetinaKeypoint (FREAK) (Alahi et al. 2012).
These binary descriptors provide a comparablematching per-
formance with the widely used region descriptors such as
SIFT (Lowe 2004) and SURF (Bay et al. 2006), but are fast to
compute and have significantly lower memory requirements,
especially suitable for applications on resource constrained
devices.

In summary, for large datasets with rotation variations and
no significant illumination related variations, LBP (Ojala
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et al. 2002b) could serve as an effective and efficient
approach for texture classification. However, in the pres-
ence of significant illumination variations, significant affine
transformations, or noise corruption, LBP fails to meet the
expected level of performance. MRELBP (Liu et al. 2016b),
a recent LBP variant, has been demonstrated to outperform
LBP significantly, with near perfect classification perfor-
mance on two small benchmark datasets (Outex_TC10 100%
and Outex_TC12 99.8%) (Liu et al. 2016b), and which
obtained the best overall performance in a recent exper-
imental survey (Liu et al. 2017) evaluating robustness in
multiple classification challenges. In general, LBP-based
features work well in situations when limited training data
are available; learning based approaches like MR8, Patch
Descriptors and DCNN based representations, which require
large amount of training samples, are significantly outper-
formed by LBP based ones.

After over 20 years of developments, LBP is no longer
just a simple texture operator, but has laid the foundation
for a direction of research dealing with local image and
video descriptors. A large number of LBP variants have
been proposed to improve its robustness and to increase its
discriminative power and applicability to different types of
problems, and interested readers are referred to excellent sur-
veys (Huang et al. 2011; Liu et al. 2017; Pietikäinen et al.
2011). Recently, although CNN based methods are begin-
ning to dominate, LBP research remains active, as evidenced
by significant recent work (Guo et al. 2016; Sulc and Matas
2014; Ryu et al. 2015; Levi and Hassner 2015; Lu et al. 2018;
Xu et al. 2017; Zhai et al. 2015; Ding et al. 2016).

(8) Basic Image Features (BIF) approach (Crosier and
Griffin 2010) is similar to LBP (Ojala et al. 2002b), in that it
is based upon a predefined codebook rather than one learned
from training. It therefore shares the advantages of LBP over
methods based on codebook learning with clustering. In con-
trast with LBP, BIF probes an image locally using Gaussian
derivative filters (Griffin and Lillholm 2010; Griffin et al.
2009)whereasLBPcomputes the differences between a pixel
and its neighbors. Derivative of Gaussians (DtG), consisting
of first and second order derivatives of the Gaussian filter,
can effectively detect the local basic and symmetry structure
of an image, and allows achieving exact rotation invariance
(Freeman and Adelson 1991). BIF feature extraction is sum-
marized in Fig. 14: each pixel in the image is filtered by the
DtG filters, and then labeled as the maximizing class. A sim-
ple six dimensional BIF histogram can be used as a global
texture representation, however the histogram over these six
categories produces too coarse a representation, therefore
others (e.g., Crosier and Griffin 2010) have performed mul-
tiscale analysis and calculated joint histograms over multiple
scales. Multiscale BIF features achieved very good classifi-
cation performance on CUReT (98.6%), UIUC (98.8%) and

Fig. 14 Illustration of the calculation of BIF features

Fig. 15 First order square
symmetric neighborhood for
WLD computation

KTHTIPS (98.5%) (Crosier and Griffin 2010), with a NNC
classifier.

(9) Weber Law Descriptor (WLD) (Chen et al. 2010) is
based on the fact that human perception of a pattern depends
not only on the change of a stimulus but also on the original
intensity of the stimulus. The WLD consists of two com-
ponents: differential excitation and orientation. For a small
patch of size 3×3, shown inFig. 15, the differential excitation
is the relative intensity ratio

ξ(xc) = arctan

(∑7
i=0 (xi − xc)

xc

)

and the orientation component is derived from the local gra-
dient orientation

θ(xc) = arctan
x7 − x3
x5 − x1

.

Both ξ and θ are quantified into a 2D histogram, offering
a global representation. Clearly the use of multiple neigh-
borhood sizes supports a multiscale generalization. Though
computationally efficient, WLD features fail to meet the
expected level of performance for texture recognition.

3.2.3 Fractal Based Descriptors

Fractal Based Descriptors present a mathematically well
founded alternative to dealing with scale (Mandelbrot and
Pignoni 1983), however they have not become popular as tex-
ture features due to their lack of discriminative power (Varma
and Garg 2007). Recently, inspired by the BoW approach,
researchers revisited the fractal method and proposed the
MultiFractal Spectrum (MFS) method (Xu et al. 2009a, b,
2010), invariant to viewpoint changes, nonrigid deformations
and local affine illumination changes.
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The basicMFSmethod was proposed in Xu et al. (2009b),
where MFS was first defined for simple image features, such
as intensity, gradient and Laplacian of Gaussian (LoG). A
texture image is first transformed into n feature maps such as
intensity, gradient or LoG filter features. Each map is clus-
tered into k clusters (i.e. k codewords) via kmeans. Then, a
codeword label map is obtained and is decomposed into k
binary feature maps: those pixels assigned to codeword i are
labeledwith 1 and the remainder as 0. For each binary feature
map, the box counting algorithm (Xu et al. 2010) is used to
estimate a fractal dimension feature. Thus, a total of k fractal
dimension features are computed for each featuremap, form-
ing a kD feature vector (referred to as a fractal spectrum) as
the global representation of the image. Finally, for the n dif-
ferent feature maps, n fractal spectrum feature vectors are
concatenated as the MFS feature. The MFS representation
demonstrated invariance to a number of geometrical changes
such as viewpoint changes, nonrigid surface changes and rea-
sonable robustness to illumination changes. However, since
it is based on simple features (intensities and gradients) and
has very low dimension, it has limited discriminability, and
gives classification rates 92.3% and 93.9% on datasets UIUC
and UMD respectively.

Later MFS was improved by generalizing the simple
image intensity and gradient features with SIFT (Xu et al.
2009a), wavelets (Xu et al. 2010), and LBP (Quan et al.
2014). For instance, the Wavelet based MFS (WMFS) fea-
tures archived significantly improved classification perfor-
mance on UIUC (98.6%) and UMD (98.7%). The downside
of theMFS approach is that it requires high resolution images
to obtain sufficiently stable features.

3.3 Codebook Generation

Texture characterization requires the analysis of spatially
repeating patterns, which suffice to characterize textures and
the pursuit ofwhich has had important implications in a series
of practical problems, such as dimensionality reduction, vari-
able decoupling, and biological modelling (Olshausen and
Field 1997; Zhu et al. 2005). The extracted set of local tex-
ture features is versatile, and yet overly redundant (Leung and
Malik 2001). It can therefore be expected that a set of proto-
type features (i.e. codewords or textons)must exist which can
be used to create global representations of textures in natural
images (Leung and Malik 2001; Okazawa et al. 2015; Zhu
et al. 2005), in a similar way as in speech and language (such
as words, phrases and sentences).

There exist a variety of methods for codebook generation.
Certain approaches, such as LBP (Ojala et al. 2002b) andBIF
(Crosier andGriffin 2010), whichwe have already discussed,
use predefined codebooks, therefore entirely bypassing the
codebook learning step.

For approaches requiring a learned codebook, kmeans
clustering (Lazebnik et al. 2005; Leung and Malik 2001;
Liu and Fieguth 2012; Varma and Zisserman 2009; Zhang
et al. 2007) and Gaussian Mixture Models (GMM) (Cimpoi
et al. 2014, 2016; Lategahn et al. 2010; Jegou et al. 2012;
Perronnin et al. 2010; Sharma and Jurie 2016) are the most
popular and successful methods. GMM modeling considers
both cluster centers and covariances,which describe the loca-
tion and spread/shape of clusters, whereas kmeans clustering
cannot capture overlapping distributions in the feature space
as it considers only distances to cluster centers, although gen-
eralizations to kmeans with multiple prototypes per cluster
can allow this limitation to be relaxed. TheGMMand kmeans
methods learn a codebook in an unsupervised manner, but
some recent approaches focus on building more discrimina-
tive ones (Yang et al. 2008; Winn et al. 2005).

In addition, another significant research thread is recon-
struction based codebook learning (Aharon et al. 2006;
Peyré 2009; Skretting and Husøy 2006; Wang et al. 2010),
under the assumption that natural images admit a sparse
decomposition in some redundant basis (i.e., dictionary or
codebook). These methods focus on learning nonparametric
redundant dictionaries that facilitate a sparse representation
of the data and minimize the reconstruction error of the
data. Because discrimination is the primary goal of texture
classification, researchers have proposed to construct dis-
criminative dictionaries that explicitly incorporate category
specific information (Mairal et al. 2008, 2009).

Since the codebook is used as the basis for encoding fea-
ture vectors, codebook generation is often interleaved with
feature encoding, described next.

3.4 Feature Encoding

As illustrated in Fig. 4, a given image is transformed into
a pool of local texture features, from which a global image
representation is derived by feature encoding with the gen-
erated codebook. In the field of texture classification, we
group commonly-used encoding strategies into three major
categories:

• Voting based (Leung and Malik 2001; Varma and Zis-
serman 2005; Van Gemert et al. 2008; Van Gemert et al.
2010),

• Fisher Vector based (Jegou et al. 2012; Cimpoi et al. 2016;
Perronnin et al. 2010; Sanchez et al. 2013), and

• Reconstructionbased (Mairal et al. 2008, 2009;Olshausen
and Field 1996; Peyré 2009; Wang et al. 2010).

Comprehensive comparisons of encoding methods in image
classification can be found in Chatfield et al. (2011), Cimpoi
et al. (2014), Huang et al. (2014).
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(a) (b) (c)

Fig. 16 Contrasting the ideas of BoW, VLAD and FV. a BoW: Count-
ing the number of local features assigned to each codeword. It encodes
the zero order statistics of the distribution of local descriptors. bVLAD:
accumulating the differences of local features assigned to each code-
word. c FV: The Fisher vector extends the BOW by encoding higher
order statistics (first and second order), retaining information about the
fitting error of the best fit

Voting based methods The most intuitive way to quan-
tize a local feature is to assign it to its nearest codeword in
the codebook, also referred to as hard voting (Leung and
Malik 2001; Varma and Zisserman 2005). A histogram of
the quantized local descriptors can be computed by count-
ing the number of local features assigned to each codeword;
this histogram constitutes the baseline BoW representation
(as illustrated in Fig. 16a) upon which other methods can
improve. Formally, it starts by learning a codebook {wi }Ki=1,
usually by kmeans clustering. Given a set of local texture
descriptors {xi }Ni=1 extracted from an image, the encoding
representation of some descriptor x via hard voting is

v(i) =
{
1, if i = argmin j (‖x − w j‖)
0, otherwise.

(3)

The histogram of the set of local descriptors is to aggregate
all encoding vectors {vi }Ni=1 via sum pooling. Hard voting
overlooks codeword uncertainty, and may label image fea-
tures by nonrepresentative codewords. In an improvement to
this hard voting scheme, soft voting (Ahonen and Pietikäi-
nen 2007; Ren et al. 2013; Ylioinas et al. 2013; Van Gemert
et al. 2008; Van Gemert et al. 2010) employs several near-
est codewords to encode each local feature in a soft manner,
such that the weight of each assigned codeword is an inverse
function of the distance from the feature, for some kernel def-
inition of distance. Voting based methods yield a histogram
representation of dimensionality K , the number of bins in
the histogram.

Fisher Vector based methods By counting the number
of occurrences of codewords, the standard BoW histogram
representation encodes the zeroth-order statistics of the dis-
tribution of descriptors, which is only a rough approximation
of the probability density distribution of the local features.
The Fisher vector extends the histogram approach by encod-
ing additional information about the distribution of the local

Fig. 17 Contrasting the ideas of hard voting, sparse coding, and LLC. a
Encoding with hard voting, b encoding with sparse coding, c encoding
with LLC

descriptors. Based on the original FV encoding (Perronnin
and Dance 2007), improved versions were proposed (Cin-
bis et al. 2016; Perronnin et al. 2010) such as the Improved
FV (IFV) (Perronnin et al. 2010) and VLAD (Jegou et al.
2012). We briefly describe IFV (Perronnin et al. 2010) here,
since to the best of our knowledge it achieves the best per-
formance in texture classification (Cimpoi et al. 2014, 2015,
2016; Sharma and Jurie 2016). Theory and practical issues
regarding FV encoding can be found in Sanchez et al. (2013).

IFVencoding learns a soft codebookwithGMM, as shown
in Fig. 16c. An IFV encoding of a local feature is computed
by assigning it to each codeword, in turn, and computing the
gradient of the soft assignment with respect to the GMM
parameters.2 The IFV encoding dimensionality is 2DK ,
where D is the dimensionality of the feature space and K
is the number of Gaussian mixtures. BoW can be considered
a special case of FV in the case where the gradient compu-
tation is restricted to the mixture weight parameters of the
GMM. Unlike BoW, which requires a large codebook size,
FV can be computed from a much smaller codebook (typi-
cally 64 or 256) and therefore at a lower computational cost at
the codebook learning step. On the other hand, the resulting
dimension of the FV encoding vector (e.g. tens of thousands)
is usually significantly higher than BoW (thousands), which
makes it unsuitable for nonlinear classifiers, however it offers
good performance even with simple linear classifiers.

The VLAD encoding scheme proposed by Jegou et al.
(2012) can be thought of as a simplified version of FV, in
that it typically uses kmeans, rather than GMM, and records
only first-order statistics rather than second order. In particu-
lar, it records the residuals (the difference between the local
features and the codewords), as shown in Fig. 16b.

Reconstruction based methods Reconstruction based
methods aim to obtain an information-preserving encoding
vector that allows for the reconstruction of a local feature
with a small number of codewords. Typical methods include
sparse coding and Local constraint Linear Coding (LLC),
which are contrasted in Fig. 17. Sparse coding was initially
proposed (Olshausen and Field 1996) tomodel natural image

2 The derivative to weights, which is considered to make little contri-
bution to the performance, is removed in IFK (Perronnin et al. 2010).
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statistics, then to texture classification (Dahl and Larsen
2011; Mairal et al. 2008, 2009; Peyré 2009; Skretting and
Husøy 2006) and later to other problems such as image clas-
sification (Yang et al. 2009) and face recognition (Wright
et al. 2009).

In sparse coding, a local feature x can be well approxi-
mated by a sparse decomposition x ≈ Wv over the learned
codebook W = [w1,w2, . . .wK ], by leveraging the sparse
nature of the underlying image (Olshausen and Field 1996).
A sparse encoding can be solved as

argminv‖x − Wv‖22 s.t . ‖v‖0 ≤ s. (4)

where s is a small integer denoting the sparsity level, lim-
iting the number of nonzero entries in v, measured as ‖v‖0.
Learning a redundant codebook that facilitate a sparse repre-
sentation of the local features is important in sparse coding
(Aharon et al. 2006). Methods in Mairal et al. (2008, 2009),
Peyré (2009), Skretting andHusøy (2006) are based on learn-
ingC class-specific codebooks, one for each texture class and
approximating each local feature using a constant sparsity s.
The C different codebooks provides C different reconstruc-
tion errors, which can then be used as classification features.
In Peyré (2009) and Skretting and Husøy (2006), the class
specific codebooks were optimized for reconstruction, but
significant improvements have been shown by optimizing for
discriminative power instead (Dahl and Larsen 2011; Mairal
et al. 2008, 2009), an approachwhich is, however, associated
with high computational cost, especially when the number of
texture classes C is large.

Locality constrained linear coding (LLC) (Wang et al.
2010) projects each local descriptor x down to the local linear
subspace spanned by q codewords in the codebook of size K
closest to it (in Euclidean distance), resulting in a K dimen-
sional encoding vector whose entries are all zero except for
the indices of the q codewords closest to x. The projection of
x down to the span of its q closest codewords is solved via

argminv‖x − Wv‖22 + λ

K∑
k=1

(
v(i)exp

‖x − wi‖2
σ

)2

s.t .
K∑

k=1

v(i) = 1,

where λ is a small regularization constant and σ adjusts the
weight decay speed.

In summary, reconstruction based coding has received sig-
nificant attention since sparse coding was applied for visual
classification (Mairal et al. 2008, 2009; Peyré 2009; Skret-
ting and Husøy 2006; Wang et al. 2010). A theoretical study
for the success of sparse coding over vector quantization can
be found in Coates and Ng (2011).

3.5 Feature Pooling and Classification

The goal of feature pooling (Boureau et al. 2010) is to inte-
grate or combine the coded feature vectors {vi }i , vi ∈ R

d

of a given image into a final compact global representation
yi which is more robust to image transformations and noise.
Commonly used poolingmethods include sum pooling, aver-
age pooling andmax pooling (Leung andMalik 2001; Varma
and Zisserman 2009; Wang et al. 2010). Boureau et al.
(2010) presented a theoretical analysis of average pooling
and max pooling, and showed that max pooling may be well
suited to sparse features. The authors also proposed softer
max pooling methods by using a smoother estimate of the
expected max-pooled feature and demonstrated improved
performance. Another noticeable pooling method is the mix-
order max pooling method which considers the information
of visual word occurrence frequency (Liu et al. 2011b).

Specifically, let V = [v1, ..., vN ] ∈ R
d×N denote the

coded features from N locations. For u denoting a row of
V, u is reduced to a single scalar by some operation (sum,
average, max), reducingV to a d-dimensional feature vector.
Realizing that pooling over the entire image disregards all
information regarding spatial dependencies, Lazebnik et al.
(2006) proposed a simple Spatial Pyramid Pooling (SPM)
scheme by partitioning the image into increasingly fine sub-
regions and computing histograms of local features found
inside each subregion via average or max pooling. The final
global representation is a concatenation of all histograms
extracted from subregions, resulting in a higher dimensional
representation that preserves more spatial information (Tim-
ofte and Van Gool 2012).

Given a pooled feature, a given texture sample can be
classified. Many classification approaches are possible (Jain
et al. 2000;WebbandCopsey2011), althoughNearestNeigh-
bor Classifier (NNC) and Support Vector Machine (SVM)
are the most widely-used classifiers for the BoW represen-
tation. Different distance measures may be used, such as the
EMD distance (Lazebnik et al. 2005; Zhang et al. 2007), KL
divergence and thewidely-used Chi Square distance (Liu and
Fieguth 2012; Varma and Zisserman 2009). For high dimen-
sional BoW features, as with SPM features and multilevel
histograms, histogram intersection kernel SVM (Grauman
and Darrell 2005; Lazebnik et al. 2006; Maji et al. 2008) is
a good and efficient choice. For very high-dimensional fea-
tures, as with IFV and VLAD, linear SVM may represent a
better choice (Jegou et al. 2012; Perronnin et al. 2010).

4 CNN Based Texture Representation

A large number of CNN-based texture representation meth-
ods have been proposed in recent years since the record-
breaking image classification result (Krizhevsky et al. 2012)
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Table 2 CNN based texture representation

Approach Highlights

Using Pretrained Generic CNN Models
(Cimpoi et al. 2016) (Sect. 4.1)

Traditional feature encoding and pooling; New pooling such as bilinear pooling (Lin and
Maji 2016; Lin et al. 2018) and LFV (Song et al. 2017)

AlexNet (Krizhevsky et al. 2012) Achieved breakthrough image classification result on ImageNet; The historical turning
point of feature representation from handcrafted to CNN

VGGM (Chatfield et al. 2014; Cimpoi et al.
2016)

Similar complexity as AlexNet, but better texture classification performance

VGGVD (Simonyan and Zisserman 2015) Much deeper than AlexNet; Much Larger model size than AlexNet and VGGM; Much
better texture recognition performance than AlexNet and VGGM

GoogleNet (Szegedy et al. 2015) Much deeper than AlexNet; Small pretrained model size; Not often used in texture
classification

ResNet (He et al. 2016) Significantly deeper than VGGVD; Smaller model size (ResNet 101) than AlexNet

Using Finetuned CNN Models (Sect. 4.2) End-to-end learning

TCNN (Andrearczyk and Whelan 2016) Using global average pooling; Combining outputs from multiple CONV layers

BCNN (Lin et al. 2015; Lin and Maji 2016) Introducing a novel and orderless bilinear feature pooling method; Generalizing Fisher
Vector and VLAD; Good representation ability; Very high feature dimensionality

Compact BCNN (Gao et al. 2016) Adopting Random Maclaurin Projection or Tensor Sketch Projection to reduce the
dimensionality of bilinear features (e.g. from 262144 (5122) to 8192); Maintain
similar performance to BCNN;

FASON (Dai et al. 2017) Combining the ideas of TCNN (Andrearczyk and Whelan 2016) and Compact BCNN
(Gao et al. 2016)

NetVLAD (Arandjelovic et al. 2016) Plugging a VLAD like layer in a CNN network at the last CONV layer

DeepTEN (Zhang et al. 2017) Similar to NetVLAD (Arandjelovic et al. 2016), integrating an encoding layer on top of
CONV layers; Generalizing orderless pooling methods such as VLAD and FV in a
CNN trained end to end

Texture Specific Deep Convolutional Models
(Sect. 4.3)

ScatNet (Bruna and Mallat 2013) Use Gabor wavelets for comvolution; Mathematical interpretation of CNNs; Features
being stable to deformations and preserving high frequency information;

PCANet (Chan et al. 2015) Inspired by ScatNet (Bruna and Mallat 2013), using PCA filters to replace Gabor
wavelets;Using LBP and histogramming as feature pooling; No local invariance

achieved in 2012. A key to the success of CNNs is their abil-
ity to leverage large labeled datasets to learn high quality
features. Learning CNNs, however, amounts to estimating
millions of parameters and requires a very large number of
annotated images, an issue which rather constrains the appli-
cability of CNNs in problems with limited training data. A
key discovery, in this regard, was that CNN features pre-
trained on very large datasets were found to transfer well to
many other problems, including texture analysis, with a rela-
tively modest adaptation effort (Chatfield et al. 2014; Cimpoi
et al. 2016; Girshick et al. 2014; Oquab et al. 2014; Sharif
Razavian et al. 2014). In general, the current literature on
texture classification includes examples of both employing
pretrained generic CNNmodels or performing finetuning for
specific texture classification tasks.

In this survey we will classify CNN based texture repre-
sentation methods into three categories, and which form the
basis of the following three sections:

• using pretrained generic CNN models,

• using finetuned CNN models, and
• using handcrafted deep convolutional networks.

These representations have had a widespread influence in
image understanding; representative examples of each of
these are given in Table 2.

4.1 Using Pretrained Generic CNNModels

Given the behavior of CNN transfer, the success of pretrained
CNNmodels lies in the feature extraction and encoding steps.
Similar to Sect. 3, we will describe first some commonly
used networks for pretraining and then the feature extraction
process.

(1) Popular Generic CNN Models can serve as good
choices for extracting features, including AlexNet
(Krizhevsky et al. 2012), VGGNet (Simonyan and Zisser-
man 2015), GoogleNet (Szegedy et al. 2015), ResNet (He
et al. 2016) and DenseNet (Huang et al. 2017). Among these
networks, AlexNet was proposed the earliest, and in general
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(a) (b) (c) (d)

Fig. 18 Contrasting classical filtering based texture features, CNN, BoW and LBP. a Traditional multiscale and multiorientation filtering, b Basic
module in Standard DCNN, c random projections and BoW based texture representation, d reformulation of the LBP using convolutional filters

the others are deeper and more complex. A full review of
these networks is beyond the scope of this paper, and we
refer readers to the original papers (He et al. 2016; Huang
et al. 2017; Krizhevsky et al. 2012; Simonyan and Zisserman
2015; Szegedy et al. 2015) and to excellent surveys (Bengio
et al. 2013; Chatfield et al. 2014; Gu et al. 2018; LeCun et al.
2015; Liu et al. 2018) for additional details. Briefly, as shown
in Fig. 18b, a typical CNN repeatedly applies the following
three operations:

1. Convolution with a number of linear filters,
2. Nonlinearities, such as sigmoid or rectification,
3. Local pooling or subsampling.

These three operations are highly related to traditional filter
bank methods widely used in texture analysis (Randen and
Husoy 1999), as shown in Fig. 18a, with the key differences
that the CNN filters are learned directly from data rather than
handcrafted, and that CNNs have a hierarchical architecture
learning increasingly abstract levels of representation. These
three operations are also closely related to the RP approach
(Fig. 18c) and the LBP (Fig. 18d).

Several large-scale image datasets are usually used for
CNN pretraining. Among them the commonly used Ima-
geNet dataset, with 1000 classes and 1.2 million images
(Russakovsky et al. 2015), and the scene-centric MITPlaces
dataset (Zhou et al. 2014, 2018).

Comprehensive evaluations of the feature transfer effect of
CNNs for the purpose of texture classification have been con-
ducted in Cimpoi et al. (2014, 2015, 2016) and Napoletano
(2017), with the following critical insights. During model

transfer, features extracted from different layers exhibit dif-
ferent classification performance. Experiments confirm that
the fully-connected layers of the CNN, whose role is pri-
marily that of classification, tend to exhibit relatively worse
generalization ability and transferability, and thereforewould
need retraining or finetuning on the transfer target. In contrast
the convolutional layers, which act more as feature extrac-
tors,with coarser convolutional layers acting as progressively
more abstract features, generally transfer well. That is, the
convolutional descriptors are substantially less committed
to a specific dataset than the fully connected descriptors.
As a result, the source training set is relevant to classifi-
cation accuracy on different datasets, and the similarity of
the source and target plays a critical role when using a pre-
trained CNN model (Bell et al. 2015). Finally, from Cimpoi
et al. (2015, 2016) and Napoletano (2017) it was found that
deeper models transfer better, and that the deepest convo-
lutional descriptors give the best performance, superior to
the fully-connected descriptors, when proper encoding tech-
niques are employed (such as FVCNN←CNN features with
Fisher Vector encoder).

(2) Feature Extraction A CNN can be viewed as a com-
position fL ◦· · ·◦ f2◦ f1 of L layers, where the output of each
layer Xl = ( fl ◦ · · · ◦ f2 ◦ f1)(I) consists of Dl feature maps
of size Wl × Hl . The Dl responses at each spatial location
form a Dl dimensional feature vector. The network is called
convolutional if all the layers are implemented as filters, in
the sense that they act locally and uniformly on their input.
From bottom to top layers, the image undergoes convolution,
and the receptive field of these convolutional filters and the
number of feature channels increases, whereas the size of
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the feature maps decreases. Usually, the last several layers of
a typical CNN are fully connected (FC) because, if seen as
filters, their support is the same as the size of the input Xl−1,
and therefore lack locality.

The most straightforward approach to CNN based tex-
ture classification is to extract the descriptor from the fully
connected layers of the network (Cimpoi et al. 2015, 2016),
e.g., the FC6 or FC7 descriptors inAlexNet (Krizhevsky et al.
2012). The fully connected layers are pretrained discrimina-
tively, which can be either an advantage or a disadvantage,
depending on whether the information that they captured
can be transferred to the domain of interest (Chatfield et al.
2014; Cimpoi et al. 2016; Girshick et al. 2014). The fully
connected descriptors have a global receptive field and are
usually viewed as global features suitable for classification
with an SVM classifier. In contrast, the convolutional lay-
ers of a CNN can be used as filter banks to extract local
features (Cimpoi et al. 2015, 2016; Gong et al. 2014). Com-
paredwith the global fully-connected descriptors, lower level
convolutional descriptors are more robust to image transfor-
mations such as translation and occlusion. In Cimpoi et al.
(2015, 2016), the features are extracted as the output of a
convolutional layer, directly from the linear filters (exclud-
ing ReLU and max pooling, if any), and are combined with
traditional encoders for global representation. For instance,
the last convolutional layer of VGGVD (very deep with 19
layers) (Simonyan and Zisserman 2015) yields a set of 512
descriptor vectors; in Cimpoi et al. (2014, 2015, 2016) four
types of CNNs were considered for feature extraction.

(3) Feature Encoding and Pooling A set of features
extracted fromconvolutional or fully connected layers resem-
bles a set of texture features as described in Sect. 3.2, so the
traditional feature encoding methods discussed in Sect. 3.4
can be directly employed.

Cimpoi et al. (2016) evaluated several encoders, i.e. stan-
dard BoW (Leung andMalik 2001), LLC (Wang et al. 2010),
VLAD (Jegou et al. 2012) and IFV (Perronnin et al. 2010)
(reviewed inSect. 3.4), forCNNfeatures, and showed that the
best performance is achieved by IFV. It has been reported that
VGGVD+IFV with a linear SVM classifier produced con-
sistently near perfect classification performance on several
texture datasets: KTHTIPS (99.8%), UIUC (99.9%, UMD
(99.9%) and ALOT (99.5%)), as summarized in Table 4. In
addition, it obtained significant improvement on very chal-
lenging datasets like KTHTIPS2b (81.8%), FMD (79.8%)
and DTD (72.3%). However, it only achieved 80.0% and
82.3%onOutex_TC10 andOutex_TC12 respectively, which
are significantly worse than the near perfect performance of
MRELBP on these two datasets (Liu et al. 2017); a clear
indicator that DCNN based features require large amount of
training samples and that they lack local invariance. Song
et al. (2017) proposed a neural network to transform the
FVCNNdescriptors into a lower dimensional representation.

Fig. 19 Locally transferred Fisher Vector (LFV): use 2K neural net-
works for dimensionality reduction of FVCNN descriptor

As shown in Fig. 19, locally transferred FVCNN (LFVCNN)
descriptors are obtained by passing the 2K D dimensional
FVCNN descriptors of images through a multilayer neural
network consisting of fully connected, l2 normalization lay-
ers, and ReLU layers. LFVCNN achieved state of the art
results on KTHTIPS2b (82.6%), FMD (82.1%) and DTD
(73.8%), as shown in Table 4.

Recently, Gatys et al. (2015) showed that the Grammatrix
representations extracted from various layers of VGGNet
(Simonyan and Zisserman 2015) can be inverted for texture
synthesis. The work of Gatys et al. (2015) ignited a renewed
interest in texture synthesis (Ulyanov et al. 2017). Notably,
theGrammatrix representation used in their approach is iden-
tical to the bilinear pooling of CNN features of Lin et al.
(2015), which were proved to be good for texture recogni-
tion in Lin and Maji (2016). Like the traditional encoders
introduced in Sect. 3.4, the bilinear feature pooling is an
orderless representation of the input image and hence is
suitable for modeling textures. The Bilinear CNN (BCNN)
descriptors are obtained by computing the outer product of
each feature xli with itself, reordered into feature vectors, and
subsequently pooled via sum to obtain the final global repre-
sentation. The dimension of the bilinear descriptor is (Dl)2,
which is very high (e.g. 5122). It was shown in Lin and Maji
(2016) and Lin et al. (2018) that the texture classification
performance of BCNN and FVCNN was virtually identical,
indicating that bilinear pooling is as good as the Fisher vec-
tor pooling for texture recognition. It was also found that the
BCNN descriptor of the last convolutional layer performed
the best, in agreement with Cimpoi et al. (2016).

4.2 Using Finetuned CNNModels

PretrainedCNNmodels, discussed inSect. 4.1, have achieved
impressive performance in texture recognition, however
training in these methods is a multistage pipeline that
involves feature extraction, codebook generation, feature
encoding and classifier training. Consequently, these meth-
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(a) (b) (c) (d) (e)

Fig. 20 Comparison of Fine Tuned CNNs: a standard CNN, b TCNN (Andrearczyk and Whelan 2016), c BCNN (Lin et al. 2018), d Compact
Bilinear Pooling (Gao et al. 2016), and e FASON (Dai et al. 2017)

ods cannot take advantage of utilizing the full capability of
neural networks in representation learning. Generally fine-
tuning CNN models on task-specific training datasets (or
learning from scratch if large-scale task-specific datasets are
available) is expected to improve on already strong perfor-
mance achieved by pretrained CNN models (Chatfield et al.
2014; Girshick et al. 2014). When using a finetuned CNN
model, the global image representation is usually generated
in an end-to-end manner; that is, the network will produce a
final visual representation without additional explicit encod-
ing or pooling steps, as illustrated in Fig. 5. When finetuning
a CNN, the last fully connected layer is modified to have
B nodes corresponding to the number of classes in the tar-
get dataset. The nature of the datasets used in finetuning is
important to learning discriminative CNN features. The pre-
trained CNN model is capable of discriminating images of
different objects or scene classes, but may be less effective in
discerning the difference between different textures (mate-
rial types) since an image in ImageNet may contain different
types of textures (materials). The size of the dataset used in
finetuning matters as well, since too small a dataset may be
inadequate for complete learning.

To the best of our knowledge, the behaviour of a finetuned
large-scale CNN like VGGNet (Simonyan and Zisserman
2015) or training it from scratch using a texture dataset have
not been fully explored, almost certainly due to the fact that a
large texture dataset on the scale of ImageNet (Russakovsky
et al. 2015) or MITPlaces (Zhou et al. 2014) does not
exist. Most existing texture datasets are small, as discussed
later in Sect. 6, and according to Andrearczyk and Whe-
lan (2016) and Lin and Maji (2016) finetuning a VGGNet
(Simonyan and Zisserman 2015) or AlexNet (Krizhevsky
et al. 2012) on existing texture datasets leads to negligible
performance improvement. As shown in Fig. 20a, for a typ-
ical CNN like VGGNet (Simonyan and Zisserman 2015),
the output of the last convolutional layer is reshaped into a
single feature vector (spatially sensitive) and fed into fully

connected layers (i.e., order sensitive pooling). The global
spatial information is necessary for analyzing the global
shapes of objects, however it has been realized (Andrea-
rczyk and Whelan 2016; Cimpoi et al. 2016; Gatys et al.
2015; Lin and Maji 2016; Zhang et al. 2017) that it is not
of great importance for analyzing textures due to the need
for orderless representation. The FVCNN descriptor shows
higher recognition performance than FCCNN, even if the
pretrained VGGVDmodel is finetuned on the texture dataset
(i.e., the finetuned FCCNN descriptor) (Cimpoi et al. 2016;
Lin and Maji 2016). Therefore, an orderless feature pooling
from the output of a convolution layer is desirable for end-to-
end learning. In addition, orderless pooling does not require
an input image to be of a fixed size, motivating a series of
innovations in designing novel CNN architectures for texture
recognition (Andrearczyk and Whelan 2016; Arandjelovic
et al. 2016; Dai et al. 2017; Lin et al. 2018; Zhang et al.
2017).

A Texture CNN (TCNN) based on AlexNet, as illustrated
in Fig. 20b, was developed in Andrearczyk and Whelan
(2016). It simply utilizes global average pooling to transform
a field of descriptor Xl ∈ R

Wl×Hl×Dl
at a given convolu-

tional layer l of a CNN into a Dl dimension vector which
is connected to a fully connected layer. TCNN has fewer
parameters and lower complexity than AlexNet. In addition,
Andrearczyk andWhelan (2016) proposed to fuse the global
average pooled vector of an intermediate convolutional layer
and that of the last convolutional layer via concatenation
and introduced to later fully connected layers, a combina-
tion which resembles the hypercolumn feature developed
in Hariharan et al. (2015). Andrearczyk and Whelan (2016)
observed that finetuning a network that was pretrained on a
texture-centric dataset achieves better results on other texture
datasets compared to a network pretrained on an object-
centric dataset of the same size, and that the size of the dataset
on which the network is pretrained or finetuned predomi-
nantly influences the performance of the finetuning. These
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two observations suggest that a very large texture dataset
could bring a significant contribution to CNNs applied to
texture analysis.

In BCNN (Lin et al. 2018), as shown in Fig. 20c, Lin et al.
proposed to replace the fully connected layers with an order-
less bilinear pooling layer, which was discussed in Sect. 4.1.
Thismethodwas successfully applied to texture classification
in Lin and Maji (2016) and obtained slightly better results
than FVCNN, however the representational power of bilinear
features comes at the cost of very high dimensional feature
representations, which induce substantial computational bur-
dens and require large amounts of training data, motivating
several improvements on BCNN. Gao et al. (2016) proposed
compact bilinear pooling, as shown inFig. 20d,whichutilizes
RandomMaclaurin Projection or Tensor Sketch Projection to
reduce the dimensionality of bilinear representations while
still maintaining similar performance to the full BCNN fea-
ture (Lin et al. 2018) with a 90% reduction in the number
of learned parameters. To combine the ideas in Andrearczyk
and Whelan (2016) and Gao et al. (2016), Dai et al. (2017)
proposed an effective fusion network called FASON (First
And Second Order information fusion Network) that com-
bines first and second order information flow, as illustrated in
Fig. 20e.These two types of featureswere generated fromdif-
ferent convolutional layers and concatenated to form a single
feature vector which was connected to a fully connected soft-
max layer for end to end training. Kong and Fowlkes (2017)
proposed to represent the bilinear features as a matrix and
applied a low rank bilinear classifier. The resulting classifier
can be evaluated without explicitly computing the bilinear
feature map which allows for a large reduction in the com-
putational time as well as decreasing the effective number of
parameters to be learned.

There are some works attempting to integrate CNN and
VLAD or FV pooling in an end to end manner. In Arand-
jelovic et al. (2016), a NetVLAD network was proposed
by plugging a VLAD-like layer into a CNN network at the
last convolutional layer and allows training end to end. The
model was initially designed for place recognition, however
when applied to texture classification by Song et al. (2017) it
was found that the classification performance was inferior to
FVCNN. Similar to NetVLAD (Arandjelovic et al. 2016), a
DeepTextureEncodingNetwork (DeepTEN)was introduced
in Zhang et al. (2017) by integrating an encoding layer on
top of convolutional layers, also generalizing orderless pool-
ing methods such as VLAD and FV in a CNN trained end to
end.

Fig. 21 Illustration of two similar handcrafted deep convolutional net-
works: ScatNet (Bruna andMallat 2013) and PCANet (Chan et al. 2015)

4.3 Using Handcrafted Deep Convolutional
Networks

In addition to the CNN based methods reviewed in Sects. 4.1
and 4.2, some “handcrafted”3 deep convolutional networks
(Bruna and Mallat 2013; Chan et al. 2015) deserve atten-
tion. Recall that a standard CNN architecture (as shown
in Fig. 18b) consists of multiple trainable building blocks
stacked on top of one another followed by a supervised
classifier. Each block generally consists of three layers: a
convolutional filter bank layer, a nonlinear layer, and a fea-
ture pooling layer. Similar to the CNN architecture, Bruna
and Mallat (2013) proposed a highly influential Scattering
convolution Network (ScatNet), as illustrated in Fig. 21.

The key difference from CNN, where the convolutional
filters are learned from data, is that the convolutional fil-
ters in ScatNet are predetermined—they are simply wavelet
filters, such as Gabor or Haar wavelets, and no learning
is required. Moreover, the ScatNet usually cannot go as
deep as a CNN; Bruna and Mallat (2013) suggested two
convolutional layers, since the energy of the third layer scat-
tering coefficients is negligible. Specifically, as can be seen
in Fig. 21, ScatNet cascades wavelet transform convolu-
tions with modulus nonlinearity and averaging poolers. It
is shown in Bruna and Mallat (2013) that ScatNet computes

3 Note that “handcrafted” commonly used for traditional features is
somewhat imprecise, because many traditional features like Gabor fil-
ters are biologically or psychologically inspired.
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translation-invariant image representations which are stable
to deformations and preserve high frequency information for
recognition. As shown in Fig. 21, the average pooled feature
vector from each stage is concatenated to form the global
feature representation of an image, which is input into a
simple PCA classifier for recognition, and which has demon-
strated very high performance in texture recognition (Bruna
and Mallat 2013; Sifre and Mallat 2012, 2013; Sifre 2014;
Liu et al. 2017). It achieved very high classification per-
formance on Outex_TC10 (99.7%), Outex_TC12 (99.1%),
KTHTIPS (99.4%), CUReT (99.8%), UIUC (99.4%) and
UMD (99.7%) (Bruna and Mallat 2013; Sifre and Mallat
2013; Liu et al. 2017), but performed poorly on even chal-
lenging datasets like DTD (35.7%). A downside of ScatNet
is that the feature extraction stage is very time consuming,
although the dimensionality of the global representation fea-
ture is relatively low (several hundreds). ScatNet has been
extended to achieve rotation and scale invariance (Sifre and
Mallat 2012, 2013; Sifre 2014) and applied to other prob-
lems besides texture such as object recognition (Oyallon and
Mallat 2015). Importantly, themathematical analysis of Scat-
Net explains important properties of CNN architectures, and
it is one of the few works that provides detailed theoretical
understanding of CNNs.

Figure 21 contrasts ScatNet and PCANet, proposed by
Chan et al. (2015), a very simple convolutional network based
on trained PCA filters, instead of predefined Gabor wavelets,
and LBP encoding (Ojala et al. 2002b) and histogramming
for feature pooling. Two simple variations of PCANet, Rand-
Net and LDANet, were also introduced in Chan et al. (2015),
sharing the same topology asPCANet, but their convolutional
filters are either random filters as in Liu and Fieguth (2012)
or learned from Linear Discriminant Analysis (LDA). Com-
pared with ScatNet, feature extraction in PCANet is much
faster, but with weaker invariance and texture classification
performance (Liu et al. 2017).

5 Attribute-Based Texture Representation

In recent years, the recognition of texture categories has
been extensively studied and has shown substantial progress,
partly thanks to the texture representations reviewed in
Sects. 3 and 4. Despite the rapid progress, particularly with
the development of deep learning techniques, we remain far
from reaching the goal of comprehensive scene understand-
ing (Krishna et al. 2017). Although the traditional goal was to
recognize texture categories based on their perceptual differ-
ences or their material types, textures have other properties,
as shown in Fig. 22, where we may speak of a banded shirt,
a striped zebra, and a striped tiger. Here, banded and striped
are referred to as visual texture attributes (Cimpoi et al. 2014),
which describe texture patterns using human-interpretable

Fig. 22 Objects with rich textures in our daily life. Visual texture
attributes like mesh, spotted, striated, spotted and striped provide
detailed and vivid descriptions of objects

semantic words. With texture attributes, the textures shown
back in Fig. 3d might all be described as braided, falling into
a single category in the Describable Textures Dataset (DTD)
database (Cimpoi et al. 2014).

The studyof visual texture attributes (Bormann et al. 2016;
Cimpoi et al. 2014; Matthews et al. 2013) was motivated by
the significant interest raised by visual attributes (Farhadi
et al. 2009; Patterson et al. 2014; Parikh and Grauman 2011;
Kumar et al. 2011). Visual attributes allow the describing
of objects in significantly greater detail than a category label
and are therefore important towards reaching the goal of com-
prehensive scene understanding (Krishna et al. 2017), which
would support important applications such as detailed image
search, question answering, and robotic interactions. Texture
attributes are an important component of visual attributes,
particularly for objects that are best characterized by a pat-
tern. It can support advanced image search applications, such
as more specific queries in image search engines (e.g. a
striped skirt, rather than just any skirt). The investigation
of texture attributes and detailed semantic texture descrip-
tion offers a significant opportunity to close the semantic gap
in texture modeling and to support applications that require
fine grained texture description. Nevertheless, there are only
several papers (Bormann et al. 2016; Cimpoi et al. 2014;
Matthews et al. 2013) investigating the texture attributes thus
far, and there is no systematic study yet attempted.

There are three essential issues in studying texture
attribute based representation:

1. The identification of a universal texture attribute vocab-
ulary that can describe a wide range of textures;

2. The establishment of a benchmark texture dataset, anno-
tated by semantic attributes;

3. The reliable estimation of texture attributes from images,
based on low level texture representations, such as the
methods reviewed in Sects. 3 and 4.

Tamura et al. (1978) proposed a set of six attributes for
describing textures: coarseness, contrast, directionality, line-
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likeness, regularity and roughness. Amadasun and King
(1989) refined this idea with the five attributes of coarseness,
contrast, business, complexity, and strength. Later, Bhushan
et al. (1997) studied texture attributes from the perspective of
psychology, asking subjects to cluster a collection of 98 tex-
ture adjectives according to similarity and identified eleven
major clusters.

Recently, inspired by the work in Bhushan et al. (1997),
Farhadi et al. (2009), Parikh and Grauman (2011), Kumar
et al. (2011), Matthews et al. (2013) attempted to enrich
texture analysis with semantic attributes. They identified
eleven commonly-used texture attributes4 by selecting a sin-
gle adjective from each of the eleven clusters identified
by Bhushan et al. (1997). Then, with the eleven texture
attributes, they released a publicly available human-provided
labeling of over 300 classes of texture from the Outex
database (Ojala et al. 2002a). For each texture image, instead
of asking a subject to simply identifying the presence or
absence of each texture attribute, Matthews et al. (2013)
proposed a framework of pairwise comparison, in which a
subject was shown two texture images simultaneously and
prompted to choose the image exhibiting more of some
attribute, motivated by the use of relative attributes (Parikh
and Grauman 2011).

After performing a screening process on the 98 adjectives
identified by Bhushan et al. (1997), Cimpoi et al. (2014)
obtained a texture attribute vocabulary of 47 English adjec-
tives and collected a dataset providing 120 example images
for each attribute. They furthermore provide a comparison
of BoW- and CNN-based texture representation methods for
attribute estimation, demonstrating that texture attributes are
excellent texture descriptors, transferring between datasets.
Bormann et al. (2016) introduced a set of seventeen human
comprehensible attributes (seven color and ten structural)
for color texture characterization. They also collected a
new database named Robotics Domain Attributes Database
(RDAD) for the indoor service robotics context. They com-
pared five low level texture representation approaches for
attribute prediction, and found that not all objects can be
described very well with the seventeen attributes. Clearly,
which attributes are best suited for a precise description of
different object and texture classes deserves further attention.

6 Texture Datasets and Performance

6.1 Texture Datasets

Datasets have played an important role throughout the his-
tory of visual recognition research. They have been one

4 Blemished, bumpy, lined, marbled, random, repetitive, speckled, spi-
ralled, webbed, woven, and wrinkled.

of the most important factors for the considerable progress
in the field, not only as a common ground for measuring
and comparing performance of competing algorithms but
also pushing the field towards increasingly complicated and
challenging problems. With the rapid development of visual
recognition approaches, datasets have become progressively
more challenging, evidenced by the fact that the recent large
scale ImageNet dataset (Russakovsky et al. 2015) has enabled
breakthroughs in visual recognition research. In the big data
era, it becomes urgent to further enrich texture datasets to
promote future research. In this section, we discuss existing
texture image datasets that have been released and commonly
used by the research community for texture classification, as
summarized in Table 3.

The Brodatz texture database (Brodatz 1966a), derived
from Brodatz (1966b), is the earliest, the most widely used
and themost famous texture database. It has a relatively large
number of classes (111), with each class having only one
image. Many texture representation approaches exploit the
Brodatz database for evaluations (Kim et al. 2002; Liu and
Fieguth 2012; Ojala et al. 2002b; Pun and Lee 2003; Randen
andHusoy 1999; Valkealahti andOja 1998), however inmost
cases the entire database is not utilized, except in some recent
studies (Georgescu et al. 2003; Lazebnik et al. 2005; Liu et al.
2017; Picard et al. 1993; Zhang et al. 2007). The database
has been criticized because of the lack of intraclass variations
such as scale, rotation, perspective and illumination.

The Vision Texture Database (VisTex) (Liu et al. 2005;
VisTex 1995) is an early and well-known database. Built
by the MIT Multimedia Lab, it has 167 classes of textures,
each with only one image. The VisTex textures are imaged
under natural lighting conditions, and have extra visual cues
such as shadows, lighting, depth, perspective, thus closer in
appearance to real-world images. VisTex is often used for
texture synthesis or segmentation, but rarely for image-level
texture classification.

Since 2000, texture recognition has evolved to classify-
ing real world textures with large intraclass variations due
to changes in camera pose and illumination, leading to the
development of a number of benchmark texture datasets
based on various real-worldmaterial instances.Among these,
the most famous and widely used is the Columbia-Utrecht
Reflectance and Texture (CUReT) dataset (Dana et al. 1999),
with 61 different material textures taken under varying image
conditions in a controlled lab environment. The effects of
specularities, interreflections, shadowing, and other surface
normal variations are evident, as shown in Fig. 3a. CUReT
is a considerable improvement over Brodatz, where all such
effects are absent. Based on the original CUReT, Varma and
Zisserman (2005) built a subset for texture classification,
which became the widely used benchmark to assess classifi-
cation performance. CUReT has limitations of no significant
scale change for most of the textures and limited in-plane
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Fig. 23 Image examples from one category in KTHTIPS2

rotation. Thus, a discriminative texture feature without rota-
tion invariance can achieve high recognition rates (Bruna and
Mallat 2013).

Noticing the limited scale invariance in CUReT,
researchers from the Royal Institute of Technology (KTH)
introduced a dataset called “KTH Textures under varying
Illumination, Pose, and Scale” (KTHTIPS) (Hayman et al.
2004;Mallikarjuna et al. 2004) by imaging ten CUReTmate-
rials at three different illuminations, three different poses, and
nine different distances, but with significantly fewer settings
for lighting and viewing angle than CUReT. KTHTIPS was
created to extend CUReT in two directions: (i) by providing
variations in scale (as shown in Fig. 23), and (ii) by imag-
ing different samples of the CUReT materials in different
settings.This supports the studyof recognizingdifferent sam-
ples of the CUReT materials; for instance, does training on
CUReT enable good recognition performance onKTHTIPS?
Despite pose variations, KTHTIPS rotation variations are
rather limited.

Experiments with Brodatz or VisTex used different
nonoverlapping subregions from the same image for train-
ing and testing; experiments with CUReT or KTHTIPS used
different subsets of the images imaged from the identical
sample for training and testing. KTHTIPS2 was one of the
first datasets to offer considerable variations within each
class. It groups textures not only by instance, but also by
the type of material (e.g., wool). It is built on KTHTIPS and
provides a considerable extension by imaging four physi-
cal, planar samples of each of eleven materials (Mallikarjuna
et al. 2004).

The Oulu Texture (Outex) database was collected by the
Machine Vision Group at the University of Oulu (Ojala et al.
2002a). It has the largest number of different texture classes
(320), with each class having images photographed under
three illuminations and nine rotation angles, but with lim-
ited scale variations. Based on Outex, a series of benchmark
test suites were derived for evaluations of texture classi-
fication or segmentation algorithms (Ojala et al. 2002a).
Among them, two benchmark datasets Outex_TC00010 and
Outex_TC00012 (Ojala et al. 2002b) designated for testing
rotation and illumination invariance, appear commonly in
papers.

The UIUC (University of Illinois Urbana-Champaign)
dataset collected byLazebnik et al. (2005) contains 25 texture
classes, with each class having 40 uncalibrated, unregistered

images. It has significant variations in scale and viewpoint
as well as nonrigid deformations (see Fig. 3b), but has less
severe illumination variations than CUReT. The challenges
of this database are that there are few sample images per
class, but with significant variations within classes. Though
UIUC improves over CUReT in terms of large intraclass vari-
ations, it is much smaller than CUReT both in the number
of classes and the number of images per class. The UMD
(University of Maryland) dataset (Xu et al. 2009b) also con-
tains 25 texture classes; similar to UIUC, it has significant
viewpoint and scale variations and uncontrolled illumination
conditions. As textures are imaged under variable trunca-
tion, viewpoint, and illumination, the UIUC and the UMD
have stimulated the creation of texture representations that
are invariant to significant viewpoint changes.

The Amsterdam Library of Textures (ALOT) database
(Burghouts and Geusebroek 2009) consists of 250 texture
classes. It was collected under controlled lab environment at
eight different lighting conditions. Although it has a much
larger number of texture classes than UIUC or UMD, it has
little scale, rotation and viewpoint variations and is therefore
not a very challenging dataset. The Drexel Texture (DreTex)
dataset (Oxholm et al. 2012) contains 20 different textures,
each of which was imaged approximately 2000 times under
different (known) illumination directions, at multiple dis-
tances, and with different in-plane and out of plane rotations.
It contains stochastic and regular textures.

The Raw Food Texture database (RawFooT), has been
specially designed to investigate the robustness of texture
representation methods with respect to variations in the
lighting conditions (Cusano et al. 2016). It consists of 68 tex-
ture classes of raw food, with each class having 46 images
acquired under 46 lighting conditions whichmay differ in the
light direction, in the illuminant color, in its intensity, or in a
combination of these factors. It has no variations in rotation,
viewpoint and scale.

Due to the rapid progress of texture representation
approaches, the performance of many methods on the
datasets described above are close to saturation, with
KTHTIPS2b being an exception due to its increased com-
plexity. However, most datasets introduced above make the
simplifying assumption that textures fill images, and often
there is limited intraclass variability, due to a single or limited
number of instances, captured under controlled scale, view-
point and illumination. In recent years, researchers have set
their sights on more complex recognition problems where
textures appear under poor viewing conditions, low reso-
lution, and in realistic cluttered backgrounds. The Flickr
Material Database (FMD) (Sharan et al. 2009, 2013) was
built to address some of these limitations, by collectingmany
different object instances from the Internet grouped in 10 dif-
ferent material categories, with examples shown in Fig. 3e.
The FMD (Sharan et al. 2009) focuses on identifying mate-
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Fig. 24 Describing textureswith attributes: the goal ofDTD is to under-
stand and generate automatically human interpretable descriptions such
as the examples above

rials such as plastic, wood, fiber and glass. The limitations
of the FMD dataset is that its size is quite small, containing
only 10 material classes with 100 images in each class.

The UBO2014 dataset (Weinmann et al. 2014) contains 7
material categories, with each having 12 different physical
instances. Eachmaterial instancewasmeasured by a full bidi-
rectional texture function with 22,801 images (a sampling
of 151 viewing and 151 lighting directions), resulting in a
total of more than 1.9 million synthesized images. This syn-
thesized material dataset allows classifying materials under
complex real world scenarios.

Motivated by recent interests in visual attributes (Farhadi
et al. 2009; Patterson et al. 2014; Parikh and Grauman 2011;
Kumar et al. 2011), Cimpoi et al. (2014) identified a vocab-
ulary of 47 texture attributes based on the seminal work of
Bhushan et al. (1997) who studied the relationship between
commonly used English words and the perceptual properties
of textures, identifying a set of words sufficient to describing
a wide variety of texture patterns. These human interpretable
texture attributes can vividly characterize textures, as shown
in Fig. 24. Based on the 47 texture attributes, they intro-
duced a correspondingDTDdataset consisting of 120 texture
images per attribute, by downloading images from the Inter-
net in an effort to support directly real world applications.
The large intraclass variations in the DTD are different from
traditional texture datasets like CUReT, UIUC and UMD, in
the sense that the images shown in Fig. 3d all belong to the
braided class, whereas in a traditional sense these textures
should belong to rather different texture categories.

Subsequent to FMD, Bell et al. (2013) released OpenSur-
faces (OS) which has over 20,000 images from consumer
photographs, each containing a number of high-quality tex-
ture or material segments. Images in OS have real world
context, in contrast to prior databases where each image
belong to one texture category and the texture fills the whole
image. OS has over 100,000 segments (as shown shown in
Fig. 25) that can support a variety of applications. Many, but
not all, of these segments are annotated with material names,
the viewpoint, reflectance, the object names and scene class.
The number of segments in each material category can also
be highly unbalanced in the OS.

Fig. 25 Examples of material segments in the OpenSurfaces dataset

Fig. 26 Image samples from the MINC database. The first row are
images from the food category, while the second row are images from
foliage

Using the OS dataset as the seed, Bell et al. (2015) intro-
duced a largematerial dataset named theMaterials inContext
Database (MINC) for material recognition and segmentation
in the wild, with samples shown in Fig. 26. MINC has a total
of 3 million material samples from 23 different material cat-
egories. MINC is more diverse, has more samples in each
category, and is much larger than previous datasets. Bell et
al. concluded that a large and well-sampled dataset such as
MINC is key for real-world material recognition and seg-
mentation.

Concurrent to the work by Bell et al. (2015), Cimpoi et al.
(2016) derived a new dataset from OS to conduct a study
of material and describable texture attribute recognition in
clutter. Since not all segments in OS have a complete set of
annotations, Cimpoi et al. (2016) selected a subset of seg-
ments annotated with material names, annotated the dataset
with eleven texture attributes, and removed those material
classes containing fewer than 400 segments. Similarly, the
Robotics Domain Attributes Database (RDAD) (Bormann
et al. 2016) contains 57 categories of everyday indoor object
and surface textures labeled with a set of seventeen texture
attributes, collected to addresses the target domain of every-
day objects and surfaces that a service robotmight encounter.

Wang et al. (2016) introduced a new light-field dataset of
materials, called the Light-FieldMaterial Database (LFMD).
Since light-fields can capture multiple viewpoints in a single
shot, they implicitly contain reflectance information, which
should be helpful in material recognition. The goal of LFMD
is to investigate whether 4D light-field information improves
the performance of material recognition.
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Finally, Xue et al. (2017) built a material database named
the Ground Terrain in Outdoor Scenes (GTOS) to study the
use of spatial and angular reflectance information of outdoor
ground terrain for material recognition. It consists of over
30,000 images covering 40 classes o f outdoor ground terrain
under varying weather and lighting conditions.

6.2 Performance

Table 4 presents a performance summary of representative
methods applied to popular benchmark texture datasets. It is
clear that major improvements have come from more pow-
erful local texture descriptors such as MRELBP (Liu et al.
2017, 2016b), ScatNet (Bruna and Mallat 2013) and CNN-
based descriptors (Cimpoi et al. 2016) and from advanced
feature encoding methods like IFV (Perronnin et al. 2010).
With the advance in CNN architectures, CNN-based texture
representations have quickly demonstrated their strengths in
texture classification, especially for recognizing textureswith
very large appearance variations, such as in KTHTIPS2b,
FMD and DTD.

Off-the-shelf CNN based descriptors, in combination
with IFV feature encoding, have advantages in nearly all
of the benchmark datasets, except for Outex_TC10 and
Outex_TC12, where texture descriptors, such as MRELBP
(Liu et al. 2017, 2016b) and ScatNet (Bruna and Mallat
2013), that have rotation and gray scale invariances, give
perfect accuracies, revealing one of the limitations of CNN
based descriptors in being sensitive to image degradations.
Despite the usual advantages of CNN based methods, it is at
a cost of very high computational complexity and memory
requirements. We believe that traditional texture descriptors,
like the efficient LBP and robust variants such as MRELBP,
still have merits in cases when real-time computation is a
priority or when robustness to image degradation is needed
(Liu et al. 2017).

As can be seen from Table 4, currently the highest clas-
sification scores on Outex_TC10, Outex_TC12, CUReT,
KTHTIPS, UIUC, UMD and ALOT are nearly perfect, in
excess of 99.5%, and quite a few texture representation
approaches can achieve more than 99.0% accuracy on these
datasets. Since the influential work by Cimpoi et al. (2014,
2015, 2016), who reported near perfect classification accura-
cies with pretrained CNN features for texture classification,
subsequent representative CNN based approaches have not
reported results on these datasets because performance is sat-
urated and because the datasets are not large enough to allow
finetuning to obtain improved results. The FMD, DTD and
KTHTIPS2b are undoubtedly more challenging than other
texture datasets, for example the UIUC and FMD texture
category separation shown in Fig. 27, and these more chal-
lenging datasets appear more frequently in recent works.
However, since the IFV encoding of VGGVD descriptors

(Cimpoi et al. 2016), the progress on these three datasets
has been slow, with incremental improvements in accuracy
and efficiency obtained by building more complex or deeper
CNN architectures.

As can be observed from Table 4, LBP type methods
[LBP (Ojala et al. 2002b), MRELBP (Liu et al. 2016b) and
BIF (Crosier and Griffin 2010)] which adopt a predefined
codebook have a much more efficient feature extraction step
than the remaining methods listed. For those BoW based
methods which require codebook learning, since the code-
book learning, feature encoding, and pooling process are
similar, the distinguishing factors are the computation and
feature dimensionality of the local texture descriptor. Among
commonly-used local texture descriptors, those approaches
first detecting local regions of interest followed by local
descriptors, such as SIFT, RIFT and SPIN (Lazebnik et al.
2005; Zhang et al. 2007), are among the slowest and have
relatively high dimensionality. For the CNN based methods
developed in Cimpoi et al. (2014, 2015, 2016), CNN fea-
ture extraction is performed on multiple scaled versions of
the original texture image, which requires more computa-
tional time. In general, CNN pretraining and finetuning is
efficient, whereas CNN model training is time consuming.
From Liu et al. (2017), ScatNet is computationally expen-
sive at the feature extraction stage, though it has medium
feature dimensionality. Finally, at the feature classification
stage linear SVM is significantly faster than kernel SVM.

7 Discussion and Conclusion

The importance of texture representations lies in the fact that
they have extended to many different problems beyond that
of textures themselves. As a comprehensive survey on tex-
ture representations, this paper has highlighted the recent
achievements, provided some structural categories for the
methods according to their roles in feature representation,
analyzed theirmerits anddemerits, summarized existing pop-
ular texture datasets, and discussed performance for the most
representative approaches. Almost any practical application
is a compromise among conflicting requirements such as
classification accuracy, robustness to image degradations,
compactness and efficiency, number of training data avail-
able, and cost and power consumption of implementations.
Although significant progress has been made, the following
discussion identifies a number of promising directions for
exploratory research.

Large Scale Texture Dataset Collection The constantly
increasing volume of image and video data creates new
opportunities and challenges. The complex variability of
big image data reveals the inadequacies of conventional
handcrafted texture descriptors and brings opportunities for
representation learning techniques, such as deep learning,
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(a) (b)

Fig. 27 t-distributed Stochastic Neighbor Embedding (tSNE) (Maaten and Hinton 2008) of textures from the IFV encoding of the VGGVD features
(Cimpoi et al. 2016) from a the UIUC dataset (25 classes) and b the FMD dataset (10 classes). Clearly the classes in UIUC are more separable than
those in FMD

which aim at learning good representations automatically
from data. The recent success of deep learning in image
classification and object recognition is inseparable from the
availability of large-scale annotated image datasets such as
ImageNet (Russakovsky et al. 2015) and MS COCO (Lin
et al. 2014). However, deep learning based texture analysis
has not kept pace with the rapid progress witnessed in other
fields, partially due to the unavailability of a large-scale tex-
ture database. As a result there is significant motivation for
a good, large-scale texture dataset, which will significantly
advance texture analysis.

More Effective and Robust Texture Representations
Despite significant progress in recent years most texture
descriptors, irrespective of whether handcrafted or learned,
have not been capable of performing at a level sufficient for
real world textures. The ultimate goal of the community is
to develop texture representations that can accurately and
robustly discriminate massive image texture categories in all
possible scenes, at a level comparable to the human visual
system. In practical applications, factors such as significant
changes in illumination, rotation, viewpoint and scale, and
image degradations such as occlusions, image blur and ran-
dom noise call for more discriminative and robust texture
representations. Further input from psychological research
of visual perception and the biology of the human visual
system would be welcome.

Compact and Efficient Texture Representations There is a
tension between the demands of big data and desire for highly
compact and efficient feature representations. Thus, on the
one hand, many existing texture representations are failing
to keep pace with the emerging “big dimensionality” (Zhai
et al. 2014), leading to a pressing need for new strategies
in dealing with scalability, high computational complexity,

and storage. On the other hand, there is a growing need for
deploying highly compact and resource-efficient feature rep-
resentations on platforms like low energy embedded vision
sensors and handheld devices. Many of the existing descrip-
tors would similarly fail in these contexts, and the current
general trend of deep CNN architectures has been to develop
deeper and more complicated networks, advances requiring
massive data and power hungry GPUs, not suitable to be
deployed onmobile platforms that have limited resources. As
a result, there is a growing interest in building compact and
efficient CNN-based features (Howard et al. 2017; Rastegari
et al. 2016). While CNNs generally outperform classical tex-
ture descriptors, it remains to be seen which approaches will
be most effective in resource-limited contexts, and whether
some degree of LBP / CNN hybridization might be consid-
ered, such as recent lightweight CNN architectures (Lin et al.
2017; Xu et al. 2017).

Reduced Dependence on Large Amounts of Data There
are many applications where texture representations are very
useful and only limited amounts of annotated training data
can be available, or where collecting labeled training data
is too expensive (such as visual inspection, facial micro-
expression recognition, age estimation and medical texture
analysis). Possible research could be the development of
learnable local descriptors requiring modest training data,
as in Duan et al. (2018) and Lu et al. (2018), or to explore
effective transfer learning.

Semantic Texture Attributes Progress in image texture rep-
resentation and understanding, while substantial, has so far
been mostly focused on low-level feature representation.
However, in order to address advanced human-centric appli-
cations, such as detailed image search and human–robotic
interaction, low-level understanding will not be sufficient.
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Future efforts should be devoted to go beyond texture identi-
fication and categorization, to develop semantic and easily
describable texture attributes that can be well predicted
with low-level texture representations, and to explore even
fine-grained and compositional structure analysis of texture
patterns.

Effect of Smaller Image Size Performance evaluation of
texture descriptors is usually done with texture datasets con-
sisting of relatively large images. For a large number of
applications an ability to analyze small image sizes at high
speed is vital, including facial image analysis, interest region
description, segmentation, defect detection, and tracking.
Many existing texture descriptors would fail in this respect,
and it would be important to evaluate the performance of new
descriptors (Schwartz and Nishino 2015).
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