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On a result of Fel’dman on linear forms in the values of some
FE-functions

KEIJO VAANANEN

Abstract

We shall consider a result of Fel’dman, where a sharp Baker-type lower bound is obtained for linear
forms in the values of some E-functions. Fel’dman’s proof is based on an explicit construction of Padé
approximations of the first kind for these functions. In the present paper we introduce Padé approxi-
mations of the second kind for the same functions and use these to obtain a slightly improved version
of Fel’dman’s result.
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1 Introduction

In 1964 Baker [1] studied linear forms z,e®* + - - - 4+ zp,e*™, where (z1,...,Zm) € Z™\ {0} and o; (j =

1,...,m) are distinct rational numbers, and proved a lower bound
m
- 1—co//Toglogh -1
(1) |21€% + -« + 2| > pico/Vioglos th ,
j=1

for all h = max{|z;|} > ¢1 > e, where h; = max{1, |z;|} and ¢o, ¢; are positive constants depending on
;. These constants were made completely explicit in Mahler [6]. Lower bounds like above depending on
each individual coefficient x; are called Baker-type lower bounds. Baker’s proof used essentially Siegel’s
method with a new idea in the construction of the auxiliary function, a Padé type approximation of the
first kind for the functions e®#, obtained by using Siegel’s lemma. After that the same idea was used
to study other E- and G-functions satisfying linear differential equations of first order with rational
coefficients, see for example [8] and [12]. Then, in an important and deep paper [14], Zudilin was able to
obtain a similar result for the values of a class of E-functions satisfying a system of homogeneous linear
differential equations with rational coefficients, in this general result the term +/loglogh in the bound
is replaced by (log log h)L/(m*=m+2)
Shortly after Baker’s work Fel’dman [4] considered linear forms of the values of the E-functions

(2) %@=Zf_

where
O =1L;=0+X) - (v+XA),v=>1,

and A\; # —1,—2,... are rational numbers such that A; —\; ¢ Z, if i # j. Instead of using Siegel’s lemma
he constructed explicitly appropriate Padé approximations of the first kind for the functions ¢y, (2) and
by using these obtained the following result.

Theorem (Fel’dman). Let « # 0 be a rational number. There exists a positive constant ¢y depending
on Ai,.. ., Am,m and « such that, for all (xg,1,...,7xm) € Z™T\ {0},

(3) |20 + 218, (@) + -+ - + T, ()] > H~1—co/loglog(H+2)
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where H = [[72, hj, h; = max{1, |z;[} (j =1,...,m).

This seems to be still the only result of this type for E-functions, where v/loglog in the estimate is
improved to loglog. Our main purpose in this paper is to give a new proof for the above Feldman’s theo-
rem, where we explicitly construct Padé approximations of the second kind for the functions ¢y, (2),
in other words, simultaneous rational approximations to the functions ¢, (z), which are suitable for
proving Baker-type bounds. The application of [9, Corollary 3.5] then leads to a slightly more precise
form of the above Theorem, where ¢ is given explicitly for large H.

Theorem 1. Assume that M1, ..., N\, satisfy the assumptions of Fel’dman’s theorem. Let K denote Q or
an imaginary quadratic field and Zy the ring of integers of K, and let o € K \ {0}. Then there exists a
positive constant Hy depending on A1, ..., Am, m and « such that, for all (Bo, B1,.--,Bm) € Z%H \ {0}
with H = [[;_, hj > Ho,hj = max{1,[8;|} (j =1,...,m),

_ 6(dg+dym+dom?)

1Bo + Brpr(a) + -+ + Bmpm(a)| > H™! Toglog H

where dg,d1,ds are positive constants depending on A1, ..., Am and «, to be given explicitly at the end
of Section 6.

Padé approximations of the second kind were first used in the connection of Baker-type bounds in
Sorokin [10] to the consideration of some G-functions. Then in [I3] such a construction was used to
study certain g-series, for a refinement see also [5]. Moreover, the paper [10] on ¢x(z) and [3] on the
exponential function also apply Padé type approximations of the second kind to improve the constants
in the above results of Baker and Mahler. In these papers Sorokin used explicit construction but all
other applied Siegel’s lemma. In fact, as far as we know, the explicit construction of the approximations
of the second kind below is the first one for Baker-type bounds of E-functions.

2 Explicit construction 1

Let n1,...,n,, denote positive integers, N =nq + - -+ 4+ n,,, and

N
Qo(z) = Z apz".
k=0

By denoting ¢;(2) = ¢a,(2) we have

min{p,N}

00 a .
Qu(2)pi(2) = D cjuz™, = Y. T j=1,...,m.
=0 [ — Kl

k=0

To get the needed Padé approximations of the second kind we now choose the coefficients aj in such a
way that ¢j, =0forall y=N+1,...,N +n;,j=1,...,m. This means that

ap+a1(p+A;) Faz(p+ X))+ A =)+ +an(p+ ) (p+ A —(N-1))=0

forall p = N+1,...,N +n;,j =1,...,m. This is a system of N linear homogeneous equations in
N + 1 unknowns aj, which has a non-trivial solution. To determine such a solution we denote

Mm=N+1+A,...;7 =N+np+ A,

’7n1+1:N+1+)\23--'77n1+n2:N+n2+)‘23"'



Y1+ 4nm—_1+1 = N + 1 + )\m, ceoy YN = N + Nm + )\m
Then the above system of equations can be given in the form
(4) ao+arvi+agyi(vi— 1) +--+an-1vi- (i —(N—2)) = —anyi---(vi— (N —1)),i=1,...,N.

The coefficient determinant ¢ of this system is

§=det(ly; vi(vi=1) v (= (N=2))i=rn = [[ (=) #0.
1<i<j<N

After the choice of ay we thus obtain a unique solution ag,a1,...,an_1.
Foro=1,...,N, let §,(z) denote the determinant obtained from § after replacing 7, by z. Then

05(2) =050 + 0012 + Jp22(z — 1) + -+ - + 0o n—12(2 — 1) - - - (2 = (N — 2)),

where d,1 is the cofactor of § corresponding to the o, k-entry (0 = 1,...,N;k =0,...,N — 1). Since
0s(7s) = 0 for all s # o, we have

s=1,s#0
Thus we get
N
(5) 800+ 0012 + 622(z — 1) 4 -+ 8y_12(z = 1) (2 = (N =2)) =6 ] ﬁ
s=1,s#0 7 s

By choosing z = k in (@) for each k =0,1,..., N — 1, we obtain

N
800+ KOp1 + Kk — Doz + -+ Wlleu =8 ] ——
52175#0’70_’73
So
600 501 601\/—1 T
A(Ze0 Ot ’ -
(6) ( 5 ’ 5 ? Y 5 )
N N N

1 —ys 1 1— 7, 1 N—1—7 .,
(o 11 —— = 11 s N — 1) 11 ="

s=1,540 Yo — s 1 s=1,540 Yo — Vs
where A is the N x N-matrix with rows

11 1
R (k— 1) o

(

We now see that A~! is the matrix with rows

1 1 11
(V5 O = e




and therefore the above equality (Bl implies

ook S~ pier (B 7 7o o
(7) T72(4) . II —= k=01, . N-1L

Y
7=0 s=1,s#0 Yo = s

By using Cramer’s rule we obtain from (@)

N o5 N-
ak:—aNZ%k H(Vu‘ﬂ)a k=0,1,...,N —1.
o=1 pn=0

The choice ay = —1/N! together with (@) then gives, for all k =0,1,..., N — 1,

N k k Nflfy " N - ~
Klay = —1)k-r 7 _ EEL
®) =SS0 () Iy I 2

o=17=0 n=0 1,s#0

Thus we have explicitly constructed polynomials

N N
Qo(z) = Zakzk, Py(z) = Z cpzt, j=1,...,m,
k=0 n=0
such that deg Qo(z) = N,deg Foj(2) < N, and the remainder terms
ROJ(Z> = QO(Z)SOJ(Z)ip()](Z): Z Cj,uz'u‘a jil,,m
pu=N+n;+1

3 Explicit construction 2

The construction above is not enough, since we need m + 1 linearly independent approximations. To get
these we fix 7,1 < i < m, and denote
Yo=N+14+ A,

Y1 =N+14+X+01i,- Y, =N +n1+ A + 014,
'YnlJrl:N+1+)\2+52i7'-'77n1+n2:N+n2+>\2+52i;-'-
Yni+-4nm_1+1 :N+1+)\m+6m“,’}/N :N‘f’nm‘i‘)\m‘f’é‘m“

where ¢;; denotes Kronecker’s ¢. Instead of (@) we now consider the system of equations
ao + a1y + azyo(yo — 1) + - +any(yo — 1) - (o — (N = 1)) =1,

a0+a1’70+a2’70(’70_1)+'”+aN’yc'(’yU_1)”.(70_(N_l)):0’ UZla"'aNa

with a coefficient determinant

A= I (w-w#o0

0<L<j<N

By Cramer’s rule this system has a solution

where Agy is the cofactor of A corresponding to the 0, k-entry. To give aj explicitly we proceed as in
the previous section. Analogously to (B]) we now have

N
Ago + Dorz + Ap2z(z = 1) 4+ -+ Agnz(z = 1) -+ ( *(N*U):AH

s=1

2= s
Yo — Vs



Repeating the considerations leading to ({l) we then obtain

k N
9) Klag = > (~1)F7 <f_> [1—2. k=01,..,N

7=0 s=1 70 = Vs
For each ¢ = 1,..., N we have thus constructed polynomials
N+51]

N
Qi(z):Zaikzk, Pij(z) = Z ciyjp?ts g=1,...,m,
k=0 n=0

where a;;, = ay, are given in @), ¢;j, = ¢j, (With ap = aix), degQi(2) = N (ay = 0 implies ag = --- =
an—1=0), deg P;i(z) = N + 1,deg P;;(z) < N for all i # j, and the remainder terms

oo

Rij(z) := Qi(2)p(2) — Pij(z) = Z Cijut, j=1,...,m.
p=N+n;+14+68;;

These approximations and the approximation of the previous section satisfy the following lemma.

Lemma 1. The determinant
Q(2) = det(Qi(2) Pi(2) .. Pin(2))izo,1, . .m = czmTDN+m

where
_1 m N+1
c= [T I+
Ti=1v=1

Proof. The coefficients of the leading terms of Qo(z) and P;;(z) (i = 1,...,m) are —1/N! and
1/(Ai+1)--- (A + N +1)), respectively, here we use the first equation above satisfied by a;. Therefore
Q(z) is a polynomial of exact degree (m + 1)N 4+ m and the coefficient of the leading term of Q(z) is
the product of the above coefficients.

On the other hand

Q(z) = (-1)"det(Qi(2) Rir(2) ... Rim(2))i=0.1,...,m-

Since ord R;j(z) > N +n;+ 1 and N =nq + - - - + nyy, it follows that ord Q(z) > (m + 1)N + m. This
proves Lemma 1.

4 Denominators and upper bounds
We first give a lemma from [7, pp. 145-147] considering the quotients

1 n n
(@t Dn _, O (uny o) = Lon > 1,n=0,1,...,
n! Up,
where a = r/s # —1,—2,... with integers r and s > 1, (r,s) = 1, and (a)o = 1, (@), = a(a+1) - (a+
n—1) forn > 1.

Lemma 2. Let
U, = Hp[log(\rHsn)/logp], v, = s2".
pts



Then the least common multiples of ug,u1, ..., u, and of vg,v1,...,v, are divisors of U, and V,,, re-
spectively.

Let us denote
Aj = Q, (Tj,Sj) =1,5;2>21, A—Xj = ﬁ, (rkj,skj) =1,s,5 > 2.
Sj Skj
Further, let A .
R = max{|rj|},S = max{s;}, R = max{|ry;|}, S = max{sk;}.
Clearly R < 2RS and S < 52
We now consider the denominators of klay = kla;, in (@). Here the product

N m Nj
T — s N4+v+Xj+0;—71
Hi.,-ZZ = =
sl;ll%—% ]1;[1;_[:1 Aj—Ai+v+0j
ﬁ ((Aj+N+1—T)nj n;! ) N+ N+1 =71

J=1#i

By Lemma 2, the denominator of I, is a factor of

(H 5?("1"'611')) . H Hp[log(|7“ji|+5jinj)/logp]_
j=1

J=Lj#i p

Thus the denominators of all II;- are factors of

(10) D, = H(si("ﬂ'ﬂ) 1_[p[log(ﬁ“rﬁnj)/108;10])7

Jj=1 P

and so, by (@), all k!Dqa;, € Z (k=0,1,...,N;i=1,...,m). By the weak form of the prime number
theorem, see for example [2 p. 296], the number of primes p < z

T 6x
< 8log?2 <
m(x) < 8log logx logx
for all x > 1, and therefore
(11) Dy < §ENHMSRmESN) .

By Lemma 2 and the above expression for II;. we also have

m 277,]‘
5 1
) 23 [log(R+S(N+n;))/logply . _—_ [log(R+S(N+1+n;))/ logp]
J=L0F1 p p

< S3N66(Rm+S+S(m+1)N).

This implies, by @),

(12) |Klag| < 28 §3N SHEMTSTSTIN) — 9k py -k =0,1,...,Nyi=1,...,m,
and so

N
(13) |Qi(z)] < Z laz"| < Fre?l®l,

k=0



Next we consider the coefficients of the polynomials P;;(z),

7 b
klay, (u—k)!
-  u=0,1,...,N,
o= i, S W BT Oy T "

remember also, that ¢; n+1 = 1/(A\; + 1)v41. By Lemma 2 and the above considerations
(N + 1)!D20ii,N+17 N!DQCZ']'H S Z, 1<4,5< m;u = 0,1,..., N,
where

(14) Dy := D, Hp[log(R+s(N+1))/1ogp] < G2(N+m) 6(R+S+Rm+(S5+S)N) _. Es,

p

to get this upper bound we used (). Thus
(N + D)IDyQi(2), (N +1)!DyPyj(2) € Z[2], i,j=1,...,m.

Finally we need to consider the polynomials Qo(z) and Py;(z) constructed in Section 2, here the
coefficients ay, are given in ). If v, = N + £ + A, 1 < k < ngy, then the last product in @) is

. = ﬂ T — o H H N+1/+)\ ) (—1)s=1 ny!
UT SZLS#UWU 5= 1j;£tu1)\ - M+v—r" N4+rs+X—-7 (k—1)(n;—r)!
ﬁw_ [ QW+t ! DT
v=1 v =1 gkt nj! ()\j*)\tﬁ’l*li)nj Tt+(N+Ii*T)St

! M+ N4+1-7),,
(k= Dl(ne — w)! ng!

Since, for all ¢,k and 7, the number r; + (N + x — 7)s; is a factor of

H p[log(R+2NS)/ log p] ,

p

it follows by Lemma 2 that the denominators of all I} = are factors of

T

H 2"JH log(RJrSN)/logp])Hp[log(RJr?NS)/logp].
j=1

p

Moreover N1
T Yo =k Ae+1+K)N

T+p N! ’

pn=0
and so Lemma 2 and (8) imply that all k!Djar, € Z (k=0,1,...,N), where

(15) Di = ) H 2n; H log(RJrSN)/logp]) Hp[log(R+2NS)/logp]

p
< SQ(m+1)N€6(m(R+§N)+R+2SN) = B

Note here, that Dy | Dj.



We now use once again Lemma 2 to get

m an
M < [ (L [ plestresven/osn) ("t) T plostsveno oss)
J=L,j#t P

S; K .
< (45«3)N€6(Rm+5’(m+1)N).
Next we combine this estimate, the upper bound
N-1
Yo — H
1+p

< Hp[log(R+2NS)/logp] < 66(R+2SN)
p

n=0
obtained by Lemma 2, and (§)) to obtain
(16) |klag| < 2F(883)N bS(Hm+1+S(MA3)N) . ok pre.

An analog of ([3)) is now

N
(17) Qo(2)| < |agrz"| < Fye?ll.
k=0
The denominators of the coefficients cpj, of the polynomials Py;(z) can be considered similarly as
the coefficients of P;;(z) (i = 1,...,m) before, and these are factors of
(18) D% = D! Hp[log(R+SN)/1ogp] < G2(m+1)N 6(m(R+SN)+2R+35N)) _. B,
P

and clearly Do | Dj.
The above considerations lead to the following lemma.

Lemma 3. Let « = a/b # 0, where a,b € Zy. Then
|Q7,(a)| §661+02N, Z’:O,l’___’?rn7

where
c1 =6R(m+1)+2|a|, coa =log8+3logS + 6S(m+ 3).

Further, there exists an integer D(N) € Zy \ {0} such that
(N + 1)ID(N)Qi(a), (N +1)ID(N)Py(a) € Zc, i=0,1,...,m;j=1,...,m,

and
ID(N)| < esteal,

where
cs =log |b| + 12R(1 4+ Sm), ¢4 =log|b| +2(m + 1)log S + 6S(3 + Sm).

5 Remainder terms

In this section we give an upper bound for the remainder terms.

Lemma 4. We have

|((N 4+ DID(N)R;j(a)| < esteNN= i =0,1,...,m;j=1,...,m,



where
cs =c1+c3+1og2+2(S* —1)|al, c6 = ca +ca +3log2 + 4log S + 2logmax{1,|al}.

Proof. We first consider

oo

Roj(z) = Z cojvz”,
v=N+n;+1
where, by ([I6]) and Lemma 2,
N N
klay, 2k (v —k)! N (282~
1< e T g 7 < oN+1lp= )
o] < kzzok![yfk]j = 1z::k!(yfk)!|(xj+1)y,k| - Loy
Thus N
> 25%a|” 252" 2
Roi(a)| < 2N+l 7’ <oNHlpxlZ 1 o25%ef
[ Hoj(e)] < 1 ,,_N;zjﬂ = (N +nj +1)!

and so, by ([I6) and Lemma 3,
|(N + 1)!D(N)Ro;()| < ecsteeN =3,

For the consideration of R;;(z) (i > 1) we only need to replace above F;* by Fj. This proves Lemma 4.

6 Proof of Theorem 1

Let us denote
Qi = (N+1ID(N)Qi(w), Pij :==(N+1)ID(N)P;j(e), i=0,1,...,m;5=1,...,m.
By Lemma 3 all these numbers are integers in K, and
Qi < €N10gN+BlN+b3, bi=co+cat+1, by=ci+es
Lemma 1 implies that the determinant
det(Q; P ... Pim)i=01,...m # 0.
Further, by using Lemma 4, we see that if
Rij = Qipj(a) — Pj, i=0,1,....m;7=1,...,m,

then

—n,; log N+é1 N-+es 5 _
|Rij| <e 08N TANTE ) = ¢, e3 = cs.

By denoting b; = 51 +1,e1 = €1 + 1, we have
|Qz| S eNlogN—i—blN’ |Rij| S e i log N+e1 N
for all i, 5 and N > Ny := max{bs, e3}.
The application of [9, Corollary 3.5] gives now the following result for linear forms A = So+S1¢1 () +

o+ Bmpm(ar), where o = a/b € K\ {0} and a,b, 8; € Zk, (Bo, P15 - - -, Bm) # 0. Let H=(2m)™H,H =
H;nzl hj,hj = max{1,|8;|} ( = 1,...,m), and let o = max{1,z}, where z is the largest solution of

the equation zlogz = 2eym(x +m). If (Bo, B, - -, Bm) € ZiT\ {0} satisfies

2log H > max{2log Na, 2 log 2, e},



then

1 loglogﬁ Ay —1— A0by degm)
|A| ” om+1em(1+bi1+e1m) IOgﬁ ) H log log H
Here
14+by+etm=dy +d1m4rd2m2,
where

dp =34 3log2+5logS + 365 + log |b|,
di =1+6log2+ 9logS + 36S + log |b| + 2logmax{1, ||},
dy = 2log S + 65 + 652,
remember that R = max{|r;|} and S = max{s;}, where r;/s; = A;. Thus

6(dg+dimtdom?)

|A| > H717 Tog log H

for all H > Hy, where Hj is an effectively computable positive constant depending on Ay,..., Ay, m
and «. This proves Theorem 1.
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