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Abstract
In this paper we investigate Besov spaces on graded Lie groups. We prove a Nikolskii type
inequality (or the Reverse Hölder inequality) on graded Lie groups and as consequence we
obtain embeddings of Besov spaces. We prove a version of the Littlewood-Paley theorem on
graded Lie groups. The results are applied to obtain embedding properties of Besov spaces
and multiplier theorems for both spectral and Fourier multipliers in Besov spaces on graded
Lie groups. In particular, we give a number of sufficient conditions for the boundedness of
Fourier multipliers in Besov spaces.
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1 Introduction

In this paper we are interested in advancing the notions and results of harmonic analysis in
the setting of graded Lie groups, building up on the fundamental book [12] of Folland and
Stein, as well as on more recent developments over the decades, in particular summarised in
the recent book [9] by Véronique Fischer and the second author. Indeed, as it was pointed
out by Folland and Stein, the setting of homogeneous groups is ideal for the distillation
of those results of harmonic analysis that depend only on the group and dilation structures
of the underlying space, while the setting of graded Lie groups allows one to also use the
techniques coming from the theory of partial differential operators. The difference between
the classes of nilpotent, homogeneous and graded Lie groups is rather small, with themajority

B Michael Ruzhansky
Michael.Ruzhansky@ugent.be

Duván Cardona
duvanc306@gmail.com; Duvan.CardonaSanchez@ugent.be

1 Department of Mathematics, Analysis, Logic and Discrete Mathematics, Ghent University,
Ghent, Belgium

2 School of Mathematical Sciences, Queen Mary University of London, London, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11118-023-10076-7&domain=pdf
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of nilpotent Lie groups allowing for a compatible graded structure, see [9, Chapter 3] for a
detailed explanation. In particular, this setting includes the class of stratified groups [11]when
the Rockland operator can be chosen to be the sub-Laplacian. We also mention that general
Rockland operators on graded Lie groups naturally appear when one is dealingwith questions
concerning general partial differential operators on manifolds, as their liftings following the
celebrated lifting procedure of Rothschild and Stein [24].

Summarising the research of this paper, here we obtain the following results:

• establish the Nikolskii (or the reverse Hölder) inequality in the setting of graded Lie
groups in terms of its homogeneous dimension. We believe such a result to be new
already on stratified groups, and even on the Heisenberg group;

• prove the Littlewood-Paley theorem on graded Lie groups for the dyadic decomposition
associated to positive Rockland operators;

• investigate homogeneous and inhomogeneous Besov spaces in terms of Rockland opera-
tors and prove their embedding properties. We show that the Besov spaces in this context
are also the interpolation spaces between Sobolev spaces, and prove that they are inde-
pendent of a particular choice of the Rockland operator used to define them. We also
prove their embedding properties with the usual (locally defined) Besov spaces on R

n ;
• apply these results to establish multiplier theorems for spectral and Fourier multipliers
in Besov spaces on graded Lie groups. More precisely, we give negative results on the
boundedness of invariant operators in Besov spaces. For Fourier multipliers, we show
that the boundedness between L p-spaces implies the boundedness on Besov spaces and
give several applications of this result to Fourier multipliers using Hörmander-Mihlin
type and other theorems in this setting.

Nikolskii-type inequalities, following the usual terminology, are, roughly speaking,
inequalities between different metrics of the same function (usually trigonometric poly-
nomials). Nikolskii [19] in 1951 proved the inequalities for 1 ≤ p ≤ q ≤ ∞:

‖TL1,L2,...,Ln‖Lq [0,2π ] ≤ 2n[(2π)n L1L2 · · · Ln]
1
p − 1

q ‖TL1,L2,...,Ln‖L p[0,2π ], (1.1)

for trigonometric polynomials of the form

TL1,L2,...,Ln =
n∑

k=1

Lk∑

jk=−Lk

c j1, j2,..., jk e
i( j1x1+··· jk xk ), (1.2)

as well as for entire functions of exponential type. Sometimes such inequality is also called
the reverse Hölder inequality in the literature.

On R
n, the Nikolskii inequality takes the form

‖ f ‖Lq (Rn) ≤ C[μ[c.h.[supp( f̂ )]]] 1
p − 1

q ‖ f ‖L p(Rn), (1.3)

for every function f ∈ L p(Rn) with Fourier transform f̂ of compact support. Here, c.h.(E)
denotes the convex hull of the set E . Recently, the Nikolskii inequality has been considered
in the setting of Lie groups G. In [23], Pesenson has obtained the Nikolskii inequality for
symmetric spaces G/K of non-compact type. For the formulation of the Nikolskii inequality
on arbitrary compact manifolds we refer the reader to Pesenson [22]. On the other hand,
for compact homogeneous manifolds G/K , in [20] the following Nikolskii inequality was
obtained:

‖TL‖Lq (G/K ) ≤ N (ρL)
1
p − 1

q ‖TL‖L p(G/K ), (1.4)
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for 0 < p < q ≤ ∞; here, if 0 < p ≤ 2, ρ := 1, and for 2 < p ≤ ∞, ρ := [ p2 ] + 1,
N (L) � LdimG/K is theWeyl eigenvalue counting function for the elliptic pseudo-differential

operator (I − LG/K )
1
2 , where LG/K is the Laplacian on G/K .

In this paper we prove a Nikolskii type inequality in the framework of graded Lie groups
G. We believe this to be new also on stratified groups, even on the Heisenberg group.

This inequality is important inmathematical analysis because it is a fundamental tool in the
proof of several embeddings properties of important function spaces such as Besov spaces.
The Besov spaces form scales Br

p,q(G) carrying three indices r ∈ R, 0 < p, q ≤ ∞, and
they can be obtained by interpolation of suitable Sobolev spaces. As it was discussed in [10],
Sobolev spaces can be defined onR

n, and on compact and non-compact Lie groups in various
equivalent ways. In a recent work of the second author with V. Fischer, Sobolev spaces were
introduced on arbitrary graded Lie groups by using positive Rockland operators (see [10]).
It is important to mention that Sobolev spaces on stratified Lie groups were introduced by
Folland in [11] by using sub-Laplacians, and it was proved (see also [12]) that these spaces
are different from their Euclidean counterpart defined by the Fourier transform or by using
the local properties of the Laplace operators. The Folland’s Sobolev spaces coincide with
those introduced in [10] on graded Lie groups in the setting of stratified groups. We also refer
to [2] for a number of useful inequalities on graded Lie groups.

In this paper we use positive Rockland operators in order to introduce Besov spaces
on graded Lie groups, and later on, we prove that our Besov spaces can be obtained by
interpolation of the Sobolev spaces introduced in [10]. For special cases of parameters p, q
and r , Besov spaces were also considered by Bahouri, Gérard and Xu in [3]. Apart of the
trivial embeddings that can be obtained on the q parameters for Besov spaces Br

p,q(G), the
Nikolskii inequality will be a useful tool in order to establish embeddings that involve the
parameters r and p.

As a substitute of the Plancherel theorem on L2(G), in L p(G) spaces, we prove a version
of the Littlewood-Paley theorem and we will use both, our Nikolskii inequality and our
Littlewood-Paley theorem in order to get boundedness of Fourier multipliers and spectral
multipliers on Besov spaces. For the case of Fourier multipliers we will use the version of
the Hörmander-Mihlin theorem in the nilpotent setting [8].

We note that in the case of the sub-Laplacian, a wealth of results is available, to mention
only a few, see e.g. Folland [11] and Saka [25] for Sobolev spaces and Besov spaces on
stratified groups, respectively; Furioli, Melzi and Veneruso [13] and Alexopoulos [1] for the
Littlewood-Paley theorem and Besov spaces, and for spectral multiplier theorems for the
sub-Laplacian on Lie groups of polynomial growth, respectively. There are also many results
on functions of sub-Laplacians in the fundamental monograph by Varopoulos, Saloff-Coste
and Coulhon [26].

The novelty of this paper is that we are working with Rockland operators; these are linear
invariant homogeneous hypoelliptic partial differential operators, in view of the Helffer and
Nourrigat’s resolution of the Rockland conjecture in [16]. Such operators always exist on
graded Lie groups and, in fact, the existence of such operators on nilpotent Lie groups
does characterise the class of graded Lie groups, see [9, Section 4.1] for further details and
references. As the literature concerning the analysis based on sub-Laplacians is immense,
we do not review it here, but refer to the introduction in [9] for a more extensive presentation
of the subject. Some results of this paper were announced in [5].

This paper is organised as follows. In Section 2 we present some preliminaries on the
Fourier analysis of graded Lie groups and its homogeneous structure, and we present positive
Rockland operators and elements of their functional calculus. For this we follow [9]. In
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Section 3 we prove our version of the Nikolskii inequality for functions defined on graded Lie
groups. In Section 4 we prove our version of the Littlewood-Paley theorem. In Section 5 we
define Besov spaces and we prove some embedding properties for these spaces. In Section 6
we prove that Besov spaces can be obtained by interpolation of Sobolev spaces in the nilpotent
setting and in Section 6.1 we prove further interpolation properties. In Section 7 we show
embedding properties between localisation of these Besov spaces and the usual (Euclidean)
Besov spaces.

Finally, in Section 8 we study the boundedness of Fourier multipliers and spectral multi-
pliers in Besov spaces. In the case of Fourier multipliers, we prove that L p(G)-multipliers on
graded nilpotent Lie groups generate multipliers in Besov spaces Br

p,q(G). As a consequence
of this fact, we end Section 8 with several examples on multipliers.

2 Preliminaries

In this section, we recall some preliminaries on graded and homogeneous Lie groups G. The
unitary dual of these groups will be denoted by Ĝ. We also present the notion of Rockland
operators and Sobolev spaces on G and on the unitary dual Ĝ by following [8], to which we
refer for further details on constructions presented in this section.

2.1 Homogeneous and Graded Lie Groups

Let G be a graded Lie group. This means that G is a connected and simply connected Lie
groupwhose Lie algebra gmay be decomposed as the sumof subspaces g = g1⊕g2⊕· · ·⊕gs
such that [gi , g j ] ⊂ gi+ j , and gi+ j = {0} if i + j > s. This implies that the group G is
nilpotent because the sequence

g(1) := g, g(n) := [g, g(n−1)]
defined inductively terminates at {0} in a finite number of steps. Examples of such groups are
the Heisenberg group H

n and more generally any stratified groups where the Lie algebra g
is generated by g1. The exponential mapping from g to G is a diffeomorphism, then, we can
identify G with R

n or g1×g2×· · ·×gs as manifolds. Consequently we denote byS (G) the
Schwartz space of functions on G, by considering the identification G ≡ R

n . Here, n is the
topological dimension of G, n = n1 + · · · + ns, where nk = dimgk . A family of dilations
Dr , r > 0, on a Lie algebra g is a family of linear mappings from g to itself satisfying the
following two conditions:

• For every r > 0, Dr is a map of the form

Dr = Exp(ln(r)A)

for some diagonalisable linear operator A on g.

• ∀X , Y ∈ g, and r > 0, [Dr X , DrY ] = Dr [X , Y ].
We call the eigenvalues of A, ν1, ν2, · · · , νn, the dilations weights or weights of G. A
homogeneous Lie group is a connected simply connected Lie group whose Lie algebra g

is equipped with a family of dilations Dr . In such case, and with the notation above, the
homogeneous dimension of G is given by

Q = Tr(A) =
s∑

l=1

l · dim gl .
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We can transport dilations Dr of the Lie algebra g to the group by considering the family of
maps

expG ◦Dr ◦ exp−1
G , r > 0,

where expG : g → G is the usual exponential function associated to the Lie group G. We
denote this family of dilations also by Dr and we refer to them as dilations on the group. If
we write r x = Dr (x), x ∈ G, r > 0, then a relation on the homogeneous structure of G and
the Haar measure dx on G is given by

∫

G
( f ◦ Dr )(x)dx = r−Q

∫

G
f (x)dx .

2.2 The Unitary Dual and the Plancherel Theorem

We will always equip a graded Lie group with the Haar measure dx . For simplicity, we
will write L p(G) for L p(G, dx). We denote by Ĝ the unitary dual of G, that is the set of
equivalence classes of unitary, irreducible, strongly continuous representations of G acting
in separable Hilbert spaces. The unitary dual can be equipped with the Plancherel measure
dμ. So, the Fourier transform of every function ϕ ∈ S (G) at π ∈ Ĝ is defined by

(FGϕ)(π) ≡ ϕ̂(π) =
∫

G
ϕ(x)π(x)∗dx,

and the corresponding Fourier inversion formula is given by

ϕ(x) =
∫

Ĝ
Tr(π(x)ϕ̂(π))dμ(π).

In this case, we have the Plancherel identity

‖ϕ‖L2(G) =
(∫

Ĝ
Tr(ϕ̂(π)ϕ̂(π)∗)dμ(π)

) 1
2 = ‖ϕ̂‖L2(Ĝ).

We also denote ‖ϕ̂‖2HS = Tr(ϕ̂(π)ϕ̂(π)∗) the Hilbert-Schmidt norm of operators. A Fourier
multiplier is formally defined by

Tσ u(x) =
∫

Ĝ
Tr(π(x)σ (π)̂u(π))dμ(π), u ∈ C∞

0 (G), (2.1)

where the symbol σ(π) is defined on the unitary dual Ĝ of G. It is easy to see e.g. that
for σ ∈ L∞(Ĝ), that is ‖σ‖L∞(Ĝ) := supπ∈Ĝ ‖σ(π)‖op < ∞, Tσ : L2(G) → L2(G) is
bounded. For a rather comprehensive treatment of this quantization we refer to [9] and to
references therein.

2.3 Homogeneous Linear Operators and Rockland Operators

Let us denote byD(G) the family of compactly supported smooth functionsC∞
0 (G) endowed

with its standard Fréchet structure and let us denote by D ′(G) its topological dual space. A
linear operator T : D(G) → D ′(G) is homogeneous of degree ν ∈ C if for every r > 0

T ( f ◦ Dr ) = rν(T f ) ◦ Dr (2.2)

holds for every f ∈ D(G).
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If for every representation π ∈ Ĝ, π : G → U (Hπ ), we denote by H∞
π the set of

smooth vectors (also called Gårding vectors), that is, the space of vectors v ∈ Hπ such that
the function x �→ π(x)v, x ∈ Ĝ, is smooth, a Rockland operator is a left-invariant partial
differential operator

R =
∑

|α|≤m

aαX
α : C∞(G) → C∞(G)

which is homogeneous of positive degree ν = νR and such that, for every unitary irreducible
non-trivial representation π ∈ Ĝ, its symbol π(R) defined via the Fourier inversion formula
by

R f (x) = ∫̂
G
Tr[π(x)π(R) f̂ (π)]dπ, x ∈ G, (2.3)

is injective on H∞
π .

It can be shown that a Lie group G is graded if and only if there exists a differential
Rockland operator on G, see e.g. [9, Page 172]. If the Rockland operator is formally self-
adjoint, thenR and π(R) admit self-adjoint extensions on L2(G) andHπ , respectively. Now
if we preserve the same notation for their self-adjoint extensions and we denote by E and
Eπ their spectral measures, by functional calculus we have

R =
∞∫

−∞
λdE(λ), and π(R) =

∞∫

−∞
λdEπ (λ).

We now recall a lemma on dilations on the unitary dual Ĝ, which will be useful in our
analysis of spectral multipliers. For the proof, see Lemma 4.3 of [8].

Lemma 2.1 For every π ∈ Ĝ let us define Dr (π) = π(r) by Dr (π)(x) = π(r x) for every
r > 0 and x ∈ G. Then, if f ∈ L∞(R) then f (π(r)(R)) = f (rνπ(R)).

We refer to [9, Chapter 4] and references therein for an exposition of further properties
of Rockland operators and their history, and to ter Elst and Robinson [6] for their spectral
properties.

2.4 Sobolev Spaces and the Hörmander-Mihlin Theorem

In order to define Sobolev spaces, we choose a positive left-invariant Rockland operator R
of homogeneous degree ν > 0. With notations above one defines Sobolev spaces as follows
(c.f [9]).

Definition 2.2 Let r ∈ R, the homogeneous Sobolev space Ḣr ,p(G) consists of those f ∈
D′(G) satisfying

‖ f ‖Ḣr,p(G) := ‖R r
ν f ‖L p(G) < ∞. (2.4)

Analogously, the inhomogeneous Sobolev space Hr ,p(G) consists of those distributions
f ∈ D′(G) satisfying

‖ f ‖Hr,p(G) := ‖(I + R)
r
ν f ‖L p(G) < ∞. (2.5)

We record that a homogeneous quasi-norm on a graded Lie group G, is a continuous non-
negative function | · | : G → [0,∞) such that: (i) ∀x ∈ G, |x | = |x−1|, (ii) | · | is
1-homogeneous, i.e. ∀x ∈ G, ∀r > 0, |r x | = r |x |, and (iii) |x | = 0 if and only if x = eG
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is the identity element of G. In terms of the coordinate functions x �→ xi on G, a concrete
example of a homogeneous quasi-norm is the following one

|x | :=
⎛

⎝
n∑

j=1

|x j |
p

ν j

⎞

⎠

1
p

, p := 2ν1 · · · νn . (2.6)

Any two different homogeneous quasi-norms on a graded Lie group are equivalents, see e.g.
Proposition 3.1.35 in [9, Page 110].

By using a quasi-norm | · | on G we can introduce for every r ≥ 0, the inhomogeneous
Sobolev space of order r on Ĝ, Hr (Ĝ) which is defined by

Hr (Ĝ) = FG(L2(G, (1 + | · |)2r dx)),
whereFG is the Fourier transform on the group G. In a similar way, for r ≥ 0 the homoge-
neous Sobolev space Ḣr (Ĝ) is defined by

Ḣr (Ĝ) = FG(L2(G, | · |2r dx)).
As usual if r = 0 we denote L2(Ĝ) = Ḣ0(Ĝ) = H0(Ĝ). Characterisations of Sobolev
spaces on G and on the unitary dual Ĝ in terms of homogeneous norms on G can be found
in [8] and [9], respectively.

Finally we present the Hörmander-Mihlin theorem for graded nilpotent Lie groups. This
theorem will be useful in our proof of the Littlewood-Paley theorem. The formulation of
such result requires a local notion of Sobolev space on the dual space Ĝ. We introduce this
as follows. Let s ≥ 0, we say that the field σ = {σ(π) : π ∈ Ĝ} is locally uniformly in
right-Hs(Ĝ) (resp. left-Hs(Ĝ)) if there exists a positive Rockland operatorR and a function
η ∈ D(G) satisfying

‖σ‖Hs ,l.u,R,η,R := sup
r>0

‖{σ(π(r))η(π(R))}‖Hs (Ĝ) < ∞, (2.7)

respectively,
‖σ‖Hs ,l.u,L,η,R := sup

r>0
‖{η(π(R))σ (π(r))}‖Hs (Ĝ) < ∞. (2.8)

It important to mention that if φ is another function in D(0,∞) then (see [8])

‖σ‖Hs ,l.u,R,η,R � ‖σ‖Hs ,l.u,R,φ,R, and ‖σ‖Hs ,l.u,L,η,R � ‖σ‖Hs ,l.u,L,φ,R. (2.9)

The following lemma shows how Sobolev spaces on the unitary dual interact with the family
of dilations.

Lemma 2.3 Let σ ∈ L2(Ĝ). If r > 0 and s ≥ 0 then

‖σ ◦ Dr‖Ḣ s (Ĝ) = rs−
Q
2 ‖σ‖Ḣ s (Ĝ). (2.10)

This implies that σ ∈ Ḣ s(Ĝ) if only if for every r > 0, σ ◦ Dr ∈ Ḣ s(Ĝ). Also, if R,S are
positive Rockland operators and η, ζ ∈ D(0,∞), η, ζ �= 0, then there exists C > 0 such
that

‖σ‖Hs ,l.u,L,ζ,S ≤ C‖σ‖Hs ,l.u,L,η,R (2.11)

and
‖σ‖Hs ,l.u,R,ζ,S ≤ C‖σ‖Hs ,l.u,R,η,R. (2.12)
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972 D. Cardona and M. Ruzhansky

Proof By Lemma 2.1 or Lemma 4.3 of [8] we have

‖σ ◦ Dr‖Ḣ s (Ĝ) = ‖| · |sF−1
G (σ ◦ Dr )‖L2(G) = ‖| · |sr−QF−1

G (σ )(r−1·)‖L2(G)

= r− Q
2 ‖|r · |sF−1

G (σ )‖L2(G)

= rs−
Q
2 ‖σ‖Ḣ s (Ĝ).

With the equality above, it is clear that σ ∈ Ḣ s(Ĝ) if only if for every r > 0, σ ◦Dr ∈ Ḣ s(Ĝ).

The second part of the Lemma has been shown in Proposition 4.6 of [8].

Now, we state the Hörmander-Mihlin theorem on the graded nilpotent Lie group G (c.f.
Theorem 4.11 of [8]):

Theorem 2.4 Let G be a graded Lie group. Let σ ∈ L2(Ĝ). If

‖σ‖Hs ,l.u,L,η,R, ‖σ‖Hs ,l.u,R,η,R < ∞, (2.13)

with s >
Q
2 , then the corresponding multiplier Tσ extends to a bounded operator on L p(G)

for all 1 < p < ∞. Moreover

‖Tσ ‖L(L p(G)) ≤ C max{‖σ‖Hs ,l.u,L,η,R, ‖σ‖Hs ,l.u,R,η,R}. (2.14)

The following remarks will be useful in our formulation of the Littlewood-Paley theorem.

Remark 2.5 (On the proof of the Hörmander-Mihlin Theorem) The proof of the Hörmander-
Mihlin theorem (c.f. Theorem 4.11 of [8]) on graded Lie groups uses a suitable Littlewood-
Paley decompostions of the symbol. Indeed, for σ satisfying (2.13), the L p-boundedness of
Tσ is proved in Theorem 4.11 of [8], by decomposing

Tσ =
∑

j≥0

Tj , Tj := Tσ ψ j (R), (2.15)

and using that the right-convolution kernels of the family Tj , k j := F−1(σTj ), summed on
j, provide the distributional kernel of T , k = ∑

j k j , which agrees with a locally integrable
function on G \ {0}, such that, for every c > 0,

I := sup
z∈G

∫

|x |>4c|z|
|2−Qκ(2

− · z−1x) − 2−Qκ(2
− · x)|dx, (2.16)

satisfies (see [8], p. 26), I � 2−ε0 max{‖σ‖Hs ,l.u,L,η,R, ‖σ‖Hs ,l.u,R,η,R}, for some ε0 >

0, depending only of c > 0. The proof of the Hörmander-Mihlin theorem developed by V.
Fischer and the second author consists of proving that this kernel estimates are sufficiently
good in order that

‖Tj‖B (L p(G)) ≤ I j max{‖σ‖Hs ,l.u,L,η,R, ‖σ‖Hs ,l.u,R,η,R}
and consequently

‖T ‖B (L p(G)) �
∑

j

2− jε0 max{‖σ‖Hs ,l.u,L,η,R, ‖σ‖Hs ,l.u,R,η,R}.

In particular, if T = I , is the identity operator on L p(G), σ (π) = IHπ , is the identity
operator on Hπ , and the right convolution kernel κ associated with ψ(R), satisfies the
estimate

I � 2−ε0 . (2.17)
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The inequality (2.17) will be useful in our proof in the Littlewood-Paley theorem.

In the next sections, we present our main results. We start with a formulation of the
Nikolskii inequality on graded Lie groups.

3 Nikolskii Inequality on Graded Lie Groups

Let G be a graded Lie group with a family of dilations Dt , t > 0. Let R be a positive
Rockland operator of homogeneous degree ν > 0, and for every L > 0, let us consider the

linear operator ψL(R 1
ν ), defined by the functional calculus, where ψL(t) := ψ(L−1t) and

ψ ∈ D(0,∞) = C∞
0 (0,∞) is a function with compact support in [ 12 , 2]. In terms of the

spectral resolution (E(λ))λ≥0 associated with R 1
ν , we have

tL f ≡ ψL (R 1
ν ) f :=

∫ ∞

0
ψ(L−1λ)dE(λ) f , (3.1)

for every f ∈ S (G). Then tL is a spectral multiplier and

FG(tL f )(π) =
(∫ ∞

0
ψL(λ)dEπ (λ)

)
f̂ (π),

where (Eπ (λ))λ≥0 is the spectral resolution of π(R). We define

Eπ (L) =
∫ ∞

0
φ(L−1λ)dEπ (λ),

where φ ∈ D(0,∞) is a function satisfying φ = 1 on [ 12 , 1]. In terms of the Fourier inversion
formula we have

tL f (x) =
∫

Ĝ
Tr[π(x)Eπ (L)ψL(π) f̂ (π)]dπ. (3.2)

With the notations abovewe present our version of theNikolskii inequality in the following
theorem.

Theorem 3.1 Let G be a graded Lie group of homogeneous dimension Q, and let us consider
the operator tL as in (3.2). If 1 ≤ p ≤ q ≤ ∞ then

‖tL f ‖Lq ≤ ‖F−1
G [Eπ (1)]‖Lr LQ( 1

p − 1
q )‖tL f ‖L p , (3.3)

where r = (1 + (1/q − 1/p))−1. Since F−1
G [Eπ (1)] ∈ S (G), its Lr -norm is finite.

Remark 3.2 As the reviewer of this paper pointed out, an important difference between (3.3)
and (1.3) is that the description in (3.3) is based on the “one dimensional" spectral calculus
while the formulation of (1.3) is based on the Fourier transform on R

n . One reason for this
is that our analysis is formulated in terms of the spectral calculus of Rockland operators.

Proof Let us define for every L > 0, the function

gL := L−Q(tL f ) ◦ DL−1 ,
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974 D. Cardona and M. Ruzhansky

i.e., gL(x) = L−Q(tL f )(L−1x), x ∈ G. For every π ∈ Ĝ we have

ĝL(π) =
∫

G
L−Q(tL f )(L−1x)π(x)∗dx

=
∫

G
(tL f )(y)π(Ly)∗dy

= t̂L f (π(L·)).
In view of Lemma 2.1, (or [8, Lemma 4.3]) we have that

ĝL(π)= t̂L f (π(L·))=ψ(L−1π(L
1
ν )(R))=ψ(L−1Lπ(R))=ψ(π(R))= Eπ (1)ψ(π(R)),

and consequently, we have shown that

ĝL(π) = Eπ (1)ĝL(π),

in view of the properties of the functional calculus. Hence

gL(x) = gL ∗ F−1
G [Eπ (1)](x), x ∈ G.

By applying Young inequality we have

‖gL‖Lq ≤ ‖F−1
G [Eπ (1)]‖Lr ‖gL‖L p , (3.4)

provided that 1
p + 1

r = 1
q + 1. We observe that the condition 1 ≤ p ≤ q ≤ ∞ implies that

0 ≤ 1
r = 1 + 1

q − 1
p ≤ 1 and consequently 1 ≤ r ≤ ∞. Observe that for every a > 0, we

have

‖gL‖La(G) =
(∫

G
|gL(x)|adx

) 1
a =

(∫

G
L−Qa |tL f (L−1x)|adx

) 1
a

=
(∫

G
L [Q−Qa]|tL f (y)|ady

) 1
a

= LQ( 1a −1)‖tL f ‖La .

So, by the inequality (3.4), we have

LQ( 1q −1)‖tL f ‖Lq ≤ ‖F−1
G [Eπ (1)]‖Lr LQ( 1

p −1)‖tL f ‖L p . (3.5)

Thus, we obtain

‖tL f ‖Lq ≤ ‖F−1
G [Eπ (1)]‖Lr LQ( 1

p − 1
q )‖tL f ‖L p . (3.6)

This completes the proof.

4 A Vector Valued-Inequality for Littlewood-Paley Decompositions
and the Littlewood-Paley Theorem on Graded Lie Groups

The Littlewood-Paley theory provides a partial substitute in L p spaces for the results derived
from the Plancherel theorem. The main notion in the Littlewood-Paley theory is the concept
of a dyadic decomposition. Here, the sequence {ψl}l∈N0 is a dyadic decomposition, defined
as follows: we choose a function ψ0 ∈ C∞

0 (R), ψ0(λ) = 1, if |λ| ≤ 1, and ψ0(λ) = 0, for
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|λ| ≥ 2. For every j ≥ 1, let us define ψ j (λ) = ψ0(2− jλ) − ψ0(2− j+1λ). For ψ(λ) :=
ψ0(λ) − ψ0(2λ), ψ j (λ) = ψ(2− jλ). In particular, we have

∑

l∈N0

ψl(λ) = 1, for every λ > 0. (4.1)

For versions of the Littlewood-Paley theorem for the sub-Laplacian on the Heisenberg group
we can refer to Bahouri, Gérard and Xu [3], and for sub-Laplacians on groups of polynomial
growth see Furioli, Melzi andVeneruso [13]. Here we prove it for general Rockland operators
on graded groups. Nowwe present the Littlewood-Paley theorem in the form of the following
result.

Theorem 4.1 Let 1 < p < ∞ and let G be a graded Lie group. If R is a positive Rockland
operator then there exist constants 0 < cp,Cp < ∞ depending only on p and ψ0 such that

cp‖ f ‖L p(G) ≤
∥∥∥∥∥∥

( ∞∑

l=0

|ψl((1 + R)
1
ν ) f |2

) 1
2

∥∥∥∥∥∥
L p(G)

≤ Cp‖ f ‖L p , (4.2)

holds for every f ∈ L p(G). Moreover, for p = 1, there exists a constant C > 0 independent
of f ∈ L1(G) and t > 0, such that

∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)
1
ν ) f (x)|2

) 1
2

> t

⎫
⎬

⎭

∣∣∣∣∣∣
≤ C

t
‖ f ‖L1(G). (4.3)

For the proof of Theorem 4.1, we will assume for a moment the following theorem.

Theorem 4.2 Let 1 < p, r < ∞ and let G be a graded Lie group. IfR is a positive Rockland
operator then there exist constants Cp > 0 depending only on p and ψ0, such that
∥∥∥∥∥∥

( ∞∑

=0

|ψ((1+R)
1
ν ) f|r

) 1
r

∥∥∥∥∥∥
L p(G)

≤Cp

∥∥∥∥∥∥

( ∞∑

=0

| f(x)|r
) 1

r

∥∥∥∥∥∥
L p(G)

=:Cp‖{ f}‖L p(G,r (Nn
0))

.

(4.4)
Moreover, for p = 1, there exists a constant C > 0 independent of { f} ∈ L1(G, r (N0))

and t > 0, such that
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)
1
ν ) f(x)|r

) 1
r

> t

⎫
⎬

⎭

∣∣∣∣∣∣
≤ C

t
‖{ f}‖L1(G,r (N0)

. (4.5)

Proof of Theorem 4.1 First wewill prove that for every positive function f ∈ L p(G)∩L1(G),

the estimate ∥∥∥∥∥∥

( ∞∑

l=0

|ψl((1 + R)
1
ν ) f |2

) 1
2

∥∥∥∥∥∥
L p(G)

≤ Cp‖ f ‖L p(G), (4.6)

holds true for every 1 < p < ∞, and the inequality in the right hand side of (4.6) can be
extended to general f ∈ L p(G) by the density argument. We will employ an argument of
interpolation. First, let us prove (4.3). Indeed, it is equivalent to the fact that the vector-valued
operator

W ( f ) = {ψ((1 + R)1/ν) f }∞=0, (4.7)
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admits a bounded extension from L1(G) into L1,∞(G, 2(Nn
0)). In view of the almost

orthogonality of the functions x �→ f(x) := ψ((1 + R)1/ν) f (x), on L2(G), which is
a consequence of the following property on the supports of the functions ψ,

supp(ψ) ∩ supp(ψ′) = ∅, | − ′| ≥ 2, (4.8)

we have
∫

G

∞∑

=0

|ψ((1 + R)1/ν) f (x)|2dx �
∞∑

=0

∫

G

|ψ((1 + R)1/ν) f (x)|2dx

�
∫

G

|
∞∑

=0

ψ((1 + R)1/ν) f (x)|2dx

=
∫

G

| f (x)|2dx,

which implies thatW admits a bounded extension from L2(G) into L2(G, 2(Nn
0)). So, if we

prove (4.3), interpolating with the L2(G) − L2(G, 2(Nn
0))-boundedness of W , we obtain

that W extends to a bounded operator from L p(G) into L p(G, 2(Nn
0)), for all 1 < p ≤ 2.

Wewill then extend the boundedness ofW for all 2 ≤ p < ∞, by using the duality argument.
So, our proof consists of the following steps.

• Step 0. Assume that f is a non-negative function in L p(G).

• Step 1. Prove the weak (1, 1)-inequality (4.3).
• Step 2. Interpolation between (4.3) and the boundedness of W from L2(G) into

L2(G, 2(Nn
0)), in order to prove (4.6) for all 1 < p ≤ 2.

• Step 3. Apply the duality argument for extending (4.6) for all 2 ≤ p < ∞.

• Step 4. Proof of the left hand side of (4.2).
• Step 5. Extend (4.2) and (4.3) to general real-valued functions in L p(G).
• Step 6. Extend (4.2) and (4.3) to general complex-valued functions in L p(G).

Step 1. Apply the Calderón-Zygmund decomposition Lemma to the non-negative function
f ∈ L p(G) ∩ L1(G) ⊂ L1(G), under the identification G � R

n, (see, e.g. Hebish [15]) in
order to obtain a disjoint collection {I j }∞j=0 of disjoint open sets such that

• f (x) ≤ t, for a.e. x ∈ G \ ∪ j≥0 I j ,
• ∑ j≥0 |I j | ≤ C

t ‖ f ‖L1(G), and
• t |I j | ≤ ∫

I j
f (x)dx ≤ 2|I j |t, for all j .

Moreover, for every j, let us define R j by

R j := sup{R > 0 : B(z j , R) ⊂ I j , for some z j ∈ I j }, (4.9)

where B(z j , R) = {x ∈ I j : |z−1
j x | < R}. Then, we can assume that every I j is diffeomor-

phic to an open cube on R
n, that it is bounded, and that I j ⊂ B(z j , 2R j ), where z j ∈ I j

(see Hebish [15]).

Remark 4.3 Before of continuing with the proof note that by assuming f (eG) > t, (this just
re-defining f ∈ L p(G) ∩ L1(G) at the identity element) we should have that

eG ∈
⋃

j

I j , (4.10)

because f (x) ≤ t, for a.e. x ∈ G \ ∪ j≥0 I j .
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Let us define, for every x ∈ I j ,

g(x) := 1

|I j |
∫

I j

f (y)dy, b(x) = f (x) − g(x), (4.11)

and for x ∈ G \ ∪ j≥0 I j ,
g(x) = f (x), b(x) = 0. (4.12)

Observe that for every x ∈ I j ,

|g(x)| =

∣∣∣∣∣∣∣

1

|I j |
∫

I j

f (y)dy

∣∣∣∣∣∣∣
≤ 2t .

In view of the Minkowski inequality, we deduce that

∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν) f (x)|2
) 1

2

> t

⎫
⎬

⎭

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν)g(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

+
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣
.

By the Chebyshev inequality, we have

∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν) f (x)|2
) 1

2

> t

⎫
⎬

⎭

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν)g(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

+
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

=
∣∣∣∣∣

{
x ∈ G :

∞∑

=0

|ψ((1 + R)1/ν)g(x)|2 >
t2

22

}∣∣∣∣∣

+
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

≤ 22

t2

∫

G

∞∑

=0

|ψ((1+R)1/ν)g(x)|2dx+
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1+R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣
.
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In view of the almost orthogonality of the functions x �→ g(x) := ψ((1+R)1/ν)g(x),
on L2(G), we have

∫

G

∞∑

=0

|ψ((1 + R)1/ν)g(x)|2dx =
∞∑

=0

∫

G

|ψ((1 + R)1/ν)g(x)|2dx

�
∫

G

|
∞∑

=0

ψ((1 + R)1/ν)g(x)|2dx =
∫

G

|g(x)|2dx .

The estimate

‖g‖2L2(G)
=
∫

G

|g(x)|2dx =
∑

j

∫

I j

|g(x)|2dx +
∫

G\∪ j I j

|g(x)|2dx

=
∑

j

∫

I j

|g(x)|2dx +
∫

G\∪ j I j

| f (x)|2dx

≤
∑

j

∫

I j

(2t)2dx +
∫

G\∪ j I j

f (x)2dx � t2
∑

j

|I j | +
∫

G\∪ j I j

f (x) f (x)dx

≤ t2 × C

t
‖ f ‖L1(G) + t

∫

G\∪ j I j

f (x)dx � t‖ f ‖L1(G),

implies that,

∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν) f (x)|2
) 1

2

> t

⎫
⎬

⎭

∣∣∣∣∣∣
≤ 4

t
‖ f ‖L1(G)

+
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣
.

Taking into account that b ≡ 0 on G \ ∪ j I j , we have that

b =
∑

k

bk, bk(x) = b(x) · 1Ik (x). (4.13)

Let us assume that I ∗
j is a open set, such that I j ⊂ I ∗

j , and |I ∗
j | = K |I j | for some K > 0,

and dist(∂ I ∗
j , ∂ I j ) ≥ 4c dist(∂ I j , eG), where c > 0 and eG is the identity element of G. So,

by the Minkowski inequality we have,

∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

=
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ ∪ j I
∗
j :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣
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+
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G \ ∪ j I
∗
j :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

≤
∣∣∣
{
x ∈ G : x ∈ ∪ j I

∗
j

}∣∣∣+
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G \ ∪ j I
∗
j :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣
.

Since ∣∣∣
{
x ∈ G : x ∈ ∪ j I

∗
j

}∣∣∣ ≤
∑

j

|I ∗
j |,

we have
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

≤
∑

j

|I ∗
j | +

∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G \ ∪ j I
∗
j :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

=K
∑

j

|I j | +
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G \ ∪ j I
∗
j :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

≤CK

t
‖ f ‖L1(G) +

∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G \ ∪ j I
∗
j :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣
.

The Chebyshev inequality implies that
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G \ ∪ j I
∗
j :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

≤2

t

∫

G\∪ j I ∗
j

( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

dx

=2

t

∫

G\∪ j I ∗
j

⎛

⎝
∞∑

=0

∣∣∣∣∣

(
ψ((1 + R)1/ν)

(
∑

k

bk

))
(x)

∣∣∣∣∣

2
⎞

⎠

1
2

dx

=2

t

∫

G\∪ j I ∗
j

∥∥∥∥∥{(
∑

k

ψ((1 + R)1/ν)bk(x))}∞=0

∥∥∥∥∥
2(N0)

dx

≤2

t

∫

G\∪ j I ∗
j

∑

k

∥∥{(ψ((1 + R)1/ν)bk(x))}∞=0

∥∥
2(N0)

dx

=2

t

∑

k

∫

G\∪ j I ∗
j

( ∞∑

=0

∣∣(ψ((1 + R)1/ν)bk
)
(x)
∣∣2
) 1

2

dx .
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If κ is the right convolution kernel of ψ((1 + R)1/ν), from the inequality,

( ∞∑

=0

∣∣(ψ((1 + R)1/ν)bk
)
(x)
∣∣2
) 1

2

≤
∞∑

=0

∣∣(ψ((1 + R)1/ν)bk
)
(x)
∣∣ (4.14)

we deduce ∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G \ ∪ j I
∗
j :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

≤2

t

∑

k

∫

G\∪ j I ∗
j

∞∑

=0

∣∣(ψ((1 + R)1/ν)bk
)
(x)
∣∣ dx

=2

t

∑

k

∫

G\∪ j I ∗
j

∞∑

=0

|bk ∗ κ(x)| dx

=2

t

∑

k

∫

G\∪ j I ∗
j

∞∑

=0

∣∣∣∣∣∣∣

∫

Ik

bk(z)κ(z
−1x)dz

∣∣∣∣∣∣∣
dx .

By using that
∫
Ik
bk(z)dz = 0, we have

2

t

∑

k

∫

G\∪ j I ∗
j

∞∑

=0

∣∣∣∣∣∣∣

∫

Ik

bk(z)κ(z
−1x)dz

∣∣∣∣∣∣∣
dx

=2

t

∑

k

∫

G\∪ j I ∗
j

∞∑

=0

∣∣∣∣∣∣∣

∫

Ik

bk(z)κ(z
−1x)dz − κ(x)

∫

Ik

bk(z)dz

∣∣∣∣∣∣∣
dx

=2

t

∑

k

∫

G\∪ j I ∗
j

∞∑

=0

∣∣∣∣∣∣∣

∫

Ik

(κ(z
−1x) − κ(x))bk(z)dz

∣∣∣∣∣∣∣
dx

≤2

t

∑

k

∫

G\∪ j I ∗
j

∞∑

=0

∫

Ik

|(κ(z
−1x) − κ(x))bk(z)|dzdx

=2

t

∑

k

∫

Ik

∞∑

=0

∫

G\∪ j I ∗
j

|κ(z
−1x) − κ(x)|dx |bk(z)|dz.

If we assume for a moment that

M = sup
k

sup
z∈Ik

∞∑

=0

∫

G\∪ j I ∗
j

|κ(z
−1x) − κ(x)|dx < ∞, (4.15)
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then we have
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G \ ∪ j I
∗
j :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣
≤ 2M

t

∑

k

∫

Ik

|bk(z)|dz

=2M

t
‖b‖L1(G)

≤6M

t
‖ f ‖L1(G).

So, if we prove (4.15) we obtain the weak (1,1) inequality (4.3) and we finish the first step of
the proof. The proof of (4.15) lies in the estimates of the Calderón-Zygmund kernel of every
operator ψ(R). Because dist(∂ I ∗

j , ∂ I j ) ≥ 4cdist(∂ I j , eG), for x ∈ G \ ∪ j I ∗
j , for z ∈ Ik,

4c|z| = 4c× dist(z, eG) � dist(∂ I ∗
k , ∂ Ik) ≤ |x |. Indeed, fix ε > 0, and let us take w ∈ ∂ Ik,

and w′ ∈ ∂ I ∗
k such that d(w,w′) ≤ dist(∂ Ik, ∂ I ∗

k ) + ε. Then, from the triangle inequality,
we have

d(z, eG)

≤ d(z, w) + d(w,w′) + d(w′, eG) ≤ diam(Ik) + dist(∂ Ik, ∂ I ∗
k ) + dist(∂ I ∗

k , eG) + ε

� diam(Ik) + dist(∂ Ik, ∂ I ∗
k ) + dist(∂ Ik, eG) + ε

� diam(Ik) + dist(∂ Ik, ∂ I ∗
k ) + 1

4cdist(∂ Ik, ∂ I
∗
k ) + ε

� dist(∂ Ik, ∂ I ∗
k ) + ε,

(4.16)
where in the last line we have assumed that diam(Ik) � dist(∂ Ik, ∂ I ∗

k ), (with constants
of proportionality independent in k) and that dist(∂ Ik, ∂ I ∗

k ) is proportional to Rk in view
of the relation |I ∗

k | = K |Ik |. Assuming (4.16), one has that for all ε > 0, d(z, eG) �
dist(∂ Ik, ∂ I ∗

k ) + ε, which implies that

d(z, eG) � dist(∂ Ik, ∂ I
∗
k ). (4.17)

To show that the proportionality constant in (4.17) is uniform in k, let us recall the definition
of the radii R′

ks in (4.9), that B(zk, Rk) ⊂ Ik ⊂ B(zk, 2Rk), and that B(zk, Rk/C) ⊂ I ∗
k ⊂

B(zk,CRk) for some C > 2 independent of k, where for any k, zk ∈ Ik . From this remark
observe that:

• The condition B(zk, Rk) ⊂ Ik ⊂ B(zk, 2Rk), implies that 2Rk ≤ diam(Ik) ≤ 4Rk .

• That B(zk, Rk) ⊂ Ik ⊂ I ∗
k ⊂ B(zk,CRk), implies that

dist(∂ Ik, ∂ I
∗
k ) ≤ dist(∂B(zk, Rk), ∂B(zk,CRk)) = (C − 1)Rk .

On the other hand, by observing that in every step above we can replace I ∗
k :=

B(zk,CRk), in view of the inclusion

Ik ⊂ B(zk, 2Rk) ⊂ I ∗
k := B(zk,CRk),

we have
(C − 2)Rk = dist(∂ I ∗

k , ∂B(zk, 2Rk)) ≤ dist(∂ Ik, ∂ I
∗
k ).

Consequently,
diam(Ik) � Rk � dist(∂B(zk, 2Rk), ∂B(zk,CRk))

� dist(∂ Ik, ∂ I
∗
k ).

To show that dist(∂ I ∗
k , ∂ Ik) ≤ |x |, observe that from Remark 4.10, eG ∈ ∪ j I j , and because

of x ∈ G \ ∪ j I j ,
dist(∂ I ∗

k , ∂ Ik) � diam(∪ j I j ) � d(x, eG) = |x |.
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982 D. Cardona and M. Ruzhansky

So, we have guaranteed the existence of a positive constant, which we again denote by c > 0,
such that,

{x ∈ G : x ∈ G \ ∪ j I
∗
j } ⊂ {x ∈ G : for all z ∈ Ik, 4c|z| ≤ |x |}.

So, by a suitable variable change of variables and by using (2.17), we have

Mk := sup
z∈Ik

∞∑

=0

∫

G\∪ j I ∗
j

|κ(z
−1x) − κ(x)|dx

= sup
z∈Ik

∞∑

=0

∫

G\∪ j I ∗
j

|2−Qκ(2
− · z−1x) − 2−Qκ(2

− · x)|dx

≤ sup
z∈Ik

∞∑

=0

∫

|x |>4c|z|
|2−Qκ(2

− · z−1x) − 2−Qκ(2
− · x)|dx

≤
∞∑

=0

sup
z∈G

∫

|x |>4c|z|
|2−Qκ(2

− · z−1x) − 2−Qκ(2
− · x)|dx

=
∞∑

=0

I �
∞∑

=0

2−ε0 = O(1).

Because

Mk := sup
z∈Ik

∞∑

=0

∫

G\∪ j I ∗
j

|κ(z
−1x) − κ(x)|dx �

∞∑

=0

2−ε0 ,

with the right hand side of the inequality being independent of k, we conclude that M in
(4.15) is finite.

According toStep 2, the vector-valued interpolation between the (4.3) and the boundedness
of W from L2(G) into L2(G, 2(Nn

0)), allows us to conclude (4.6) for all 1 < p ≤ 2.
Step 3. Let us assume that 2 ≤ p < ∞, and let f ∈ L p(G, 2). So, for a.e. x ∈ G,

f (x) is a sequence in 2. If p′ is the conjugate exponent of p, 1 < p′ ≤ 2, by using that

ψ j ((1 + R)
1
ν ) is self-adjoint, we have

‖W f ‖L p(G,2)

= sup
‖h‖

L p
′
(G,2)

=1

∫

G

(W f (x), h(x))2dx = sup
‖h‖

L p
′
(G,2)

=1

∫

G

∞∑

j=0

ψ j ((1 + R)
1
ν ) f (x)h j (x)dx

= sup
‖h‖

L p
′
(G,2)

=1

∫

G

∞∑

j=0

f (x)ψ j ((1 + R)1/ν)∗h j (x)dx

= sup
‖h‖

L p
′
(G,2)

=1

∫

G

( f (x),Wh(x))2dx, Wh(x) := {ψ((1 + R)1/ν)h}∞=0,

≤ ‖ f ‖L p(G,2) sup
‖h‖

L p
′
(G,2)

=1
‖Wh‖L p′ (G,2)

.
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By using Theorem 4.2 with r = 2, for ‖h‖L p′ (G,2)
= 1, we have that

‖Wh‖L p′ (G,2)
=
∥∥∥∥∥∥

( ∞∑

=0

|ψ((1 + R)
1
ν )h|2

) 1
2

∥∥∥∥∥∥
L p′ (G)

≤ Cp′

∥∥∥∥∥∥

( ∞∑

=0

|h(x)|2
) 1

2

∥∥∥∥∥∥
L p′ (G)

=Cp′ ,

where the constant Cp′ > 0, came from Theorem 4.2. Consequently, we have proved (4.6)
for all 2 ≤ p < ∞, in view of the boundedness of W from L p(G) into L p(G, 2) for all
2 ≤ p < ∞.

Step 4. The proof of the left hand side of (4.2) for non-negative f is as follows. Now,
let us denote by (E(λ))λ≥0 the spectral resolution associated to (1 + R)1/ν, and for every

π ∈ Ĝ denote by (Eπ (λ))λ≥0 the spectral resolution of π((1 + R)
1
ν ). We observe that by

duality

‖ f ‖L p(G) � sup{|
∫

G
f (x)g(x)dx | : g ∈ D(G), g ≥ 0, ‖g‖L p′ = 1}

= sup{|
∫

G

∑

l∈N0

[ψl((1 + R)
1
ν ) f ](x)g(x)dx | : g ∈ D(G), g ≥ 0, ‖g‖L p′ = 1}

= sup{|
∫

G

∑

l∈N
[E (l)ψl((1 + R)

1
ν ) f ](x)g(x)dx

+
∫

G
[E (0)ψ0((1 + R)

1
ν ) f (x)]g(x)dx | : g ∈ D(G), g ≥ 0, ‖g‖L p′ = 1}

= sup{|
∫

G

∑

l∈N
[ψl((1 + R)

1
ν ) f ](x)E (l)g(x)dx

+
∫

G
[ψ0((1 + R)

1
ν ) f (x)]E (0)g(x)dx | : g ∈ D(G), g ≥ 0, ‖g‖L p′ = 1},

where E (l) := ψ−1((1 + R)
1
ν ) + ψ((1 + R)

1
ν ) + ψ+1((1 + R)

1
ν ), for l ≥ 1, and

E (0) := ψ0((1 + R)1/ν) + ψ1((R)1/ν) + ψ2((1 + R)1/ν). Consequently, we have

‖ f ‖L p(G)

≤ sup
g∈D(G), g≥0, ‖g‖

L p
′ =1

{
∫

G

∣∣∣∣∣∣

∑

l∈N0

|[ψl ((1 + R)
1
ν ) f ](x)|2

∣∣∣∣∣∣

1
2
∣∣∣∣∣∣

∑

l∈N0

|E (l)g(x)|2
∣∣∣∣∣∣

1
2

dx}

≤ sup
g∈D(G), g≥0, ‖g‖

L p
′ =1

⎧
⎪⎨

⎪⎩

∥∥∥∥∥∥∥

⎡

⎣
∑

l∈N0

|[ψl ((1 + R)
1
ν ) f ](x)|2

⎤

⎦

1
2

∥∥∥∥∥∥∥
L p(G)

∥∥∥∥∥∥∥

⎡

⎣
∑

l∈N0

|E (l)g(x)|2
⎤

⎦

1
2

∥∥∥∥∥∥∥
L p′ (G)

⎫
⎪⎬

⎪⎭
.

Because
∥∥∥∥∥∥∥

⎡

⎣
∑

l∈N0

|E (l)g(x)|2
⎤

⎦

1
2

∥∥∥∥∥∥∥
L p′ (G)

�

∥∥∥∥∥∥∥

⎡

⎣
∑

l∈N0

|ψ((1 + R)
1
ν )g(x)|2

⎤

⎦

1
2

∥∥∥∥∥∥∥
L p′ (G)

� ‖g‖L p′ = 1,

(4.18)
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984 D. Cardona and M. Ruzhansky

we obtain

‖ f ‖L p(G) �

∥∥∥∥∥∥∥

⎡

⎣
∑

l∈N0

|[ψl((1 + R)
1
ν ) f ](x)|2

⎤

⎦

1
2

∥∥∥∥∥∥∥
L p(G)

for all 1 < p < ∞.
Step 5. Let us assume that f ∈ L p(G) is real-valued. Decompose f = f + − f −, as the

difference of two non-negative functions, where f +, f − ∈ L p(G), and | f | = f + + f −.

Because, f +, f − ≤ | f |, the Minkowski inequality implies
∥∥∥∥∥∥∥

⎡

⎣
∑

l∈N0

|[ψl((1 + R)
1
ν ) f ](x)|2

⎤

⎦

1
2

∥∥∥∥∥∥∥
L p(G)

≤

∥∥∥∥∥∥∥

⎡

⎣
∑

l∈N0

|[ψl((1 + R)
1
ν ) f +](x)|2

⎤

⎦

1
2

∥∥∥∥∥∥∥
L p(G)

+

∥∥∥∥∥∥∥

⎡

⎣
∑

l∈N0

|[ψl((1+R)
1
ν ) f −](x)|2

⎤

⎦

1
2

∥∥∥∥∥∥∥
L p(G)

≤Cp(‖ f +‖L p(G) + ‖ f −‖L p(G)) ≤ 2Cp‖ f ‖L p(G).

So, we have proved the right hand side of (4.2). For the proof of the left hand side, we only
need to repeat the proof made in Step 4. The proof for the weak (1,1) inequality is similar.
Indeed, ∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν) f (x)|2
) 1

2

> t

⎫
⎬

⎭

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν) f +(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

+
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν) f −(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

≤2C

t
‖ f +‖L1(G) + 2C

t
‖ f −‖L1(G)

≤4C

t
‖ f ‖L1(G).

A similar analysis can be used for the proof of Step 6. So, the proof of the Littlewood-Paley
Theorem is complete.

We end this section with the proof of the vector-valued inequalities presented in
Theorem 4.2.

Proof of Theorem 4.2 Define the vector-valued operator

W : L2(G, 2(N0)) f → L2(G, 2(N0)), (4.19)

by
W ({ f}∞=0) = {ψ((1 + R)1/ν) f}∞=0, (4.20)

where L2(G, 2(N0)) f is the set of sequences { f}∞=0, with compact support in the -
variables. We claim that W : L2(G, 2(N0)) → L2(G, 2(N0)) extends to a bounded
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operator. Indeed, let us observe that

‖W ({ f}∞=0)‖2L2(2)
=
∫

G

∑



|ψ((1 + R)1/ν) f(x)|2dx ≤ C2
∑



‖ f‖2L2(G)

= ‖{ f}∞=0‖2L2(2)
,

where

C = sup
≥0

‖ψ((1 + R)1/ν)‖B (L2(G)) = sup
≥0

‖ψ(1 + (π(R))1/ν)‖B (L2(Ĝ))

≤ sup
≥0,λ≥0

|ψ(2−λ)| = O(1).

Now, wewill assume for a moment that for every  ∈ N0, the family of operators {ψ((1+
R)1/ν)} is uniformly bounded from L1(G) into L1,∞(G), this is, every operator ψ((1 +
R)1/ν) is of weak (1, 1) type with the (L1(G), L1,∞(G))-operator norm bounded with a
constant independent of ,

� := sup


‖ψ((1 + R)1/ν)‖B (L1(G),L1,∞(G)) < ∞. (4.21)

This assumption allows us to show that

W : L1(G, 1(N0)) → L1,∞(G, 1(N0)), (4.22)

extends to a bounded operator. Indeed, if we define e′() = δ,′ , observe that

‖W ({ f}∞=0)‖L1,∞(G,1(N0))
= ‖{ψ((1 + R)1/ν) f}∞=0‖L1,∞(G,1(N0))

=‖
∞∑

′=0

{e′()ψ((1 + R)1/ν) f}∞=0‖L1,∞(G,1(N0))

�
∞∑

′=0

‖{e′()ψ((1 + R)1/ν) f}∞=0‖L1,∞(G,1(N0))
.

The fact that‖{e′()ψ((1+R)1/ν) f}∞=0‖L1,∞(G,1(N0))
= supt>0 t ·|{x ∈ G : |ψ′((1+

R)1/ν) f′(x)| > t}|, implies that

‖W ({ f}∞=0)‖L1,∞(G,1(N0))
=

∞∑

′=0

sup
t>0

t · |{x ∈ G : |ψ′((1 + R)1/ν) f′(x)| > t}|

=
∞∑

′=0

‖ψ′((1 + R)1/ν) f′ ‖L1,∞(G)

≤�

∞∑

′=0

‖ f′ ‖L1(G) =
∫

G

∞∑

′=0

|ψ′((1 + R)1/ν) f′(x)|dx

=‖{ f}∞=0‖L1(G,1(N0))
.

Now, if 1 < p < 2, there exists θ ∈ (0, 1) such that 1
p = θ

1 + 1−θ
2 . In view of (4.19) and

(4.22), by the Lions-Peetre vector-valued interpolation theorem we have

W : L p(G, p(N0)) → L p(G, p(N0)), (4.23)
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extends to a bounded operator for all 1 < p ≤ 2. Here, we have used that in this vector-valued
context,

L p(G, p(N0)) = (L1,∞(G, 1(N0)), L
2(G, 2(N0)))θ,p, (4.24)

with the usual notation of real interpolation (see Section 6 below). BecauseW is a symmetric
operator on L2(G), the duality argument allows us to prove that (4.23) extends to a bounded
operator for all 2 ≤ p < ∞. So, the boundedness of W for all 1 < p < ∞ is proved once
that we have proved the estimate (4.21). For this, we observe that in view of the weak (1,1)
estimate in the Hörmander-Mihlin theorem (see Corollary 4.12 of [8]), we have

� := sup


‖ψ((1 + R)1/ν)‖B (L1(G),L1,∞(G)) � sup
;α≤[Q/2]+1,t>0

tα|ψ(α)
 (t)|

= sup
;α≤[Q/2]+1,t>0

tα2−α|ψ(α)(2−t)|

� 1,

where in the last line we have used that the compactly supported functionψ, satisfies estimate
of the type

|ψ(α)(λ)| ≤ Cαλ−α, λ �= 0, (4.25)

and so
tα2−α|ψ(α)(2−t)| ≤ Cαt

α2−α(2−t)−α = Cα.

Now, we claim that

W : L p(G, r (N0)) → L p(G, r (N0)), 1 < r < ∞. (4.26)

To do so, we will prove that

W : L1(G, r (N0)) → L1,∞(G, r (N0)), 1 < r < ∞. (4.27)

extends to a bounded operator together with a interpolation argument coming from (4.19).
For the proof of (4.27), we need to show that there exists a constant C > 0 independent of
{ f} ∈ L1(G, r (N0)) and t > 0, such that

∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν) f(x)|r
) 1

r

> t

⎫
⎬

⎭

∣∣∣∣∣∣
≤ C

t
‖{ f}‖L1(G,r (N0)

. (4.28)

So, fix { f} ∈ L1(G, r (N0)) and t > 0, and let h(x) := (∑∞
=0 | f(x)|r

) 1
r , apply the

Calderón-Zygmund decomposition Lemma to h ∈ L1(G), under the identification G � R
n,

(see e.g. Hebish [15]) in order to obtain a disjoint collection {I j }∞j=0 of disjoint open sets
such that

• h(x) ≤ t, for a.e. x ∈ G \ ∪ j≥0 I j ,
• ∑ j≥0 |I j | ≤ C

t ‖h‖L1(G), and

• t ≤ 1
|I j |
∫
I j
h(x)dx ≤ 2t, for all j .

Now, we will define a suitable decomposition of f, for every  ≥ 0. Recall that every I j is
diffeomorphic to an open cube on R

n, that it is bounded, and that I j ⊂ B(z j , 2R j ), where
z j ∈ I j (see Hebish [15]). Let us define, for every , and x ∈ I j ,

g(x) := 1

|I j |
∫

I j

f(y)dy, b(x) = f(x) − g(x). (4.29)
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and for x ∈ G \ ∪ j≥0 I j ,
g(x) = f(x), b(x) = 0. (4.30)

So, for a.e. x ∈ G, f(x) = g(x)+b(x).Note that for every 1 < r < ∞, ‖{g}‖rLr (r ) ≤
tr−1‖{ f}‖L1(r ), indeed for x ∈ I j , Minkowsky integral inequality gives,

( ∞∑

=0

|g(x)|r
) 1

r

≤
⎛

⎜⎝
∞∑

=0

∣∣∣∣∣∣∣

1

|I j |
∫

I j

f(y)dy

∣∣∣∣∣∣∣

r⎞

⎟⎠

1
r

≤ 1

|I j |
∫

I j

( ∞∑

=0

| f(y)|r
) 1

r

dy

≤ 2t .

Consequently, we have

‖{g}‖rLr (r ) =
∫

G

∞∑

=0

|g(x)|r dx =
∑

j

∫

I j

∞∑

=0

|g(x)|r dx +
∫

G\∪ j I j

∞∑

=0

|g(x)|r dx

=
∑

j

∫

I j

∞∑

=0

|g(x)|r dx +
∫

G\∪ j I j

∞∑

=0

| f(x)|r dx

≤
∑

j

∫

I j

(2t)r dx +
∫

G\∪ j I j

h(x)r dx

� tr
∑

j

|I j | +
∫

G\∪ j I j

h(x)r−1h(x)dx

≤ tr × C

t
‖h‖L1(G) + tr−1

∫

G\∪ j I j

h(x)dx � tr−1‖h‖L1(G)

= tr−1‖{ f}‖L1(r ).

Now, by using the Minkowski and the Chebyshev inequality, we obtain
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν) f(x)|r
) 1

r

> t

⎫
⎬

⎭

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν)g(x)|r
) 1

r

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

+
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|r
) 1

r

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

≤2r

tr

∫

G

∞∑

=0

|ψ((1 + R)1/ν)g(x)|r dx

+
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|r
) 1

r

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣
.
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In view of (4.23), W : Lr (G, r (N0)) → Lr (G, r (N0)), extends to a bounded operator
and

∫

G

∞∑

=0

|ψ((1 + R)1/ν)g(x)|r dx = ‖W {g}‖rLr (r ) � ‖{g}‖rLr (r ) ≤ tr−1‖{ f}‖L1(r ).

(4.31)
Consequently,

∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν) f(x)|r
) 1

r

> t

⎫
⎬

⎭

∣∣∣∣∣∣

≤1

t
‖{ f}‖L1(r ) +

∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|r
) 1

r

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣
.

Now, we only need to prove that

∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|r
) 1

r

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣
� 1

t
‖{ f}‖L1(r ). (4.32)

Taking into account that b ≡ 0 on G \ ∪ j I j , we have that

b =
∑

k

b,k, b,k(x) = b(x) · 1Ik (x). (4.33)

Let us assume that I ∗
j is a open set, such that |I ∗

j | = K |I j | for some K > 0, and
dist(∂ I ∗

j , ∂ I j ) ≥ 4cdist(∂ I j , eG), where c is defined in (2.16) and eG is the identity ele-
ment of G. So, by the Minkowski inequality we have,

∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|r
) 1

r

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

=
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ ∪ j I
∗
j :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|r
) 1

r

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

+
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G \ ∪ j I
∗
j :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|r
) 1

r

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

≤
∣∣∣
{
x ∈ G : x ∈ ∪ j I

∗
j

}∣∣∣+
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G \ ∪ j I
∗
j :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|r
) 1

r

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣
.

Since ∣∣∣
{
x ∈ G : x ∈ ∪ j I

∗
j

}∣∣∣ ≤
∑

j

|I ∗
j |,
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we have

∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

≤
∑

j

|I ∗
j | +

∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G \ ∪ j I
∗
j :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

=K
∑

j

|I j | +
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G \ ∪ j I
∗
j :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

≤CK

t
‖ f ‖L1(G,r ) +

∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G \ ∪ j I
∗
j :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|2
) 1

2

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣
.

Observe that the Chebyshev inequality implies

∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G \ ∪ j I
∗
j :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|r
) 1

r

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣

≤2

t

∫

G\∪ j I ∗
j

( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|r
) 1

r

dx

=2

t

∫

G\∪ j I ∗
j

( ∞∑

=0

∣∣∣∣∣

(
ψ((1 + R)1/ν)

(
∑

k

b,k

))
(x)

∣∣∣∣∣

r) 1
r

dx

=2

t

∫

G\∪ j I ∗
j

‖{(ψ((1 + R)1/ν)(
∑

k

b,k)(x)}∞=0‖r (N0)dx

=2

t

∫

G\∪ j I ∗
j

‖{
∑

k

(ψ((1 + R)1/ν)b,k)(x)}∞=0‖r (N0)dx

≤2

t

∑

k

∫

G\∪ j I ∗
j

( ∞∑

=0

∣∣(ψ((1 + R)1/ν)b,k
)
(x)
∣∣r
) 1

r

dx .

Now, if κ is the right convolution Calderón-Zygmund kernel of ψ((1 + R)1/ν), (see
Remark 2.5), and by using that

∫
Ik
bk,(y)dy = 0, we have that

( ∞∑

=0

∣∣(ψ((1 + R)1/ν)b,k
)
(x)
∣∣r
) 1

r

=
( ∞∑

=0

∣∣b,k ∗ κ(x)
∣∣r
) 1

r
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=
⎛

⎜⎝
∞∑

=0

∣∣∣∣∣∣∣

∫

Ik

κ(y
−1x)b,k(y)dy−κ(x)

∫

Ik

b,k(y)dy

∣∣∣∣∣∣∣

r⎞

⎟⎠

1
r

=
⎛

⎜⎝
∞∑

=0

∣∣∣∣∣∣∣

∫

Ik

(κ(y
−1x) − κ(x))b,k(y)dy

∣∣∣∣∣∣∣

r⎞

⎟⎠

1
r

.

Now, we will proceed as follows. By using that |b,k(y)|r ≤ ∑∞
′=0 |b′,k(y)|r , we have, by

an application of the Minkowsky integral inequality,

( ∞∑

=0

∣∣(ψ((1 + R)1/ν)b,k
)
(x)
∣∣r
) 1

r

=
⎛

⎜⎝
∞∑

=0

∣∣∣∣∣∣∣

∫

Ik

(κ(y
−1x) − κ(x))b,k(y)dy

∣∣∣∣∣∣∣

r⎞

⎟⎠

1
r

≤
∫

Ik

( ∞∑

=0

|κ(y
−1x) − κ(x)|r |b,k(y)|r

) 1
r

dy

≤
∫

Ik

( ∞∑

′=0

|b′,k(y)|r
) 1

r
( ∞∑

=0

|κ(xy
−1) − κ(x)|r

) 1
r

dy.

Consequently, we deduce,

2

t

∑

k

∫

G\∪ j I ∗
j

( ∞∑

=0

∣∣(ψ((1 + R)1/ν)b,k
)
(x)
∣∣r
) 1

r

dx

≤2

t

∑

k

∫

G\∪ j I ∗
j

∫

Ik

( ∞∑

′=0

|b′,k(y)|r
) 1

r
( ∞∑

=0

|κ(y
−1x) − κ(x)|r

) 1
r

dydx

=2

t

∑

k

∫

Ik

∫

G\∪ j I ∗
j

( ∞∑

′=0

|b′,k(y)|r
) 1

r
( ∞∑

=0

|κ(y
−1x) − κ(x)|r

) 1
r

dxdy

=2

t

∑

k

∫

Ik

( ∞∑

′=0

|b′,k(y)|r
) 1

r ∫

G\∪ j I ∗
j

( ∞∑

=0

|κ(y
−1x) − κ(x)|r

) 1
r

dxdy.

Because dist(∂ I ∗
j , ∂ I j ) ≥ 4cdist(∂ I j , eG), for x ∈ G \ ∪ j I ∗

j , for y ∈ Ik, the analysis in
(4.16), shows that 4c|y| = 4c × dist(y, eG) � dist(∂ I ∗

k , ∂ Ik) ≤ |x |. So,

{x ∈ G : x ∈ G \ ∪ j I
∗
j } ⊂ {x ∈ G : for all z ∈ Ik, 4c|z| ≤ |x |}.
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Now, from Remark 2.5, the identity (2.16), and the estimate (2.17), we deduce

∫

G\∪ j I ∗
j

( ∞∑

=0

|κ(y
−1x) − κ(x)|r

) 1
r

dx ≤
∫

G\∪ j I ∗
j

∞∑

=0

|κ(y
−1x) − κ(x)|dx

≤
∞∑

=0

∫

G\∪ j I ∗
j

|κ(y
−1x) − κ(x)|dx

≤
∞∑

=0

∫

|x |>4c|y|
|2−Qκ(2

− · y−1x) − 2−Qκ(2
− · x)|dx

�
∑

=0

2−ε0 = O(1).

Thus, we have proved that

∣∣∣∣∣∣

⎧
⎨

⎩x ∈ G :
( ∞∑

=0

|ψ((1 + R)1/ν)b(x)|r
) 1

r

>
t

2

⎫
⎬

⎭

∣∣∣∣∣∣
� 2

t

∑

k

∫

Ik

( ∞∑

′=0

|b′,k(y)|r
) 1

r

dy

=2

t

∫

∪k Ik

( ∞∑

′=0

|b′(y)|r
) 1

r

dy

�1

t
‖{ f}‖L1(r ).

This, the proof of the weak (1,1) inequality is complete and we have that

W : L1(G, r (N0)) → L1,∞(G, r (N0)), 1 < r < ∞, (4.34)

extends to a bounded operator. As an application of the vector-valued Lions-Peetre interpo-
lation theorem between (4.19) and (4.34) we obtain that W in (4.26) extends to a bounded
operator and together with the duality argument we complete the proof.

5 Homogeneous and Inhomogeneous Besov Spaces

Let R be a (left-invariant) positive Rockland operator on a graded Lie group G. In order to
define the family of Besov spaces onG, let us assume thatR is homogeneous of degree ν > 0
and let us fix a dyadic decomposition of its spectrum: we choose a function ψ ∈ C∞

0 (R)

supported in [1/4, 2], ψ = 1 on [1/2, 1].Denote byψl the functionψl(t) = ψ(2−l t), t ∈ R.

For some smooth compactly supported function ψ0 we have

∑

l∈N0

ψl(λ) = 1, for every λ > 0. (5.1)

With notations above we define (left) Besov spaces associated to a (left-invariant) positive
Rockland operator as follows.
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Definition 5.1 Let r ∈ R, 0 < p < ∞ and 0 < q ≤ ∞. The homogeneous Besov space
Ḃr
p,q,ψ,R(G) associated to (R, (ψl)l) consists of those f ∈ D′(G) satisfying

‖ f ‖Ḃr
p,q,ψ,R(G) :=

⎛

⎝
∑

l∈N0

2lrq‖ψl(R
1
ν ) f ‖qL p(G)

⎞

⎠

1
q

< ∞, (5.2)

for 0 < q < ∞, and for q = ∞,

‖ f ‖Ḃr
p,∞,ψ,R(G) := sup

l∈N0

2lr‖ψl(R
1
ν ) f ‖L p(G) < ∞. (5.3)

Analogously, the inhomogeneous Besov space Br
p,q,ψ,R(G) is defined as the space of distri-

butions f ∈ D′(G) satisfying

‖ f ‖Br
p,q,ψ,R(G) :=

⎛

⎝
∑

l∈N0

2lrq‖ψl((I + R)
1
ν ) f ‖qL p(G)

⎞

⎠

1
q

< ∞, (5.4)

if 0 < q < ∞ and, for q = ∞,

‖ f ‖Br
p,∞,ψ,R(G) := sup

l∈N0

2lr‖ψl((I + R)
1
ν ) f ‖L p(G) < ∞. (5.5)

Homogeneous and inhomogeneous Besov spaces do not depend on a particular choice of
a positive Rockland operator R and of the sequence of smooth functions ψl . We will prove
this fact in the following section (see Theorem 6.1). Now, we prove the following embedding
properties of Besov spaces. We use the simplified notation motivated by Theorem 6.1,

(Ḃr
p,q(G), ‖ · ‖Ḃr

p,q (G)) = (Ḃr
p,q,ψ,R(G), ‖ · ‖Ḃr

p,q,ψ,R(G))

and
(Br

p,q(G), ‖ · ‖Br
p,q (G)) = (Br

p,q,ψ,R(G), ‖ · ‖Br
p,q,ψ,R(G)).

For Sobolev spaces Hr ,p(G) and Ḣr ,p(G) and their properties we refer to [9, Section 4].
We also note that similar results would hold if we chose right-invariant (instead of left-

invariant) Rockland operator in the definition of Besov spaces, see Remark 5.4. Additionally,
as the reviewer of this paper has observed, the following result follows automatically form the
general theory of interpolation of linear operators from Theorem 6.1. We present a detailed
proof of such a fact for completeness.

Theorem 5.2 Let G be a graded Lie group of homogeneous dimension Q and let r ∈ R.

Then

(1) Ḃr+ε
p,q1(G) ↪→ Ḃr

p,q1(G) ↪→ Ḃr
p,q2(G) ↪→ Ḃr

p,∞(G), ε > 0, 0 < p ≤ ∞, 0 < q1 ≤
q2 ≤ ∞.

(2) Ḃr+ε
p,q1(G) ↪→ Ḃr

p,q2(G), ε > 0, 0 < p ≤ ∞, 1 ≤ q2 < q1 < ∞.

(3) Ḃr1
p1,q(G) ↪→ Ḃr2

p2,q(G), 1 ≤ p1 ≤ p2 ≤ ∞, 0 < q < ∞, r1 ∈ R and r2 =
r1 − Q( 1

p1
− 1

p2
).

(4) Ḣr (G) = Ḃr
2,2(G) and Ḃr

p,p(G) ↪→ Ḣr ,p(G) ↪→ Ḃr
p,2(G), 1 < p ≤ 2.

(5) Ḃr
p,1(G) ↪→ Lq(G), 1 ≤ p ≤ q ≤ ∞, r = Q( 1p − 1

q ).
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Proof For the proof of (1) we observe that

‖ f ‖Ḃr
p,∞ = sup

s∈N0

2rs‖ψs(R
1
ν ) f ‖L p ≤ ‖{2sr‖ψs(R

1
ν ) f ‖L p }s∈N0‖lq2 (N0) ≡ ‖ f ‖Ḃr

p,q2

≤ ‖{2sr‖ψs(R
1
ν ) f ‖L p }s∈N0‖lq1 (N0) ≡ ‖ f ‖Ḃr

p,q1

≤ ‖{2s(r+ε)‖ψs(R
1
ν ) f ‖L p }s∈N0‖lq1 (N0)

≡ ‖ f ‖Ḃr+ε
p,q1

.

For the proof of (2) we use Hölder inequality as follows,

‖ f ‖Ḃr
p,q2

= ‖{2sr‖ψs(R
1
ν ) f ‖L p }s∈N0‖lq2 (N0)

= ‖{2s(r+ε)−sε‖ψs(R
1
ν ) f ‖L p }s∈N0‖lq2 (N0)

≤ ‖{2s(r+ε)q2‖ψs(R
1
ν ) f ‖q2L p }s∈N0‖

1
q2

l
q1
q2 (N0)

[
∑

s∈N0

2
− sεq2q1

q1−q2 ] 1
q1

− 1
q2

� ‖ f ‖Ḃr+ε
p,q1

.

In order to prove (3) we use Nikolskii inequality from Theorem 3. So, by taking into
account the estimate

‖ψs(R
1
ν ) f ‖L p2 ≤ C2

sQ( 1
p1

− 1
p2

)‖ψs(R
1
ν ) f ‖L p1 , (5.6)

we deduce
⎛

⎝
∑

s∈N0

2sr2q‖ψs(R
1
ν ) f ‖qL p2 (G)

⎞

⎠

1
q

�

⎛

⎝
∑

s∈N0

2
s[r2+Q( 1

p1
− 1

p2
)]q‖ψs(R

1
ν ) f ‖qL p1 (G)

⎞

⎠

1
q

.

Now we will prove (4), that is Ḃr
p,p(G) ↪→ Ḣr ,p(G) ↪→ Ḃr

p,2(G), for 1 < p ≤ 2. In

fact, if dE(λ) denotes the spectral resolution of R 1
ν , we have

‖ f ‖p
Ḣr,p ≡ ‖R r

ν f ‖p
L p = ‖

∞∫

0

λr dE(λ) f ‖p
L p

= ‖
∑

s∈Z

∫ 2s+1

2s
λr dE(λ)ψs(R

1
ν ) f ‖p

L p ≤
∑

s∈Z
‖
∫ 2s+1

2s
λr dE(λ)ψs(R

1
ν ) f ‖p

L p

=
∑

s∈Z
2srp‖

∫ 2s+1

2s
2−srλr dE(λ)ψs(R

1
ν ) f ‖p

L p

�
∑

s∈Z
2srp‖

∫ 2s+1

2s
dE(λ)ψs(R

1
ν ) f ‖p

L p =
∑

s∈N0

2srp‖
∫ 2s+1

2s
ψs(λ)dE(λ) f ‖p

L p

=
∑

s∈N0

2srp‖ψs(R
1
ν ) f ‖p

L p = ‖ f ‖p
Ḃr
p,p

.

For the other embeddingwe use the following version of theMinkowski integral inequality

(
∑

j

(

∫

X

f j (x)dμ(x))α)
1
α ≤

∫

X

(
∑

j

f α
j (x))

1
α dμ(x), f j (x) ≥ 0, a.e. x ∈ X ,
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where (X , μ) is a σ -finite measure space, and α = 2
p . So, we get

‖ f ‖Ḃr
p,2

=
⎛

⎝
∑

s∈N0

22rs‖ψs(R
1
ν ) f ‖2L p

⎞

⎠

1
2

=
⎛

⎝
∑

s∈N0

22rs[
∫

G
|ψs(R

1
ν ) f (x)|pdx] 2

p

⎞

⎠

p
2 · 1p

≤
⎡

⎣
∫

G
[
∑

s∈N0

22sr |ψs(R
1
ν ) f (x)| 2p pdx] p

2

⎤

⎦

1
p

=
⎡

⎣
∫

G
[
∑

s∈N0

22sr |ψs(R
1
ν ) f (x)|2dx] p

2

⎤

⎦

1
p

= ‖[
∑

s∈N0

22sr |ψs(R
1
ν ) f (x)|2dx] 1

2 ‖L p � ‖[
∑

s∈N0

|ψs(Rr ) f (x)|2dx] 1
2 ‖L p

� ‖Rr f ‖L p = ‖ f ‖Ḣr,p ,

using Littlewood-Paley theorem (Theorem 4.1). We observe that in the embedding
Ḃr
p,p(G) ↪→ Ḣr ,p(G) ↪→ Ḃr

p,2(G), if p = 2 then Ḣr ,2(G) = Ḃr
2,2(G). Now, for the

proof of (5) we use Nikolskii inequality,

‖ f ‖Lq = ‖
∫

Ĝ
Tr[π(x) f̂ (π)]dπ‖Lq

= ‖
∑

s∈N0

∫

Ĝ
Tr[π(x)ψs[π(R)] f̂ (π)]dπ‖Lq

≤
∑

s∈N0

‖
∫

Ĝ
Tr[π(x)ψs[π(R)] f̂ (π)]dπ‖Lq

=
∑

s∈N0

‖ψs(R
1
ν ) f ‖Lq ≤

∑

s∈N0

2Q( 1
p − 1

q )‖ψs(R
1
ν ) f ‖L p

= ‖ f ‖
Ḃ
Q( 1p − 1

q )

p,1

.

This completes the proof.

In the following theorem we present embeddings properties for inhomogeneous Besov
spaces Br

p,q(G). The proof is similar to the homogeneous case, so we omit it.

Theorem 5.3 Let G be a graded Lie group of homogeneous dimension Q and let r ∈ R.

Then

(1) Br+ε
p,q1(G) ↪→ Br

p,q1(G) ↪→ Br
p,q2(G) ↪→ Br

p,∞(G), ε > 0, 0 < p ≤ ∞, 0 < q1 ≤
q2 ≤ ∞.

(2) Br+ε
p,q1(G) ↪→ Br

p,q2(G), ε > 0, 0 < p ≤ ∞, 1 ≤ q2 < q1 < ∞.

(3) Br1
p1,q(G) ↪→ Br2

p2,q(G), 1 ≤ p1 ≤ p2 ≤ ∞, 0 < q < ∞, r1 ∈ R and r2 =
r1 − Q( 1

p1
− 1

p2
).
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(4) Hr (G) = Br
2,2(G) and Br

p,p(G) ↪→ Hr ,p(G) ↪→ Br
p,2(G), 1 < p ≤ 2.

(5) Br
p,1(G) ↪→ Lq(G), 1 ≤ p ≤ q ≤ ∞, r = Q( 1p − 1

q ).

Remark 5.4 (Right Besov spaces) Throughout this section we have considered Besov spaces
associated to (left-invariant) positive Rockland operators. A similar formulation of homoge-
neous and inhomogeneous (right) Besov spaces can be obtained if we choose (right-invariant)
positive Rockland operators. It can be shown that these spaces satisfy (right) versions of
Theorems 5.2 and 5.3. When properties that we want to consider hold for left and right
Besov spaces, we omit the prefixes left and right, nevertheless, we consider in the proofs the
case of (left) Besov spaces.

6 Independence of Rockland Operators and Interpolation Properties

In this section we prove the independence of the choice of Rockland operator and the dyadic
partition ψl in the definition of Besov spaces. For this, we show that Besov spaces can be
obtained as interpolation of Sobolev spaces. If X0 and X1 are Banach spaces, the main notion
in real interpolation theory is the K -functional, defined by

K ( f , t) = inf{‖ f0‖X0 + t‖ f1‖X1 : f = f0 + f1, f0 ∈ X0, f1 ∈ X1}, t ≥ 0. (6.1)

If 0 < θ < 1 and 1 ≤ q < ∞, the real interpolation space Xθ,q := (X0, X1)θ,q is defined
by those vectors f ∈ X0 + X1 satisfying

‖ f ‖θ,q =
(∫ ∞

0
(t−θ K ( f , t))q

dt

t

) 1
q

< ∞ if q < ∞, (6.2)

and for q = ∞
‖ f ‖θ,q = sup

t>0
t−θ K ( f , t) < ∞. (6.3)

For our purposes, the following discrete form (see [17], p. 1136) will be useful

‖ f ‖θ,q � inf

⎧
⎨

⎩

(
∑

k∈Z
max{‖ fk‖X0 , 2

k‖ fk‖X1}q
) 1

q

: f =
∑

k∈Z
2kθ fk

⎫
⎬

⎭ . (6.4)

with 1 ≤ q < ∞.

Theorem 6.1 Let G be a graded Lie group, and let R and R′ be two positive Rockland
operators with homogeneity degrees ν > 0 and ν′ > 0, respectively. If (ψl)l and (ψ ′

l )l are
sequences satisfying (5.1), 1 < p < ∞ and 1 ≤ q < ∞, the spaces Ḃr

p,q,ψ,R(G) and

Ḃr
p,q,ψ ′,R′(G) coincide and have equivalent norms, as well as the spaces Br

p,q,ψ,R(G) and
Br
p,q,ψ ′,R′(G). We also have the following interpolation properties:

Br
p,q(G) = (Hb,p(G), Ha,p(G))θ,q , a < r < b, r = b(1 − θ) + aθ, (6.5)

and

Ḃr
p,q(G) = (Ḣb,p(G), Ḣb,a(G))θ,q , a < r < b, r = b(1 − θ) + aθ. (6.6)

Proof It was proved in [9, Theorem 4.4.20], that the definition of (homogeneous and inho-
mogeneous) Sobolev spaces (Ḣr ,p(G) and Hr ,p(G), respectively) does not depend on the
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996 D. Cardona and M. Ruzhansky

choice of Rockland operators. Hence the independence of the choice of Rockland opera-
tors and of the dyadic decomposition ψl in the case of Besov spaces would follow if we
show that Besov spaces can be obtained by interpolation of Sobolev spaces. So, it suffices
to prove (6.5) and (6.6). First we will show that for r > 0, Ḃr

p,q = (Ḣr1,p, Ḣr0,p)θ,q where
0 < r0 < r < r1 = r0 + ν, r = r1 + (r0 − r1)θ, and later we will deduce the general case
from this fact. For f ∈ Ḣr1,p + Ḣr0,p we write

f =
∑

l≥0

ψl(R
1
ν ) f =

∑

l≥0

2lθ f ′
l , f ′

l = 2−lθψl(R
1
ν ) f . (6.7)

Hence
‖ f ‖qθ,q �

∑

l≥0

max{‖ f ′
l ‖Ḣr1,p , 2l‖ f ′

l ‖Ḣr0,p }q .

Now, if (Eλ)λ≥0 denotes the spectral resolution associated to R 1
ν , we have

‖ f ‖qθ,q �
∑

l≥0

2−θlq max{‖ψl(R
1
ν ) f ‖Ḣr1,p , 2l‖ψl(R

1
ν ) f ‖Ḣr0,p }q

=
∑

l≥0

2−θlq max{‖
∫ 2l+1

2l−1
ψl(λ)dEλ f ‖Ḣr1,p , 2l‖

∫ 2l+1

2l−1
ψl(λ)dEλ f ‖Ḣr0,p }q

=
∑

l≥0

2−θlq max{‖
∫ 2l+1

2l−1
λr1ψl(λ)dEλ f ‖L p , 2l‖

∫ 2l+1

2l−1
λr0ψl(λ)dEλ f ‖L p }q

�
∑

l≥0

2−θlq max{‖2r1l
∫ 2l+1

2l−1
ψl(λ)dEλ f ‖L p , 2l‖2r0l

∫ 2l+1

2l−1
ψl(λ)dEλ f ‖L p }q

=
∑

l≥0

2−θlq max{‖2r1lψl(R
1
ν ) f ‖L p , 2l‖2r0lψl(R

1
ν ) f ‖L p }q .

Since

max{‖2r1lψl(R
1
ν ) f ‖L p , 2l‖2r0lψl(R

1
ν ) f ‖L p } = max{2r1l , 2r0l+l}‖ψl(R

1
ν ) f ‖L p ,

we obtain

‖ f ‖qθ,q �
∑

l≥0

2−θlq max{2r1lq , 2r0lq+lq}‖ψl(R
1
ν ) f ‖qL p

=
∑

l≥0

max{2r1lq−θlq , 2r0lq+lq−θlq}‖ψl(R
1
ν ) f ‖qL p

=
∑

l≥0

max{2−qlθ(r0−r1+1), 2ql(1−θ)(r0−r1+1)}2rql‖ψl(R
1
ν ) f ‖qL p .

Taking into account that r0 − r1 + ν = 0 we have

‖ f ‖qθ,q �
∑

l≥0

2rlq‖ψl(R
1
ν ) f ‖qL p ≡ ‖ f ‖q

Ḃr
p,q

. (6.8)

Now, in order to proof the converse inequality we use the following estimate on the

operator norm of ψl for l large enough : ‖ψl(R
1
ν )‖L(L p) = O(1), which can be obtained by

interpolation between the trivial estimate for p = 2, (4.21), and the duality argument. We
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observe that by the Liouville theorem (see Geller [14] or [9, Section 3.2.8]), λ = 0 is not an
eigenvalue of R. So, we have,

‖ f ‖q
Ḃr
p,q

=
∑

l≥0

2rlq‖ψl(R
1
ν ) f ‖qL p

=
∑

l≥0

2rlq‖ψl(R
1
ν )R−r1/νRr1/ν f ‖qL p

=
∑

l≥0

2rlq‖
∫ 2l+1

2l−1
ψl(λ)λ−r1dEλRr1/ν f ‖qL p

�
∑

l≥0

2lrq−lr1q‖
∫ 2l+1

2l−1
ψl(λ)dEλRr1/ν f ‖qL p

=
∑

l≥0

2lrq−lr1q‖ψl(R
1
ν )Rr1/ν f ‖qL p

�
∑

l≥0

2lrq−lr1q‖Rr1/ν f ‖qL p � Cs‖Rr1/ν f ‖qL p .

Hence
‖ f ‖Ḃr

p,q
� Cs‖ f ‖Ḣr1,p .

In a similar way, we can prove the estimate

‖ f ‖Ḃr
p,q

� ‖ f ‖Ḣr0,p .

So, we have the embedding Ḣri ,p ↪→ Ḃr
p,q for i = 0, 1. Hence (Ḣr1,p, Ḣr0,p)θ,q ↪→ Ḃr

p,q .

Sowe conclude that ‖ f ‖Ḃr
p,q

� ‖ f ‖θ,q . In the casewhere r < 0we observe that (I+R)
|r |−r

ν :
Ḃ|r |
p,q → Ḃr

p,q is an isomorphism and for 0 < r0 < |r | < r0 + ν = r1 we obtain,

Ḃr
p,q = (I + R)

|r |−r
ν (Ḃ|r |

p,q) = ((I + R))
|r |−r

ν Ḣr0,p, (I + R))
|r |−r

ν Ḣr1,p)θ,q

= (Ḣr0+r−|r |,p, Ḣr1+r−|r |,p)θ,q ,

with |r | = r1 + θ(r0 − r1). The general case where a < r < b and r = b(1 − θ) + aθ now
follows if we consider r0 = r − ν

2 , r1 = r + ν
2 and by observing that

r = 1

2
r1 + 1

2
r2 = r1 + 1

2
(r2 − r1).

So we get
(Ḣb,p, Ḣa,p)θ,q = (Ḣr1,p, Ḣr0,p) 1

2 ,q . (6.9)

Since (Ḣr1,p, Ḣr0,p) 1
2 ,q = Ḃr

p,q we conclude the proof of the homogeneous case. An anal-
ogous proof can be adapted to the inhomogeneous case.

6.1 Interpolation Inequalities in Besov Spaces

In this subsection we consider the problem of interpolation inequalities on Besov spaces
on graded Lie groups. The following theorem generalises a version for Besov spaces in R

n

proved by Machihara and Ozawa [18]. In turn, this extended many other known families of
inequalities, we refer to [18] for the review of the literature.
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Theorem 6.2 Let λ,μ, p, q, r and θ be real numbers. If 1 ≤ p, q ≤ r ≤ ∞,

Q(
1

p
− 1

r
) < λ and μ < Q(

1

q
− 1

r
), (6.10)

then we have the following inequalities:

(i) ‖ f ‖Ḃ0
r,1(G) ≤ C‖ f ‖θ

Ḃλ
p,∞(G)

‖ f ‖1−θ

Ḃμ
q,∞(G)

, f ∈ Ḃλ
p,∞(G) ∩ Ḃμ

q,∞(G),

(ii) ‖ f ‖B0
r,1(G) ≤ C‖ f ‖θ

Bλ
p,∞(G)

‖ f ‖1−θ

Bμ
q,∞(G)

, f ∈ Bλ
p,∞(G) ∩ Bμ

q,∞(G),

(iii) ‖ f ‖Lr (G) ≤ C‖ f ‖θ
Hλ,p(G)

‖ f ‖1−θ
Hμ,q (G), f ∈ Hλ,p(G) ∩ Hμ,q(G),

where

θ(λ − Q(
1

p
− 1

r
)) + (1 − θ)(μ − Q(

1

q
− 1

r
)) = 0. (6.11)

Proof In order to prove (i), we consider f ∈ Ḃλ
p,∞(G) ∩ Ḃμ

q,∞(G) such that f �≡ 0 almost
everywhere, with λ,μ, p and q satisfying (6.10). If ψ−1 is some smooth function supported
in [−1, 1

2 ], then by using the fact that the corresponding Littlewood-Paley decomposition
satisfies

supp(ψk) ∩ supp(ψ j ) = ∅, | j − k| ≥ 2, j, k ≥ −1, (6.12)

we can write

‖ f ‖Ḃ0
r,1(G) =

∞∑

l=0

‖ψl(R
1
ν ) f ‖Lr (G) =

∞∑

l=0

‖
∞∑

k=0

ψk(R)ψl(R
1
ν ) f ‖Lr (G)

≤
∞∑

l=0

∞∑

k=−1

‖ψk(R)ψl(R
1
ν ) f ‖Lr (G) =

∞∑

l=0

l+1∑

k=l−1

‖ψk(R)ψl(R
1
ν ) f ‖Lr (G)

=
∞∑

l=0

l+1∑

k=l−1

‖ψl(R
1
ν ) f ∗ F−1

G [ψk(π[R])]‖Lr (G).

If we use the Young inequality, for 1
r + 1 = 1

m + 1
s , we have

‖ψl(R
1
ν ) f ∗ F−1

G [ψk(π[R])]‖Lr (G) ≤ ‖FG [ψk(π[R])]‖Lm (G)‖ψl(R
1
ν ) f ‖Ls (G). (6.13)

By the action of the dilations Dt on G we have for k ≥ 1, and r = 2− k
ν , that

‖F−1
G [ψk(π[R])]‖mLm (G) =

∫

G
|F−1

G (ψk(π(R)))(x)|m dx

=
∫

G
|F−1

G [ψ0(2
−kπ(R))](x)|m dx

=
∫

G
|F−1

G [ψ0(r
νπ[R])](x)|m dx

=
∫

G
r−Qm |F−1

G [ψ0(π[R])](Dr−1x)|m dx

=
∫

G
r−Qm+Q |F−1

G [ψ0(π[R])](x)|m dx .

Hence we obtain

‖F−1
G [ψk(π[R])]‖Lm (G) = 2kQ(1− 1

m )‖F−1
G [ψ0(π[R])]‖Lm (G) � 2kQ(1− 1

m ).
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If l ≥ 2, then by using (6.13) for s = p, q simultaneously, we obtain

‖ f ‖Ḃ0
r,1(G) ≤

∞∑

j=0

j+1∑

k= j−1

‖ψ j (R) f ∗ F−1
G [ψk(π[R])]‖Lr (G)

�
∑

j≥l

j+1∑

k= j−1

2kQ( 1
p − 1

r )‖ψ j ((1 + R)1/ν) f ‖L p(G)

+
∑

j<l

j+1∑

k= j−1

2kQ( 1q − 1
r )‖ψ j (R) f ‖Lq (G)

�
∑

j≥l

2 j Q( 1
p − 1

r )‖ψ j (R) f ‖L p(G) +
∑

j<l

2 j Q( 1q − 1
r )‖ψ j (R) f ‖Lq (G)

�
∑

j≥l

2 j Q( 1
p − 1

r − λ
Q )2 jλ‖ψ j (R) f ‖L p(G)+

∑

j<l

2 j Q( 1q − 1
r − μ

Q )2 jμ‖ψ j (R) f ‖Lq (G)

�
∑

j≥l

2 j Q( 1
p − 1

r − λ
Q )‖ f ‖Ḃλ

p,∞ +
∑

j<l

2 j Q( 1q − 1
r − μ

Q )‖ f ‖Ḃμ
q,∞ .

� 2lQ( 1
p − 1

r − λ
Q )‖ f ‖Ḃλ

p,∞ + 2lQ( 1q − 1
r − μ

Q )‖ f ‖Ḃμ
q,∞ ,

the last inequality due to (6.10). If we put A := ‖ f ‖Ḃλ
p,∞‖ f ‖−1

Ḃμ
q,∞

, then

2lQ( 1
p − 1

r − λ
Q )‖ f ‖Ḃλ

p,∞ + 2lQ( 1q − 1
r − μ

Q )‖ f ‖Ḃμ
q,∞

= (2lQ( 1
p − 1

r − λ
Q )A1−θ + 2lQ( 1q − 1

r − μ
Q )A−θ )‖ f ‖θ

Ḃλ
p,∞

‖ f ‖1−θ

Ḃμ
q,∞

.

Let us define the positive parameter σ = (λ − Q
p + Q

r ) − (μ − Q
q + Q

r ), and assume that
l satisfies

2l ≤ A
1
σ < 2

l+1
ν . (6.14)

We can assume (6.14) if we take l = [ ν
σ
log2(A)], where [ · ] denotes the integer part function

on the real numbers. Then we have

2lQ( 1
p − 1

r − λ
Q )A1−θ+2lQ( 1q − 1

r − μ
Q )A−θ

� A
1
σ

(
Q
p − Q

r −λ)+ 1
σ

(λ− Q
p + Q

r ) + A
1
σ

(
Q
q − Q

r −μ)+ 1
σ

(μ− Q
q + Q

r ) = 2,

where in the last estimate we have used that

1 − θ = 1

σ
(λ − Q

p
+ Q

r
) and − θ = 1

σ
(μ − Q

q
+ Q

r
). (6.15)

Hence we obtain
‖ f ‖Ḃ0

r,1(G) � ‖ f ‖θ

Ḃλ
p,∞(G)

‖ f ‖1−θ

Ḃμ
q,∞(G)

,

which shows the estimate (i). The inequality in (ii) can be proved in a similar way. Finally,
we have (iii) if we use (i) together with the embeddings Ḃ0

r ,1(G) ↪→ Lr (G) and Hρ,r (G) ↪→
Bρ
r ,∞(G) proved in Theorem 5.2.
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7 Localisation of Besov Spaces on Graded Lie Groups

In this section we prove local embedding properties of Besov spaces Br
p,q(G) with the ones

defined in a local way onR
n . First we recall the notion of Besov spaces onR

n . For x, h ∈ R
n

and f ∈ L p(Rn), let us denote

�m
h f (x) :=

m∑

k=0

Ck
m(−1)m−k f (x + kh) (7.1)

and
ωm
p (t, f ) := sup

|h|≤t
‖�m

h f ‖L p(Rn). (7.2)

Then, by following [27] for r > 0 and 1 ≤ p, q ≤ ∞, the Euclidean Besov space Br
p,q(R

n)

can be considered endowed with the norm

‖ f ‖Br
p,q (Rn) = ‖ f ‖L p(Rn) +

n∑

m=0

(∫ ∞

0
(t−rωm

p (t, f ))qdt

) 1
q

(7.3)

for q < ∞, and with an obvious modification in the case q = ∞. As the reviewer of this
paper noticed, the formula in (7.3) in the Euclidean case appeared first in the fundamental
work due to Besov [4].

By considering the property (I − L)
α
2 (Br

p,q(R
n)) = Br−α

p,q (Rn), where L is the Laplace
operator on R

n, for r < 0, we can consider on Br
p,q(R

n), 1 ≤ p, q ≤ ∞, the norm

‖ f ‖Br
p,q (Rn) = ‖(I − L)−

s
2 f ‖Bs+r

p,q (Rn), (7.4)

where s is a fixed real satisfying s + r > 0. It is a known fact that the definitions of Besov
spaces on R

n by using the functional (7.2) are equivalent to those using Littlewood-Paley
partitions for the Laplacian on R

n, in a analogous way as we have defined Besov space
on graded Lie groups by using Rockland operators. It can be obtained if in particular in
Definition 5.1 we put G = R

n and R = �x , the positive Laplacian over R
n . If we denote

for a graded Lie group G the localisation space by

Br
p,q(G, loc) = { f ∈ D′(G) : φ · f ∈ Br

p,q(G), for all φ ∈ C∞
0 (G)} (7.5)

we have the following result.

Proposition 7.1 If Br
p,q(G, loc) denotes the local Besov space defined above, then for all

r ∈ R, 1 < p < ∞ and 0 < q ≤ ∞ we have

B
r
ν1
p,q(G, loc) ⊂ Br

p,q(R
n, loc) ⊂ B

r
νn
p,q(G, loc), (7.6)

where ν1 and νn are respectively the smallest and the largest weights of the dilations.

Proof It was proved in [9, Theorem 4.4.24] that the following embedding of local Sobolev
spaces holds:

H
s
ν1

,p
(G, loc) ⊂ Hs,p(Rn, loc) ⊂ H

s
νn

,p
(G, loc), (7.7)

for all s ∈ R. Thus, the result now follows by using real interpolation in the sense of
Theorem 6.1.

Remark 7.1 A number of embeddings results describing relations between subelliptic and
classical functional spaces were given by Rothschild and Stein [24]. As for a comparison
with the norm in (7.3) we refer the reader to Pesenson [21].
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8 Fourier Multipliers and Spectral Multipliers

In this section we give results for the boundedness of spectral and of Fourier multipliers in
Besov spaces on graded Lie groups.

8.1 Negative Results for Left-Invariant Operators

There are some restrictions on indices for Besov spaces on which left-invariant operators
may be bounded.

Theorem 8.1 Let G be a graded Lie group and let T be a linear left-invariant operator
bounded from Br

p,q(G) (respectively, Ḃr
p,q(G)) into Br̃

p̃,q̃(G), (respectively, Ḃr̃
p̃,q̃(G)), for

1 ≤ p, p̃ < ∞, −∞ < r , r̃ < ∞, and 0 < q, q̃ ≤ ∞. If 1 ≤ p̃ < p < ∞, then T = 0.

Proof Let | · | be a homogeneous norm on G. It is known (see [8, Lemma 3.2.5]) that

lim|h|→∞ ‖ f + τh f ‖L p(G) = 2
1
p ‖ f ‖L p(G),

where τh is defined by τh f (x) = f (hx), x, h ∈ G. First, we will prove the case where
0 < q̃ < ∞ in the inhomogeneous case. By the boundedness of T we have ‖T f ‖Br̃

p̃,q̃ (G)
≤

‖T ‖‖ f ‖Br
p,q (G), where ‖T ‖ = ‖T ‖B(r ,p,q;r̃ , p̃,q̃) is the usual operator norm. So, for every

h ∈ G we have
‖T ( f + τh f )‖Br̃

p̃,q̃ (G)
≤ C‖ f + τh f ‖Br

p,q (G).

Now, we compute both sides as |h| → ∞. We observe that

‖T ( f + τh f )‖Br̃
p̃,q̃ (G)

=
( ∞∑

l=0

2lr̃ q̃‖ψl((I + R)
1
ν )T ( f + τh f )‖q̃L p̃(G)

) 1
q̃

=
( ∞∑

l=0

2lr̃ q̃‖ψl((I + R)
1
ν )T f + ψl((I + R)

1
ν )T τh f ‖q̃L p̃(G)

) 1
q̃

.

Because, T and ψl(R
1
ν ), l ∈ N0, are left-invariant, we obtain

lim|h|→∞ ‖ψl((I + R)
1
ν )T f + ψl(I + R)T τh f ‖L p̃(G)

= lim|h|→∞ ‖ψl((I + R)
1
ν )T f + τhψl((I + R)

1
ν )T f ‖L p̃(G)

= 2
1
p̃ ‖ψl((I + R)

1
ν )T f ‖L p̃(G).

Hence
lim|h|→∞ ‖T ( f + τh f )‖Br̃

p̃,q̃ (G)
= 2

1
p̃ ‖T f ‖Br̃

p̃,q̃ (G)
.

With a similar proof we obtain

lim|h|→∞ ‖ f ‖Br
p,q (G) = 2

1
p ‖ f ‖Br

p,q (G).

Hence
2

1
p̃ ‖T f ‖Br̃

p̃,q̃ (G)
≤ 2

1
p ‖T ‖‖ f ‖Br

p,q (G).
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The last inequality implies that ‖T ‖ ≤ 2
1
p − 1

p̃ ‖T ‖. Thus, if p > p̃ then T is the null
operator. The proof for q̃ = ∞ is analogous.

8.2 Fourier Multipliers on Besov Spaces

Throughout this subsection we consider (right) homogeneous and inhomogeneous Besov
spaces. In order to introduce our main result of this subsection we consider the following
remark on the commutativity of operators with spectral measures.

Remark 8.2 Let R be a self-adjoint operator with spectral measure E(λ)λ>0. Then, the spec-
tral theorem gives R = ∫

λdEλ, and by the Stone’s formula we have the following integral
representation for every spectral projection E(λ), (see Theorem 7.17 of [28])

E(λ) = lim
δ→0+ lim

ε→0+

∫ λ+δ

−∞
([t − iε − R]−1 − [t + iε − R]−1)dt . (8.1)

If a closed operator T commutes with R, then T commutes with its resolvent operator
(z− R)−1 and hence with its spectral measure (E(λ))λ>0.Now, if f is a bounded continuous
function on [0,∞) and

f (R) =
∫

f (λ)dE(λ), (8.2)

then we can write

f (R) = lim
‖P‖→0+

∞∑

i=1,λi∈P

[ f (λi )][Eλi − Eλi−1 ], (8.3)

where in the limit above, P = {0 = λ0 < λ1 < λ2 < · · · } denotes a partition of [0,∞). So,
if T commutes with R, then it also commutes with every bounded continuous function of R
defined by the functional calculus.

Now we present the following theorem on Fourier multipliers in Besov spaces where we
establish a connection between L p boundedness and Besov continuity of Fourier multipliers.

Theorem 8.3 Let G be a graded Lie group. Let σ = {σ(π) : π ∈ Ĝ} be a μ-measurable
field of operators in L2(Ĝ). Let us assume that the corresponding operator T = Tσ , given
by

Tσ u(x) =
∫

Ĝ
Tr(π(x)σ (π)̂u(π))dμ(π),

is a bounded operator from L p1(G) into L p2(G), 1 ≤ pi ≤ ∞. Then T is a bounded
operator from the (right) Besov space Ḃr

p1,q(G) into the (right) Besov space Ḃr
p2,q(G), for

all −∞ < r < ∞ and 0 < q ≤ ∞. Moreover, T is also a bounded operator from the (right)
Besov space Br

p,q(G) into the (right) Besov space Br
p,q(G).

Proof For f ∈ S (G) we have FG(T f )(π) = σ(π) f̂ (π) = FG( f ∗ (F−1
G σ))(π). If R is

a right invariant positive Rockland operator, then for every a ∈ C (see Proposition 4.4.30 of
[9])

RaT f = Ra( f ∗ F−1
G σ) = (Ra f ) ∗ F−1

G σ = T (Ra f ), (8.4)
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in particular T commutes with R. Since T commutes with R, it commutes with its spectral
measures, and with every bounded function of R defined by the functional calculus (see,
Remark 8.2). So,

‖T f ‖q
Ḃr
p2,q (G)

=
∑

l∈N0

2lqr‖ψl(R
1
ν )T f ‖qL p2

=
∑

l∈N0

2lqr‖Tψl(R
1
ν ) f ‖qL p2

≤
∑

l∈N0

2lqr‖T ‖qL(L p1 (G),L p2 (G))
‖ψl(R

1
ν ) f ‖qL p1

= ‖T ‖qL(L p1 (G),L p2 (G))
‖ f ‖q

Ḃr
p1,q (G)

.

Thus ‖T f ‖q
Ḃr
p2,q (G)

≤ ‖T ‖L(L p1 (G),L p2 (G))‖ f ‖Ḃr
p1,q (G). The proof for the inhomogeneous

case is similar. So we end the proof.

We end this section with applications of Theorem 8.3 to some examples for the Fourier
multipliers bounded on L p and (right) Besov spaces. For notations and terminologies we
follow [9].

Example 8.4 Let T : S (G) → S (G), G be a graded Lie group of homogeneous dimension
Q. If T is left-invariant and homogeneous of degree ν with

− Q < Re(ν) < 0, (8.5)

and such that the right convolution kernel of T is continuous away from the origin, then
T : L p(G) → Lq(G) is a bounded operator for 1 < p, q < ∞ and

1

q
− 1

p
= Re(ν)

Q
. (8.6)

(c.f. Proposition 3.2.8 of [9, p. 138]). By Theorem 8.3, T is a bounded operator from the
right Besov space Br

p,s(G) into the right Besov space Br
q,s(G) with p and q satisfying (8.6),

r ∈ R and 0 < s ≤ ∞.

Example 8.5 Let T : L2(G) → L2(G) be a bounded and left-invariant operator. Let us
assume that its distributional kernel coincides on G \ {0} with a continuously differentiable
function k with

∫

|x |≥ 1
2

|k(x)|dx ≤ A < ∞, sup
0<|x |≤1

|x |Q |k(x)| ≤ A,

sup
0<|x |≤1

|x |Q+v j |X jk(x)| ≤ A, j = 1, 2, . . . ,

for some homogeneous quasi-norm | · | on G and for some A > 0. Then T is weak type (1,1)
and bounded on L p(G), 1 < p < ∞, (c.f. [9, p. 145]). By using Theorem 8.3 we obtain the
boundedness of T on the right Besov space Br

p,q(G), 0 < q ≤ ∞ and r ∈ R.

Example 8.6 Let G be a graded Lie group. Let σ ∈ L2(Ĝ). If

‖σ‖Hs ,l.u,L,η,R, ‖σ‖Hs ,l.u,R,η,R < ∞
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with s >
Q
2 , then the corresponding multiplier Tσ extends to a bounded operator on L p(G)

for all 1 < p < ∞. By Theorem 2.4 we have

‖Tσ ‖L(L p(G)) ≤ C max{‖σ‖Hs ,l.u,L,η,R, ‖σ‖Hs ,l.u,R,η,R}. (8.7)

This is the Hörmander-Mihlin Theorem presented in [8]. By Theorem 8.3, we obtain the
boundedness of Tσ on the right Besov space Br

p,q(G) and by observing the proof of such
theorem we conclude that

‖Tσ ‖L(Br
p,q (G)) ≤ C max{‖σ‖Hs ,l.u,L,η,R, ‖σ‖Hs ,l.u,R,η,R}. (8.8)
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