Abstract
Integration of DNA copies in a host genome is a necessary stage in the life cycle of retroviruses and LTR-retrotransposons. There is still no clear understanding of integration specificity of retroelements into a target site. The selection of the target DNA is believed to potentially affect a number of factors such as transcriptional status, association with histones and other DNA-binding proteins, and DNA bending. The authors performed a comprehensive computer analysis of the integration specificity of Drosophila melanogaster LTR-retrotransposons and retroviruses including an analysis of the nucleotide composition of targets, terminal sequences of LTRs, and integrase sequences. A classification of LTR-retrotransposons based on the integration specificity was developed. All the LTR-retrotransposons of the gypsy group with three open frames (errantiviruses) and their derivatives with two open frames demonstrate strict specificity to a target DNA selection. Such specificity correlates with the structural features of the target DNA: bendability, A-philicity, or protein-induced deformability. The remaining LTR-retrotransposons (copia and BEL groups, blastopia and 412 subgroups of the gypsy group) do not show specificity of integration. Chromodomain is present in the integrase structures of blastopia and 412 subgroup LTR-retrotransposons and may facilitate the process of non-specific integration.





Similar content being viewed by others
References
S.F. Le Grice, Biochemistry 42(49), 14349–14355 (2003)
P. Hindmarsh, J. Leis, Microbiol. Mol. Biol. Rev. 63(4), 836–843 (1999)
M.K. Lewinski, F.D. Bushman, Adv. Genet. 55, 147–181 (2005)
P.A. Rice, T.A. Baker, Nat. Struct. Bio. 8(5), 302–307 (2001)
H.E. Brown, H. Chen, A. Engelman, J. Virol. 73(11), 9011–9020 (1999)
R.L. LaFemina, P.L. Callahan, M.G. Cordingley, J. Virol. 65, 5624–5630 (1991)
D. Pruss, R. Reeves, F.D. Bushman, A.P. Wolffe, J. Biol. Chem. 269(40), 25031–25041 (1994)
H.P. Müller, H.E. Varmus, EMBO J. 13(19), 4704–4714 (1994)
R.S. Mitchell, B.F. Beitzel, A.R. Schroder, P. Shinn, H. Chen, C.C. Berry, J.R. Ecker, F.D. Bushman, PLoS Biol. 2(8), E234 (2004)
X. Wu, Y. Li, B. Crise, S.M. Burgess, D.J. Munroe, J. Virol. 79(8), 5211–5214 (2005)
A.B. Kuzin, N.V. Lyubomirskaya, B.M. Khudaibergenova, Y.V. Ilyin, A.I. Kim, Nucleic Acids Res. 22(22), 4641–4645 (1994)
L.N. Nefedova, N.V. Ljubomirskaya, Yu.V. Ilyin, A.I. Kim, Russ. J. Genet. 42(12), 1656–1663 (2006)
A. Kim, C. Terzian, P. Santamaria, A. Pélisson, N. Prud’homme, A. Bucheton, PNAS USA 91, 1285–1289 (1994)
S.U. Song, T. Gerasimova, M. Kurkulos, J.D. Boeke, V.G. Corces, Genes Dev. 8, 2046–2057 (1994)
J.D. Boeke, T.H. Eickbush, S.B. Sandmeyer, D.F. Voytas D.F, in ICTVdB—The Universal Virus Database, version 4, New York, 2006, ed. by C. Büchen-Osmond, http://www.ncbi.nlm.nih.gov/ICTVdb/Ictv/fs_index.htm
J.S. Kaminker, C.M. Bergman, B. Kronmiller, J. Carlson, R. Svirskas, S. Patel, E. Frise, D.A. Wheeler, S.E. Lewis, G.M. Rubin, M. Ashburner, S.E. Celniker, Genome Biol. 3(12), RESEARCH0084 (2002)
N.J. Bowen, J.F. McDonald, Genome Res. 11, 1527–1540 (2001)
L.N. Nefedova, A.I. Kim, Mol. Biol. (Mosk.) 43(5), 747–756 (2009)
C. Terzian, A. Pelisson, A. Bucheton, BMC Evol. Biol. 1, 3 (2001)
I. Brukner, R. Sánchez, D. Suck, S. Pongor, EMBO J. 14(8), 1812–1818 (1995)
M.A. O’Neill, J.K. Barton, PNAS USA 99(26), 16543–16550 (2002)
N.C. Horton, B.C. Finzel, J. Mol. Biol. 264(3), 521–533 (1996)
V.I. Ivanov, L.E. Minchenkova, Mol. Biol. (Mosk.) 28(6), 1258–1271 (1994)
D.M. Crothers, PNAS USA 95(26), 15163–15165 (1998)
C. Berry, S. Hannenhalli, J. Leipzig, F.D. Bushman, PLoS Comput. Biol. 2(11), e157 (2006)
E.S. Svarovskaia, S.R. Cheslock, W.H. Zhang, W.S. Hu, V.K. Pathak, Front. Biosci. 8, d117–d134 (2003)
T.D. Mashkova, N.Y. Oparina, M.H. Lacroix, L.I. Fedorova, I.G. Tumeneva, O.L. Zinovieva, L.L. Kisselev, J. Mol. Biol. 305(1), 33–48 (2001)
O. Delelis, K. Carayon, A. Saïb, E. Deprez, J.F. Mouscadet, Retrovirology 5, 114 (2008)
A.M. Woerner, C.J. Marcus-Sekura, Nucleic Acids Res. 21(15), 3507–3511 (1993)
M. Katzman, M. Sudol, J. Virol. 72(3), 1744–1753 (1998)
Z. Wu, G. Chaconas, EMBO J. 14, 3835–3843 (1995)
R.A. Lutzke, C. Vint, R.H. Plasterk, Nucleic Acids Res. 22, 4125–4131 (1994)
A.D. Leavitt, L. Shiue, H.E. Varmus, J. Biol. Chem. 268(3), 2113–2119 (1993)
T.M. Jenkins, D. Esposito, A. Engelman, R. Craigie, EMBO J. 16, 6849–6859 (1997)
J.L. Gerton, S. Ohgi, M. Olsen, J. DeRisi, P.O. Brown, J. Virol. 72, 5046–5055 (1998)
D. Esposito, R. Craigie, EMBO J. 17, 5832–5843 (1998)
A.L. Harper, L.M. Skinner, M. Sudol, M. Katzman, J. Virol. 75(16), 7756–7762 (2001)
R. Paro, D.S. Hogness, PNAS USA 88(1), 263–267 (1991)
H.S. Malik, T.H. Eickbush, J. Virol. 73(6), 5186–9510 (1999)
F.D. Bushman, A. Engelman, I. Palmer, P. Wingfield, R. Craigie, PNAS USA 90, 3428–3432 (1993)
A.R. Schröder, P. Shinn, H. Chen, C. Berry, J.R. Ecker, F. Bushman, Cell 110(4), 521–552 (2002)
A. Ciuffi, M. Llano, E. Poeschla, C. Hoffmann, J. Leipzig, P. Shinn, J.R. Ecker, F. Bushman, Nat. Med. 11(12), 1287–1289 (2005)
Acknowledgments
This study was supported by the Russian Foundation for Basic Research (Grant no. 08-04-00693) and the Federal Program “Scientific and Pedagogical Specialists of Innovative Russia” for 2009–2013.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nefedova, L.N., Mannanova, M.M. & Kim, A.I. Integration specificity of LTR-retrotransposons and retroviruses in the Drosophila melanogaster genome. Virus Genes 42, 297–306 (2011). https://doi.org/10.1007/s11262-010-0566-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11262-010-0566-4