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Abstract

In this paper we investigate Besov spaces on graded Lie groups. We prove a Nikolskii type
inequality (or the Reverse Holder inequality) on graded Lie groups and as consequence we
obtain embeddings of Besov spaces. We prove a version of the Littlewood-Paley theorem on
graded Lie groups. The results are applied to obtain embedding properties of Besov spaces
and multiplier theorems for both spectral and Fourier multipliers in Besov spaces on graded
Lie groups. In particular, we give a number of sufficient conditions for the boundedness of
Fourier multipliers in Besov spaces.
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1 Introduction

In this paper we are interested in advancing the notions and results of harmonic analysis in
the setting of graded Lie groups, building up on the fundamental book [12] of Folland and
Stein, as well as on more recent developments over the decades, in particular summarised in
the recent book [9] by Véronique Fischer and the second author. Indeed, as it was pointed
out by Folland and Stein, the setting of homogeneous groups is ideal for the distillation
of those results of harmonic analysis that depend only on the group and dilation structures
of the underlying space, while the setting of graded Lie groups allows one to also use the
techniques coming from the theory of partial differential operators. The difference between
the classes of nilpotent, homogeneous and graded Lie groups is rather small, with the majority
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of nilpotent Lie groups allowing for a compatible graded structure, see [9, Chapter 3] for a
detailed explanation. In particular, this setting includes the class of stratified groups [11] when
the Rockland operator can be chosen to be the sub-Laplacian. We also mention that general
Rockland operators on graded Lie groups naturally appear when one is dealing with questions
concerning general partial differential operators on manifolds, as their liftings following the
celebrated lifting procedure of Rothschild and Stein [24].

Summarising the research of this paper, here we obtain the following results:

e cstablish the Nikolskii (or the reverse Holder) inequality in the setting of graded Lie
groups in terms of its homogeneous dimension. We believe such a result to be new
already on stratified groups, and even on the Heisenberg group;

e prove the Littlewood-Paley theorem on graded Lie groups for the dyadic decomposition
associated to positive Rockland operators;

e investigate homogeneous and inhomogeneous Besov spaces in terms of Rockland opera-
tors and prove their embedding properties. We show that the Besov spaces in this context
are also the interpolation spaces between Sobolev spaces, and prove that they are inde-
pendent of a particular choice of the Rockland operator used to define them. We also
prove their embedding properties with the usual (locally defined) Besov spaces on R”;

e apply these results to establish multiplier theorems for spectral and Fourier multipliers
in Besov spaces on graded Lie groups. More precisely, we give negative results on the
boundedness of invariant operators in Besov spaces. For Fourier multipliers, we show
that the boundedness between L”-spaces implies the boundedness on Besov spaces and
give several applications of this result to Fourier multipliers using Hérmander-Mihlin
type and other theorems in this setting.

Nikolskii-type inequalities, following the usual terminology, are, roughly speaking,
inequalities between different metrics of the same function (usually trigonometric poly-
nomials). Nikolskii [19] in 1951 proved the inequalities for 1 < p < g < oo:

1_1
I T, Ly, Lo lLaj0.07) < 2"[QR7)'LiLy -~ Ly? 4Ty, 1y, 1, |1 LP[0,27] (1.1
for trigonometric polynomials of the form

n Ly

— . Ll G1xr e ik Xi)
ToyLy.Ly = Z Z Citojasesik® ) (1.2)
k=1 jx=—Lg

as well as for entire functions of exponential type. Sometimes such inequality is also called
the reverse Holder inequality in the literature.
On R”, the Nikolskii inequality takes the form

I fllze@rny < C[M[C-h.[Supp(f‘\)]]]%_5 I fllze @y, (1.3)

for every function f € L?(R") with Fourier transform fof compact support. Here, c.h.(E)
denotes the convex hull of the set E. Recently, the Nikolskii inequality has been considered
in the setting of Lie groups G. In [23], Pesenson has obtained the Nikolskii inequality for
symmetric spaces G /K of non-compact type. For the formulation of the Nikolskii inequality
on arbitrary compact manifolds we refer the reader to Pesenson [22]. On the other hand,
for compact homogeneous manifolds G/K, in [20] the following Nikolskii inequality was
obtained: .

ITLllLa/x) < NoL)? | TLllLr(G/k)s (1.4)
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forO0 < p < g <oo;here,if0 < p <2, p:=1,andfor2 < p < o0, p := [%]—i—l,
N(L) ~ LYmG/K isthe Weyl eigenvalue counting function for the elliptic pseudo-differential
operator (I — L‘,G/K)%, where L/ is the Laplacian on G /K.

In this paper we prove a Nikolskii type inequality in the framework of graded Lie groups
G. We believe this to be new also on stratified groups, even on the Heisenberg group.

This inequality is important in mathematical analysis because it is a fundamental tool in the
proof of several embeddings properties of important function spaces such as Besov spaces.
The Besov spaces form scales Bj, ,(G) carrying three indices r € R, 0 < p, ¢ = oo, and
they can be obtained by interpolation of suitable Sobolev spaces. As it was discussed in [10],
Sobolev spaces can be defined on R”, and on compact and non-compact Lie groups in various
equivalent ways. In a recent work of the second author with V. Fischer, Sobolev spaces were
introduced on arbitrary graded Lie groups by using positive Rockland operators (see [10]).
It is important to mention that Sobolev spaces on stratified Lie groups were introduced by
Folland in [11] by using sub-Laplacians, and it was proved (see also [12]) that these spaces
are different from their Euclidean counterpart defined by the Fourier transform or by using
the local properties of the Laplace operators. The Folland’s Sobolev spaces coincide with
those introduced in [10] on graded Lie groups in the setting of stratified groups. We also refer
to [2] for a number of useful inequalities on graded Lie groups.

In this paper we use positive Rockland operators in order to introduce Besov spaces
on graded Lie groups, and later on, we prove that our Besov spaces can be obtained by
interpolation of the Sobolev spaces introduced in [10]. For special cases of parameters p, g
and r, Besov spaces were also considered by Bahouri, Gérard and Xu in [3]. Apart of the
trivial embeddings that can be obtained on the g parameters for Besov spaces B}, (G), the
Nikolskii inequality will be a useful tool in order to establish embeddings that involve the
parameters r and p.

As a substitute of the Plancherel theorem on L2(G), in L?(G) spaces, we prove a version
of the Littlewood-Paley theorem and we will use both, our Nikolskii inequality and our
Littlewood-Paley theorem in order to get boundedness of Fourier multipliers and spectral
multipliers on Besov spaces. For the case of Fourier multipliers we will use the version of
the Hormander-Mihlin theorem in the nilpotent setting [8].

We note that in the case of the sub-Laplacian, a wealth of results is available, to mention
only a few, see e.g. Folland [11] and Saka [25] for Sobolev spaces and Besov spaces on
stratified groups, respectively; Furioli, Melzi and Veneruso [13] and Alexopoulos [1] for the
Littlewood-Paley theorem and Besov spaces, and for spectral multiplier theorems for the
sub-Laplacian on Lie groups of polynomial growth, respectively. There are also many results
on functions of sub-Laplacians in the fundamental monograph by Varopoulos, Saloff-Coste
and Coulhon [26].

The novelty of this paper is that we are working with Rockland operators; these are linear
invariant homogeneous hypoelliptic partial differential operators, in view of the Helffer and
Nourrigat’s resolution of the Rockland conjecture in [16]. Such operators always exist on
graded Lie groups and, in fact, the existence of such operators on nilpotent Lie groups
does characterise the class of graded Lie groups, see [9, Section 4.1] for further details and
references. As the literature concerning the analysis based on sub-Laplacians is immense,
we do not review it here, but refer to the introduction in [9] for a more extensive presentation
of the subject. Some results of this paper were announced in [5].

This paper is organised as follows. In Section 2 we present some preliminaries on the
Fourier analysis of graded Lie groups and its homogeneous structure, and we present positive
Rockland operators and elements of their functional calculus. For this we follow [9]. In
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Section 3 we prove our version of the Nikolskii inequality for functions defined on graded Lie
groups. In Section 4 we prove our version of the Littlewood-Paley theorem. In Section 5 we
define Besov spaces and we prove some embedding properties for these spaces. In Section 6
we prove that Besov spaces can be obtained by interpolation of Sobolev spaces in the nilpotent
setting and in Section 6.1 we prove further interpolation properties. In Section 7 we show
embedding properties between localisation of these Besov spaces and the usual (Euclidean)
Besov spaces.

Finally, in Section 8 we study the boundedness of Fourier multipliers and spectral multi-
pliers in Besov spaces. In the case of Fourier multipliers, we prove that L? (G)-multipliers on
graded nilpotent Lie groups generate multipliers in Besov spaces B}, , (G). As a consequence
of this fact, we end Section 8 with several examples on multipliers.

2 Preliminaries

In this section, we recall some preliminaries on graded and homogeneous Lie groups G. The
unitary dual of these groups will be denoted by G. We also present the notion of Rockland
operators and Sobolev spaces on G and on the unitary dual G by following [8], to which we
refer for further details on constructions presented in this section.

2.1 Homogeneous and Graded Lie Groups

Let G be a graded Lie group. This means that G is a connected and simply connected Lie
group whose Lie algebra g may be decomposed as the sum of subspaces g = g1 ®g2D- - - D gs
such that [g;, g;] C gi+;, and g;+; = {0} if i + j > 5. This implies that the group G is
nilpotent because the sequence

g =06, 9w =19, 8;-1l

defined inductively terminates at {0} in a finite number of steps. Examples of such groups are
the Heisenberg group H" and more generally any stratified groups where the Lie algebra g
is generated by g;. The exponential mapping from g to G is a diffeomorphism, then, we can
identify G with R” or g; X g» X - - - X g, as manifolds. Consequently we denote by .’ (G) the
Schwartz space of functions on G, by considering the identification G = R". Here, n is the
topological dimension of G, n = nj + - - - + ng, where n; = dimgg. A family of dilations
D,, r > 0, on a Lie algebra g is a family of linear mappings from g to itself satisfying the
following two conditions:

e Forevery r > 0, D, is a map of the form
D, = Exp(In(r)A)
for some diagonalisable linear operator A on g.
e VX, Y eg,andr >0, [D,X, D, Y] = D,[X,Y].
We call the eigenvalues of A, vy, va,---, vy, the dilations weights or weights of G. A
homogeneous Lie group is a connected simply connected Lie group whose Lie algebra g

is equipped with a family of dilations D,. In such case, and with the notation above, the
homogeneous dimension of G is given by

Q =Tr(A) =) [-dimg,.
=1
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We can transport dilations D, of the Lie algebra g to the group by considering the family of
maps
expg oD, o exp&l, r >0,

where exp; : g — G is the usual exponential function associated to the Lie group G. We
denote this family of dilations also by D, and we refer to them as dilations on the group. If
we write rx = D, (x), x € G, r > 0, then a relation on the homogeneous structure of G and
the Haar measure dx on G is given by

/ (f o D)) (x)dx = r*Q/ fx)dx.
G G

2.2 The Unitary Dual and the Plancherel Theorem

We will always equip a graded Lie group with the Haar measure dx. For simplicity, we
will write L? (G) for L? (G, dx). We denote by G the unitary dual of G, that is the set of
equivalence classes of unitary, irreducible, strongly continuous representations of G acting
in separable Hilbert spaces. The unitary dual can be equipped with the Plancherel measure
du. So, the Fourier transform of every function ¢ € . (G) at w € G is defined by

(Fop)(m) =o(r) = /Gw(X)ﬂ(X)*dx,

and the corresponding Fourier inversion formula is given by

p(x) = /gTr(ﬂ(X)a(ﬂ))du(ﬁ)-

In this case, we have the Plancherel identity

1

2
loll2c) = ( /6 Tr(@(n)@(n)*)du(n)) = 1912

We also denote ||¢||%Is = Tr(¢(m)@()*) the Hilbert-Schmidt norm of operators. A Fourier
multiplier is formally defined by

Tou(x) = /ATr(n(x)a(n)ﬁ(rr))du(n), u € C°(G), (2.1)
G

where the symbol o (;r) is defined on the unitary dual G of G. It is easy to see e.g. that
foro € Loo(a), that is ||U||L°°(6) = sup, g llo@@)llop < 00, Ty : L*(G) —» L*(G) is
bounded. For a rather comprehensive treatment of this quantization we refer to [9] and to
references therein.

2.3 Homogeneous Linear Operators and Rockland Operators

Let us denote by Z(G) the family of compactly supported smooth functions C;°(G) endowed
with its standard Fréchet structure and let us denote by 2’(G) its topological dual space. A
linear operator T : 2(G) — 2'(G) is homogeneous of degree v € C if for every r > 0

T(foD,)=r"(Tf)o D, 2.2)
holds for every f € 2(G).
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If for every representation @ € 6, 7w : G — U(Hy), we denote by H° the set of
smooth vectors (also called Garding vectors), that is, the space of vectors v € H, such that
the function x — 7 (x)v, x € 6, is smooth, a Rockland operator is a left-invariant partial
differential operator

R= > a,X":C¥(G)— C¥(G)

lee|<m

which is homogeneous of positive degree v = v and such that, for every unitary irreducible
non-trivial representation 7 € G, its symbol 77 (R) defined via the Fourier inversion formula
by
Rf(x) = [Tr[n(x)n(R)f(n)]dn, x eqG, 2.3)
G

is injective on H2°.

It can be shown that a Lie group G is graded if and only if there exists a differential
Rockland operator on G, see e.g. [9, Page 172]. If the Rockland operator is formally self-
adjoint, then R and 7 (R) admit self-adjoint extensions on L2(G) and H,, respectively. Now
if we preserve the same notation for their self-adjoint extensions and we denote by E and
E; their spectral measures, by functional calculus we have

R = / AdE()), and 7(R) = /AdEn()»).

We now recall a lemma on dilations on the unitary dual G , which will be useful in our
analysis of spectral multipliers. For the proof, see Lemma 4.3 of [8].

Lemma 2.1 For every m € G let us define D, () = 7™ by D,(m)(x) = m(rx) for every
r>0andx € G. Then, if f € L®(R) then f(x"(R)) = f(r'n(R)).

We refer to [9, Chapter 4] and references therein for an exposition of further properties
of Rockland operators and their history, and to ter Elst and Robinson [6] for their spectral
properties.

2.4 Sobolev Spaces and the Hormander-Mihlin Theorem

In order to define Sobolev spaces, we choose a positive left-invariant Rockland operator R
of homogeneous degree v > 0. With notations above one defines Sobolev spaces as follows

(ct[9)).

Definition 2.2 Let r € R, the homogeneous Sobolev space H "P(G) consists of those f €
D' (G) satisfying

||f||1-'1r7p((;) =Rv fllLrg) < oo. 24)
Analogously, the inhomogeneous Sobolev space H"”(G) consists of those distributions
f € D'(G) satisfying

Il fllareG) =1 + R)%f“Ll’(G) < o0. (2.5)

We record that a homogeneous quasi-norm on a graded Lie group G, is a continuous non-
negative function | - | : G — [0, 00) such that: (i) Vx € G, |x| = |[x7!|, (i) |- | is
1-homogeneous, i.e. Vx € G, Vr > 0, |rx| = r|x|, and (iii) |x| = 0 if and only if x = eg
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is the identity element of G. In terms of the coordinate functions x — x; on G, a concrete
example of a homogeneous quasi-norm is the following one

1

n

P
L= D117 | pi=201 (2.6)
j=1

Any two different homogeneous quasi-norms on a graded Lie group are equivalents, see e.g.
Proposition 3.1.35 in [9, Page 110].

By using a quasi-norm | - | on G we can introduce for every r > 0, the inhomogeneous
Sobolev space of order r on G. H'(G) which is defined by

H'(G) = Z6(L*(G, (1 + |- )*dx)),

where .7 is the Fourier transform on the group G. In a similar way, for » > 0 the homoge-
neous Sobolev space H" (G) is defined by

H"(G) = Z6(L*(G, | - |¥dx)).

As usual if » = 0 we denote Lz(a) = HO(?;) = HO(G). Characterisations of Sobolev
spaces on G and on the unitary dual G in terms of homogeneous norms on G can be found
in [8] and [9], respectively.

Finally we present the Hormander-Mihlin theorem for graded nilpotent Lie groups. This
theorem will be useful in our proof of the Littlewood-Paley theorem. The formulation of
such result requires a local notion of Sobolev space on the dual space G. We introduce this
as follows. Let s > 0, we say that the field 0 = {o(7) : 7w € 6} is locally uniformly in
right-H* (6) (resp. left-H® (5)) if there exists a positive Rockland operator R and a function
n € D(G) satisfying

o120, R = sup o xR s @) < 00 2.7
r>
respectively,
lo Wl s, m 2= sup [{n(r (RN (x )W s 5, < 00 (2.8)
r>0

It important to mention that if ¢ is another function in D(0, co) then (see [8])

lollas,iu,rnR <X lolasiurer, and lolgs iurgr < NolES 10,06, R- (2.9)

The following lemma shows how Sobolev spaces on the unitary dual interact with the family
of dilations.

Lemma2.3 Leto € L2(G). Ifr > Oand s > O then
_9
lo o Drllgegy ="~ % ol G- (2.10)

This implies that o € H® (6) if only if for everyr > 0, 0 o D, € H* (6). Also, if R, S are
positive Rockland operators and n, { € D(0, 00), n,¢ # 0, then there exists C > 0 such
that

lolasiur,e,s < Cllolasiurgr (2.1D

and
lollasiure,s < CllollEs 1u,RnR- (2.12)
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Proof By Lemma 2.1 or Lemma 4.3 of [8] we have
llo o Drll sy = Il - ' 75" (0 0 D)l 2y = lll - Fr= 225 (@)™ ) 126
N
=P F ol o).

With the equality above, itis clearthato € H* (6) ifonlyifforeveryr > 0,00D, € H* (6).
The second part of the Lemma has been shown in Proposition 4.6 of [8].

Now, we state the Hérmander-Mihlin theorem on the graded nilpotent Lie group G (c.f.
Theorem 4.11 of [8]):

Theorem 2.4 Let G be a graded Lie group. Let o € L2(6). If
lollas Ry O HS 1w, R, R < OO, (2.13)

with s > %, then the corresponding multiplier T, extends to a bounded operator on LP (G)
forall 1 < p < co. Moreover

1T5 Ml crcy < Cmax{llolgs iu,Lyr: lolHS 1u,Rn,R}- (2.14)

The following remarks will be useful in our formulation of the Littlewood-Paley theorem.

Remark 2.5 (On the proof of the Hormander-Mihlin Theorem) The proof of the Hérmander-
Mihlin theorem (c.f. Theorem 4.11 of [8]) on graded Lie groups uses a suitable Littlewood-
Paley decompostions of the symbol. Indeed, for o satisfying (2.13), the L?-boundedness of
T, is proved in Theorem 4.11 of [8], by decomposing

T, =) Tj, Tj:=T,9;(R), (2.15)
Jj=0

and using that the right-convolution kernels of the family T}, k; := 7 -1 (o7;), summed on
J» provide the distributional kernel of T', k = Y j kj, which agrees with a locally integrable
function on G \ {0}, such that, for every ¢ > 0,

Sy = sup / 27,270 27 x) — 27, 27 - x)|dx, (2.16)
zeG
[x|>4clz]
satisfies (see [8], p. 26), .# < 27 max{l|o | g5 1,1, R 10 | 55 1.0, R, n, R}, FOr some &9 >
0, depending only of ¢ > 0. The proof of the Hérmander-Mihlin theorem developed by V.
Fischer and the second author consists of proving that this kernel estimates are sufficiently
good in order that

ITillzwre)y <& max{llollgsiurygr: lolas iurnRr}
and consequently
Tl zwrcy S D277 max{llo | s .o 10| ms Luron RY-
J

In particular, if T = I, is the identity operator on L?(G), o(w) = Ig,, is the identity
operator on Hy, and the right convolution kernel «; associated with v, (R), satisfies the
estimate

Sy <270, (2.17)
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The inequality (2.17) will be useful in our proof in the Littlewood-Paley theorem.

In the next sections, we present our main results. We start with a formulation of the
Nikolskii inequality on graded Lie groups.
3 Nikolskii Inequality on Graded Lie Groups

Let G be a graded Lie group with a family of dilations D;, t > 0. Let R be a positive
Rockland operator of homogeneous degree v > 0, and for every L > 0, let us consider the

linear operator V1, (’R%), defined by the functional calculus, where ¥y (¢) := 1//(L_1 t) and
Y e 2(0,00) = C§°(0, 00) is a function with compact support in [%, 2]. In terms of the

spectral resolution (E (1)), >0 associated with R% , we have

f = VLRV = /0 WL DAEG) S, 3.1)

for every f € .#(G). Then ty is a spectral multiplier and

Tt () = ( /0 mu)dEn(A)) fa),

where (E; (X))o is the spectral resolution of 7 (R). We define
o0
Eq(L) = / $(L™'WdEx (M),
0

where ¢ € 2(0, 00) is a function satisfying ¢ = 1 on [%, 1]. In terms of the Fourier inversion
formula we have

‘th(x)=/6Tr[ﬂ(X)En(L)lﬁL(ﬂ)f(ﬂ)]dﬁ- (3.2)

With the notations above we present our version of the Nikolskii inequality in the following
theorem.

Theorem 3.1 Let G be a graded Lie group of homogeneous dimension Q, and let us consider
the operator tp as in (3.2). If 1 < p < g < oo then

1_1

e flle < 176 TEx (I LY Nt f oo, (3.3)
wherer = (1+ (1/g —1/p))~". Since J”-'(;I[En(l)] € .Y(G), its L"-norm is finite.
Remark 3.2 As the reviewer of this paper pointed out, an important difference between (3.3)
and (1.3) is that the description in (3.3) is based on the “one dimensional" spectral calculus
while the formulation of (1.3) is based on the Fourier transform on R”. One reason for this
is that our analysis is formulated in terms of the spectral calculus of Rockland operators.
Proof Let us define for every L > 0, the function

gL =L %t f)o Dy,
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974 D. Cardona and M. Ruzhansky

ie., gr(x) = L’Q(th)(L’lx), x € G. Forevery w € G we have
gL(r) = / L™t /)L ) (x)*dx
G

_ /G (t /Y (Ly)*dy

=t f(r(LY).

In view of Lemma 2.1, (or [8, Lemma 4.3]) we have that

860 =G (r (L) =y (L 7D (R) =y (L™ L (R) =Y (x(R) = Ex (¥ (x(R)).
and consequently, we have shown that
gL(m) = Ex (1)gL (),
in view of the properties of the functional calculus. Hence
gL(x) = gL % 75 [Ex(DI(x), x € G.
By applying Young inequality we have

lgrllze < 1175 TEx (Wl llgLlier, (34

% = é + 1. We observe that the condition 1 < p < g < oo implies that
0< % =1+ % — % < 1 and consequently 1 < r < oo. Observe that for every a > 0, we
have

provided that % +

1
||gL||La<G>=< /G |gL(x>|“dx> =( /G L‘Q“|th(L‘1x)|“dx>

- ( /G L[Q—Q“Huf(yn“dy)“

= LGVt fll o
So, by the inequality (3.4), we have
LGt flle < 175 B2 (DI L2Vt Lo (3.5)
Thus, we obtain
e fllee < 176 1B (D1 LOF 2 1t flo (3.6)

This completes the proof.

4 A Vector Valued-Inequality for Littlewood-Paley Decompositions
and the Littlewood-Paley Theorem on Graded Lie Groups

The Littlewood-Paley theory provides a partial substitute in L? spaces for the results derived
from the Plancherel theorem. The main notion in the Littlewood-Paley theory is the concept
of a dyadic decomposition. Here, the sequence {};cn, is a dyadic decomposition, defined
as follows: we choose a function ¥9 € Cg°(R), ¥o(2) = 1, if |A| < 1, and (1) = 0, for
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|A] > 2. For every j > 1, let us define ¥;(A) = ¥o(27/1) — Y2~/ F1X). For y(A) :=
Yo(A) — Yo(2A), ¥j(X) = Y(277A). In particular, we have

DY) =1, forevery 1 > 0. 4.1)
leNy

For versions of the Littlewood-Paley theorem for the sub-Laplacian on the Heisenberg group
we can refer to Bahouri, Gérard and Xu [3], and for sub-Laplacians on groups of polynomial
growth see Furioli, Melzi and Veneruso [13]. Here we prove it for general Rockland operators
on graded groups. Now we present the Littlewood-Paley theorem in the form of the following
result.

Theorem4.1 Let 1 < p < oo and let G be a graded Lie group. If R is a positive Rockland
operator then there exist constants 0 < ¢, C,, < 00 depending only on p and v such that
1
(o] 2
L2
ol fllLroy < (Z Y (1 +R)¥) f] ) < Cpll fllLr, 4.2)
1=0 LG

holds for every f € LP(G). Moreover, for p = 1, there exists a constant C > 0 independent
of f € L\(G) and t > 0, such that

% 3
xeG:(sz((HR)i)f(x)F) >t < <1 £l 4.3)

=0

For the proof of Theorem 4.1, we will assume for a moment the following theorem.

Theorem4.2 Let1 < p,r < ooand let G be a graded Lie group. If R is a positive Rockland
operator then there exist constants C,, > 0 depending only on p and v, such that

1

> o0 %
(Z |W<(1+R>i).fz|’) <Cp (Z Ifz(X)Ir) =:Cpll{feXllLr .oy
=0 LP(G) =0 LP(G)

4.4)

Moreover, for p = 1, there exists a constant C > 0 independent of { f¢} € L'(G, £" (Np))
andt > 0, such that

1
xeG:(Zm((wn)i)ﬁ(x)v) >t < —Iflnorag @5

=0

Proof of Theorem 4.1 First we will prove that for every positive function f € L?(G)NL(G),

the estimate .

00 2
1
(Z [Wi((1+R) v)f|2> < CpllflLro), (4.6)
1=0 LP(G)

holds true for every 1 < p < oo, and the inequality in the right hand side of (4.6) can be
extended to general f € L”(G) by the density argument. We will employ an argument of
interpolation. First, let us prove (4.3). Indeed, it is equivalent to the fact that the vector-valued
operator

W(f) = {Ye((1+ RV £122, 4.7)
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976 D. Cardona and M. Ruzhansky

admits a bounded extension from L!(G) into L*(G, Zz(Ng)). In view of the almost
orthogonality of the functions x +— fr(x) := e ((1 + R)/Y) f(x), on L%(G), which is
a consequence of the following property on the supports of the functions ¢,

supp(ye) Nsupp(Ye) =¥, [ =] =2, (4.8)

we have

[ X+ R pwPar =< Y [ e+ R p 0P
G

=0 =0¢

x/|ZW((1+R)””)f<x)|2dx
G £=0

= [1reoiax,
G

which implies that W admits a bounded extension from L2(G) into L2(G, KZ(NS)). So, if we
prove (4.3), interpolating with the L*(G) — L*(G, ZZ(NS))-boundedness of W, we obtain
that W extends to a bounded operator from L?(G) into L? (G, £2 (Np)), forall 1 < p < 2.
We will then extend the boundedness of W forall2 < p < oo, by using the duality argument.
So, our proof consists of the following steps.

e Step 0. Assume that f is a non-negative function in L?(G).

e Step 1. Prove the weak (1, 1)-inequality (4.3).

e Step 2. Interpolation between (4.3) and the boundedness of W from L*(G) into
L*(G, €*(N})), in order to prove (4.6) forall 1 < p < 2.

Step 3. Apply the duality argument for extending (4.6) forall 2 < p < oco.

Step 4. Proof of the left hand side of (4.2).

Step 5. Extend (4.2) and (4.3) to general real-valued functions in L? (G).

Step 6. Extend (4.2) and (4.3) to general complex-valued functions in L? (G).

Step 1. Apply the Calderén-Zygmund decomposition Lemma to the non-negative function
feLP(G)N L'(G) c LY(G), under the identification G ~ R”", (see, e.g. Hebish [15]) in
order to obtain a disjoint collection { I.,-}?O o of disjoint open sets such that

o f(x) <t ,fora.e.x € G\Uj>ol;,

o Yoo lLil < SN £l Gy and
o 1|I| < fl/, F(x)dx <2|1j|t, forall j.

Moreover, for every j, let us define R; by
Rj :=sup{R > 0: B(z;, R) C I}, forsome z; € I}, 4.9)

where B(zj, R) = {x € I; : |z;1x| < R}. Then, we can assume that every [; is diffeomor-
phic to an open cube on R", that it is bounded, and that /; C B(zj,2R;), where z; € I;
(see Hebish [15]).

Remark 4.3 Before of continuing with the proof note that by assuming f(eg) > ¢, (this just
re-defining f € L?(G) N L' (G) at the identity element) we should have that

ec €| J1;. (4.10)
J
because f(x) <1, fora.e.x € G\ Uj>ol;.
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Let us define, for every x € I},

80 = / FO)y. bx) = f(x) — g(x), @.11)

and for x € G\ Uj>ol;,
g(x) = f(x), bx)=0. (4.12)

Observe that for every x € I,

80| = / Fody| <21,

171

In view of the Minkowski inequality, we deduce that

lx €G: (Z"W((l +72)1/”)f(x)|2> > t]

£=0

IA

lx €G: (sz((l +R>””)g(x>|2> > ;H

£=0

+

[x €G: (Zm((l +R)1/“)b(x)|2> > ;”

£=0

By the Chebyshev inequality, we have

% :
{x €G: (Zh//z((l +R)1/”)f(x)|2> > t]

£=0

lx €G: (wae((l +R>””)g(x)|2> > ;H

<
£=0
o0 5
+ Ix €G: (;hﬁ[((l +R)1/”)b(X)|2> > ;]l
2
= [x €G: Z|W((1+R)l/”)g(X)| > ]
=0
+ Ix €G: (Zw(a +R)1/”)b(x)| ]
£=0

o 3
[xeG <Z|¢[((1+R)‘/”)b(x)|2> >;]

=0

f2|w((1+7z)”“>g(x>|2dx+
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In view of the almost orthogonality of the functions x +— g, (x) := e ((1 + R g (x),
on L%(G), we have

/ Z W1+ R g P = 3 [ e R g Pa

=0

/|Zw<(1 +7z)”“>g<x>|2dx—/|g<x>|2dx

G =0

The estimate

I8, = [ letoldx =3 [1geofdx+ [ lgwoPax
G I

G\U,1;
=¥ [1seotax s [ 1reopx
I G\Uj I
< Z/(Zt)zdx + / F)?dx < rZZu | + / ) f(x)dx
G\U;I; G\U;I;
< x 7||f||L1(G) +1 / f@dx St flipe)s
G\Uj1;

implies that,

> 4
x€G: (Zm((l +R)“”>f(x)|2) =] = 21l

=0

IR (sz((l +R)”“)b(x)|2) > %

=0

Taking into account that 5 = 0 on G \ U; I, we have that

b= Zbk, br(x) =b(x) - 17, (x). (4.13)
k

Let us assume that I is a open set, such that I; C /%, and |1 | = K|1}| for some K > 0,
and dist(d Ij* 01;) > 4cdist(d1}, eg), where ¢ > 0 and eg is the identity element of G. So,
by the M1nk0wsk1 inequality we have,

1

o0 2

xeG: (;w«l +R)””)b(x)|2> > %
1

00 2
= {x e Uj];f : (Z (e ((1 +R)I/V)b(x)|2> >

£=0

|~
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+

00 3
Ix €G\U;I; : (Zwuz((l +R)””>b(x>|2> > ;”

=0

<|frecixeun)|+

o0 3
Ix €G\U,Ij: (Z el +R)””)b(x)|2> > ;”

=0

Since
Hx €G:x eujlj}’ =Sl
7

we have

N~

N }
|xeG:(Z|W((1+R)l/”)b(x)|2> > ”

=0

ML

J

=K Y |I;|+

J

oo 3
Ix e G\ Ujljf'K : (Z [ e ((1 +R)1/V)b(x)|2) > ;H

=0

oo 7
lx € G\Ujlj’f : (Z [ ((1 +R)1/v)b(x)|2> > ;H

=0

CK
ET”f“Ll(G) +

oo 3
{x € G\Ujljf : (Zhﬁg((] +R)1/V)b(x)|2) > ;]l

=0

The Chebyshev inequality implies that

oo 3
{x eG\ UjI;-‘ : (ZW@((I +R)1/V)b(x)|2) > ;H

=0

1

2 > ?
== / (Z|W(<1+R>‘/“)b(x)|2) dx

G\U1p M0
2 o0

= / (Z (w<<1+7z>‘/“) (Zm))m
G\U;rr \¢=0 k

Qe+ R b)Y,
k

2\ 3
)dx

dx
£2(No)

t
G\U; I

< 3 @@+ R )b DI g2y 4
G\ k
1

2 ad 2
k =0

G\U/'I;?<
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If k¢ is the right convolution kernel of v, ((1 + R)YVY, from the inequality,

(ZI (Ve +R))by) <x>|> =YW@+ R))br) ()] (4.14)
=0

=0

we deduce

X € G\UjI;-‘ : (Zh/f[((l +R)]/”)b(x)|2) > %

=0

2 o0
= / D (e +R)Y)by) ()] dx

ke =0

%Z / D b x k()| dx
k =0

G\, =

2 s »
;Z / > /bk(Z)Kz(z x)dz|dx.
I

G\u; 1 =0

By using that [; bx(z)dz = 0, we have

*Z / Z / br(2)ke(z ' x)dz| dx

koo =0

2 o0
;; / > /bk(Z)"@(Z_lx)dZ—Ke(x)/bk(z)dz dx
G

\U; It =01y I

%Z / Z /(Kl(zflx) — ke (x)br(z)dz| dx
3

G\u1r =0

2
= 3 [ 160~ kenlazas
k

G\U; I* = Olk

2
;Z/Z / e (2™ ) — ke (0)]dx b (2)|dz.
k

I =06\0;1

If we assume for a moment that

= sup sup Z / lice (271 %) — ke (x)|dx < o0, (4.15)
k Zelk( OG\U-I*
it
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then we have
1

> ’ M
xeG\ Ui}t (ZW/@((] +R)1/V)b(x)|2> > % < —Z/ bk (2)|dz
£=0 k

2M
= 161121 )

6M
ST”f”LI(G)-

So, if we prove (4.15) we obtain the weak (1,1) inequality (4.3) and we finish the first step of
the proof. The proof of (4.15) lies in the estimates of the Calderén-Zygmund kernel of every
operator ¢ (R). Because dist(aljf, 01;) > 4cdist(d1}, eg), for x € G\ U; I]’.‘, for z € I,
4clz] = 4e x dist(z, eg) < dist(d1;, d1;) < |x|. Indeed, fix ¢ > 0, and let us take w € 9,
and w’ € 31 such that d(w, w’) < dist(d1y, dI) + &. Then, from the triangle inequality,
we have

d(z, eqg)

<d(z,w)+dw,w) +dw, eg) < diam(ly) + dist(d I, d1}") + dist(3 )", eg) + ¢
S diam(fy) + dist(3 Iy, 1) + dist(d Iy, eg) + ¢

< diam(1y) + dist(d 1y, 1) + ﬁdist(alk, )+«

= dist(d1y, 0I}) + &,

(4.16)
where in the last line we have assumed that diam(/;) =< dist(d/, 8]:), (with constants
of proportionality independent in k) and that dist(dIy, I}") is proportional to Ry in view
of the relation |I[| = K|Ii|. Assuming (4.16), one has that for all ¢ > 0, d(z,eg) <
dist(d 1y, 01;7) + &, which implies that

d(z, eg) S dist(dly, 31})). 4.17)

To show that the proportionality constant in (4.17) is uniform in k, let us recall the definition
of the radii R,/cs in (4.9), that B(zx, Rx) C Ix C B(zx, 2Ry), and that B(zx, Rx/C) C I} C
B(zk, CRy) for some C > 2 independent of k, where for any &, zx € I;. From this remark
observe that:

e The condition B(zg, Rr) C Ix C B(zk, 2Rx), implies that 2Ry < diam([y) < 4Ry.
e That B(zx, Ry) C Iy C I} C B(z, CRy), implies that
dist(d g, 91)) < dist(dB(zk, Ri), dB(zk, CRr)) = (C — D Ry.

On the other hand, by observing that in every step above we can replace I :=
B(zx, CRy), in view of the inclusion

Iy C B(zk, 2Ry) C I} := B(zk, CRy),

we have

(C —2)Ri = dist(1, dB(z, 2Ry)) < dist(d 1y, dI}).
Consequently,

diam(/) < Ry =< dist(d B(zx, 2Ry), 0B (zk, CRy))

= dist(d Iy, d1}).
To show that dist(al,f, 01r) < |x|, observe that from Remark 4.10, e € U;I;, and because
ofx € G\U;l;,
dist(d1;, a1) < diam(U;1;) S d(x,eg) = |x|.
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So, we have guaranteed the existence of a positive constant, which we again denote by ¢ > 0,
such that,

xeGixeG\UI})ClxeG: forallz € I, 4elz| < |x|}.

So, by a suitable variable change of variables and by using (2.17), we have

o0
My == supZ / lice (z~"o) = e () ldx
€k =0G\0), 1+
J

= sup Z 27,27 27 x) = 279,27 - x)|dx

Zelkg OG\U,-IT’(
I
o0

< sup Z 27Ck 27 7)) — 27,27 - x)|dx
el =055 4clz|

< Zsup 27,27 27 ) — 279,278 - x)|dx
0=0%

IX\>4C\ZI

oo

[e.¢]
=Y A<y 27" =0().
£=0 £=0

Because

o0
My := sup Z / e (z™1x) —iep (0)ldx Y270,
€l y—g =0
G\U; 17
with the right hand side of the inequality being independent of k, we conclude that M in
(4.15) is finite.
According to Step 2, the vector-valued interpolation between the (4.3) and the boundedness
of W from L2(G) into L%(G, ZZ(N )), allows us to conclude (4.6) forall 1 < p < 2.
Step 3. Let us assume that 2 < p < oo, and let f € LP(G, £?). So, for ae. x € G,
f(x) is a sequence in £2. If p’ is the conjugate exponent of p, 1 < p’ < 2, by using that
¥ (1 +R)V) is self-adjoint, we have

IWfllLr.e2)
— ap / (W), h(x)pdx = / 3 (1 + R f ()b (x)dx
”h”LP/(Glz):1G ”hHL” @, 52) ]G j=0

= sup / D F@YH A+ R hj(x)dx

S

= / (f), Wh(x)ppdx, Wh(x) == (e ((1 +R)")he)52,
||h||Lp . ﬂ)

< ”f”LP(G,Zz) sup ”Wh”Ll’/(G,KZ)'

80, 6.2y =1

@ Springer



Littlewood-Paley Theorem, Nikolskii Inequality... 983

By using Theorem 4.2 with r = 2, for ||h||Lp/(G @) = 1, we have that

1
[e’e} 2
<Cp (Z Ihz(x)|2>
=0

1
&) 2
IWhI Ly .2 = (Z el +R)5)he|2)

=0

LV (G) L' (G)

=C,,
where the constant Cjy > 0, came from Theorem 4.2. Consequently, we have proved (4.6)
forall 2 < p < oo, in view of the boundedness of W from L?(G) into LP(G, £?) for all
2<p<oo.

Step 4. The proof of the left hand side of (4.2) for non-negative f is as follows. Now,
let us denote by (E(X))x>0 the spectral resolution associated to (1 4 RV, and for every

7 € G denote by (E; (1))x>0 the spectral resolution of 7 ((1 + R)rl}). We observe that by
duality

I fllreG) SSUP{I/Gf(X)g(X)dXI :8€DG), g=0, gl =1}

=sup{|/G > Wi+ R F1)g(x)dx] g € D(G). g = 0, gl = 1)

leNp

= sup(| f SEOY(( +R)V) 1) g (x)dx

G leN

+ fG [EQyo((1 +R)V) fF(0)]g()dx] : g € D(G), g = 0, ligll, =1}

=supll [ Y1+ R 10 E g

G leN

+ /G[wo«l + R FEOIEOg(0)dx| : g € D(G), g > 0, ligll,, = 1},

where EO = yry_1((1 + R)¥) + Ye((1 + R)V) + Y1 (1 + R)¥), for [ > 1, and
EO = (1 + R)VY) + 1 (R)VY) + ¥2((1 + R)/Y). Consequently, we have

1 fllLr )
1 1
2 2
1
< sup {/ D+ R AP D IEDgm)?| dx)
g€D(G), =0, ”gHL/’,:] G 1eNy leNy
} }
1
< sup Do+ Ry 10l Y IEVg)
8eD(G), g0, ligll =1 = 1 | LiEo o
Because
1 1
2 2
1
Y IEDg))? < D2 e+ R g Slgly =1,
1eNy , 1eNy '
LP (G) LP (G) (4 18)
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we obtain

Iflry S ||| 32 1@ + R £l P
1eNy
LP(G)
forall 1 < p < oco.
Step 5. Let us assume that f € L?(G) is real-valued. Decompose f = f* — f~, as the
difference of two non-negative functions, where f+, f~ € LP(G), and |f| = f+ + f~.
Because, fT, f~ < |f|, the Minkowski inequality implies

- 1

2
3+ R £l P

1eNy

— LP(G)

- ! !

<[ Y i+ Ry AP | S I +R) D £ 10012
1eNp leNp
- LP(G) LP(G)

<Cp(IfF ey + 1 £ ey <2C,ll flie(c)-

So, we have proved the right hand side of (4.2). For the proof of the left hand side, we only
need to repeat the proof made in Step 4. The proof for the weak (1,1) inequality is similar.

Indeed,

¢
1

] 2
xeG: (Dw«l +R)””)f(x)|2> =

£=0

1
2

[We((1+R)YY) f () ) >t

Mg

~
Il
(=}

1

We((1+ RV f+ ()2 ) > %

IA

Mz

Il
=}

+ 2C -
STllf Iz + T||f 216

Ac
fT”f”L'(G)'

A similar analysis can be used for the proof of Step 6. So, the proof of the Littlewood-Paley
Theorem is complete.

We end this section with the proof of the vector-valued inequalities presented in
Theorem 4.2.

Proof of Theorem 4.2 Define the vector-valued operator
W L*(G, £*(Np)) ; — L*(G, £*(Ny)), (4.19)

by
W fe)220) = (e (1 + RV £33, (4.20)

where L2(G, £2(Np)) 7 is the set of sequences {f¢}7, with compact support in the ¢-
variables. We claim that W : L%(G, £2(No)) — L%(G, ¢*(Np)) extends to a bounded
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operator. Indeed, let us observe that
IW {7y = /G D@+ RV feo)Pdx < CP Y fell g
4 4

2
= ”{f[}?o:OHLZ(KZ)v
where

€ = sup lyre((1 + RN swrey = sup (1 + @RV 2@
> >

< sup [y W= 0().
£>0,A>0

Now, we will assume for a moment that for every £ € Ny, the family of operators {1, ((1+
RV )} is uniformly bounded from LY(G) into L1%°(G), this is, every operator Y ((1 +
R)/VY is of weak (1, 1) type with the (L'(G), L1°°(G))-operator norm bounded with a
constant independent of ¢,

Q= Slzp ||l[fg((] + R)l/u)”'@(LI(G)’LLOO(G)) < OQ. (42])

This assumption allows us to show that
W LG, (' (No)) — L1®(G, ' (Np)), (4.22)

extends to a bounded operator. Indeed, if we define e, (€) = &, ¢/, observe that
IW (e} o2l oo (et gy = WL+ RV fi} el 100 600 v

=1 D {er @O+ R fe) 2l 110w (6,01 vy
=0

o0
S Mee @Y+ R)Y) £}l 1100601 o)) -
=0

The fact that ||{€e/(f)we((1-}-73)1/11)]%}?0:0||L1.oo(Gye1(N0)) =sup,_o |{x € G : |y ((1+
RY)/Y) for(x)| > t}], implies that

1WA N LrG.erign = D sup £+ 1x € G 2 [ (L + RV fu ()] > 1]
v=0">

= Z ||‘W/((1 + R)l/v)fﬁ’ “LI’C’O(G)

=0

<@ fellig = /G D e (A +R)YY) fo(x)ldx
=0

=0

={fe}eZollL1(G,e1 vo))-

Now, if 1 < p < 2, there exists 6 € (0, 1) such that % = % + %. In view of (4.19) and
(4.22), by the Lions-Peetre vector-valued interpolation theorem we have

W LP(G, €7 (No)) — LP(G, £ (Np)), (4.23)
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extends to a bounded operator forall 1 < p < 2. Here, we have used that in this vector-valued
context,
LP(G, £’ (No)) = (L"®(G, £ (No)), L*(G. £*(No)))g. - (4.24)

with the usual notation of real interpolation (see Section 6 below). Because W is a symmetric
operator on L2(G), the duality argument allows us to prove that (4.23) extends to a bounded
operator for all 2 < p < o0. So, the boundedness of W for all 1 < p < oo is proved once
that we have proved the estimate (4.21). For this, we observe that in view of the weak (1,1)
estimate in the Hormander-Mihlin theorem (see Corollary 4.12 of [8]), we have

Q= sup [Ye (1 + R yw16).L0%6) S sup XY@
14 La<[Q/2]+1,1>0

= sup 1927ty @ (27|
Ca<[Q/2]+1,t>0

<1,

~

where in the last line we have used that the compactly supported function ¥/, satisfies estimate
of the type
Y @0 < Car™*, 1 #£0, (4.25)

and so
127y @ Q| < Cut* 272 ) Y = C.
Now, we claim that
W : LP(G, " (Ng)) — LP(G, 0" (Ng)), 1 <r < oo. (4.26)
To do so, we will prove that
W LY(G, " (Ng)) — LY®(G, " (Ng), 1 <r < 0. (4.27)

extends to a bounded operator together with a interpolation argument coming from (4.19).
For the proof of (4.27), we need to show that there exists a constant C > 0 independent of
{fe) € LY(G, €/ (Np)) and t > 0, such that

1

oo I C
xeG: (Z [¥re((1 +R)1/“)f@(x)|”> >t = Tlfdlneem-  @28)

=0

So, fix {f¢} € LY(G, ¢’ (Np)) and ¢ > 0, and let h(x) := (Z/?io |fg(x)|’)% , apply the
Calderén-Zygmund decomposition Lemma to & € L' (G), under the identification G ~ R",
(see e.g. Hebish [15]) in order to obtain a disjoint collection {/ j};?o:() of disjoint open sets
such that

o h(x) <t,fora.e.x € G\ Ujxol;,
o Yo lljl = Skl Gy and
o1 < ﬁf,j h(x)dx < 2t, forall j.
Now, we will define a suitable decomposition of f;, for every £ > 0. Recall that every /; is
diffeomorphic to an open cube on R”, that it is bounded, and that /; C B(z;,2R;), where
zj € I (see Hebish [15]). Let us define, for every £, and x € I},
1

ge(x) :== W

/fz(y)dy, be(x) = fo(x) — ge(x). (4.29)
1j
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and forx € G\ Uj>o/j,
ge(x) = fe(x), be(x)=0. (4.30)

So,fora.e.x € G, fo(x) = g¢(x)+be(x). Note that forevery 1 < r < oo, ||{gg}||’L,w) <
! I{fe}lL1(er), indeed for x € I, Minkowsky integral inequality gives,

. L N\
<Z |gz(x>|’> < T |[fz(y)dy < I/(Zm(yn) dy
=0

< 2t.

Consequently, we have

e = [ S leecorax =3 [ Yleorax+ [ 3 lacordx
& =0 J =0

G\Uj1; =0
o0
—Z/Zh?e(x)l ar+ [ Y lfitordx
i =0 G\U;1; =0
52/(2t)rdx+ / h(x) dx
I G\U, 1
S G+ / h(x) "'h(x)dx
‘ G\U;I;
r C r—1 r—1
<t X7l|h||L1(G)+t / h(x)dx St hlipie)
G\U;1;

=" I f L oy

Now, by using the Minkowski and the Chebyshev inequality, we obtain

xeG: (Z [ ((1 +7€)1/”)fe(x)|r> >t
=0

xeG: (Z [yre ((1 +72)1/")g/z(x)|r> >

£=0

IA
o~

1

+|{xeG: (Zm((l +R)1/”)bz(x)|r> ;

£=0

\%
I

o0

2r
== /G D e (1 + R ge ()| dx
=0

1

\
I

+{1xeG: (ZW((I +R)‘/”)be(x)|’> ;

=0
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In view of (4.23), W : L" (G, ¢"(Np)) — L" (G, £"(Np)), extends to a bounded operator
and

/G D WA+ RV ge) " dx = WM 7 ory S &M e oy < 17 ILFeH Ly

£=0
(4.31)
Consequently,
1
00 r
xeG: (Z el +R)1/”)fz(X)|’) > 1
£=0
1 > : t
< MfHlzien + ¥ € G (g ye((1 +R)1/V)be(x)|r) >3
Now, we only need to prove that
1
> Tt 1
xeG: (Z el +R)1/V)b£(x)|r> > 51| = 7). (4.32)
£=0
Taking into account that by = 0 on G \ U; I}, we have that
be = sz,k» bep(x) =be(x) - 17, (x). (4.33)
k
Let us assume that ij is a open set, such that |I/’F| = K]|I;| for some K > 0, and

dist(alj’.‘, 1) > 4cdi'st(81j, eg), where c is defined in (2.16) and e is the identity ele-
ment of G. So, by the Minkowski inequality we have,

1

x€G: (Zwm +R)1/v)bz(x)|r> =

=0

1
=|\* €Vilj: (le/fe((l +R)1/U)bg(x)|r> > %
=0

1

+[xre G\ (Zw«l +R)1/”)bz(X)|r) > %

=0

< Hx eG:x € Uj]fH +[3x € G\Ujlj< : (Z [ e ((1 +R)1/V)bg(x)|r>r > %

£=0

Since
frecixeyr

=210,
J
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we have

xeG: (le(u +R)1/V)bz(x)|2) > %

=0
1

0 2
<) I+ xeG\u,-I;:<Z|W(<1+R)1/”>bz<x)|2) >§
j =0

1

o0 2
=K Y ||+ [{x € G\U;I7 : (Zm(a +R)1/V)bg(x)|2) > %
j =0

CK > Ty
=—IflnG.e + xeG\ujljz(Z|W<(1+R>‘/”>bz(x>|2> >3
=0

Observe that the Chebyshev inequality implies

1
xeG\ UJ-I;-‘ : (ZW/@((I +R)1/V)b[(x)|r) > %
=0
1

2 > ’
<= / (Z|W((1+R)“”)bz(x>|’> dx

=0
G\Uj [;

DI

=0
G\U; I

"
)dx

== / W+ RO bea) () ller avgy dx
k

G\U, I}

(W((l +R)MY) (Z b(i,k)) (x)
k

2
== / 1O S We (@ + R )b i) ()52 ller g dx

k
G\U; I

2
S;Xk:

1

(Z (e (1 +R)")be ) (x)V) dx.

£=0
G\U; I;f

Now, if «¢ is the right convolution Calderén-Zygmund kernel of ¥, ((1 + RYIYY, (see
Remark 2.5), and by using that f,k bi.¢(y)dy = 0, we have that

(ZI(W((I + )b ) <x>|’) = (ZM *Mx)’)

£=0 =0
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1
N\ r

o0

> / ke (v )bk ()dy =k (x) / be i (y)dy

=0 |, i

1
r r

> / (e (y™"x) — e (x)be i (y)dy

=0 ;.

Now, we will proceed as follows. By using that |bg x ()" < Y p_q |be x(¥)|”, we have, by
an application of the Minkowsky integral inequality,
N

(Z!(W«I+R)”“>bz,k)<x)y’> =(> f (e (v~ %) — e (0))be i (¥)dy

£=0 =01y,

1

< / (Z e (y™'x) — KZ(X)|r|be,k()’)|r> dy

o \e=0
o0

<[ (Z |lw,k(y>|’)
I 2'=0

Consequently, we deduce,

1

(Z |Kz(xy—1)—l<z(x)|r> dy.

=0

~ =

1

2 0 Y
> / (ZKWU+R>””>bz,k)<x>|) dx
k

£=0
G\U; 1.7
1

(Z e (™) — m(xw) dydx

=0

Sl

sf; / /(iwegk(w)

o =0
G\U; I} I

=/ / (ﬁ;)lbz/,k(y)lr>

oo =

(Z ey x) — Ke(x)|r> dxdy

£=0

N I—=

1
(Z e (v~ x) — Kz(x)|r> dxdy.

£=0

1

2 > A

=,Z/<Z |bl/,k(y)|>
ko =0

G\Ujl.;ﬁ

Because dist(d/7, 01;) > 4cdist(d]}, eg), forx € G \ Ujl;?, for y € I, the analysis in
(4.16), shows that 4c|y| = 4c x dist(y, eg) < dist(d17, 31x) < |x]. So,

(xeG:x eG\Ujl;-"}C {x e G: forall z € Iy, 4c|z| < |x|}.
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Now, from Remark 2.5, the identity (2.16), and the estimate (2.17), we deduce

(lez(y“x)—w(X)l’> dx < f D ey~ ) = ke(x)ldx

G\ N0 G\U1z =0
< Z [ o —awiax
\U,
< Z 27k 270y ) = 27 k@71 )ldx
=00 )>4cly|

<Y 2t =o0q).
=0

Thus, we have proved that

l.
xeG: (ZIW((I +73)1/”)bz(x)|r) > % Z/ (Z lbe k(M ) dy

=0 A

/ (Z b ) dy

Uka v
1
; {1 ery-
This, the proof of the weak (1,1) inequality is complete and we have that
W LY(G, ¢ (Np)) — L"(G, 0" (Ny)), 1 <r < oo, (4.34)

extends to a bounded operator. As an application of the vector-valued Lions-Peetre interpo-
lation theorem between (4.19) and (4.34) we obtain that W in (4.26) extends to a bounded
operator and together with the duality argument we complete the proof.

5 Homogeneous and Inhomogeneous Besov Spaces

Let R be a (left-invariant) positive Rockland operator on a graded Lie group G. In order to
define the family of Besov spaces on G, let us assume that R is homogeneous of degree v > 0
and let us fix a dyadic decomposition of its spectrum: we choose a function ¥ € Ci°(R)
supported in [1/4, 2], ¥ = 1on[1/2, 1]. Denote by v the function ¥;(t) = ¥ (27'1), 1 € R.
For some smooth compactly supported function ¥y we have

Z Yi(x) =1, forevery A > 0. 5.1
leNy

With notations above we define (left) Besov spaces associated to a (left-invariant) positive
Rockland operator as follows.
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992 D. Cardona and M. Ruzhansky

Definition 5.1 Letr € R, 0 < p < oo and 0 < ¢ < oo. The homogeneous Besov space
B; v = (G) associated to (R, (¥y);) consists of those f € D'(G) satisfying

1

q

1
iy = | 22 2 IR fliLp g | < oo (5.2)
leNp

for 0 < ¢ < o0, and for ¢ = oo,
1
= sup 2" ||y (RY ) 53
11, (@ 3= 390 2" IR fllr@) < o0 (5.3)

Analogously, the inhomogeneous Besov space B;’ 7., R(G) is defined as the space of distri-
butions f € D'(G) satisfying

q

1
11157, m@ = | 2227 @ + R f 1) | < oo (54)
1eNy

if 0 < g < oo and, for g = oo,

/15

P.00.Y,

1
=G = sup 2" [P (I +R)¥) f Loy < oo (5.5)
leNy

Homogeneous and inhomogeneous Besov spaces do not depend on a particular choice of
a positive Rockland operator R and of the sequence of smooth functions ;. We will prove
this fact in the following section (see Theorem 6.1). Now, we prove the following embedding
properties of Besov spaces. We use the simplified notation motivated by Theorem 6.1,

(B;77q(G)7 Il ||[;]r)‘q(c)) = (B;,q,lp,R(G), Il ||B;.q,w7R(G))

and
(B}, 4(G), I - I8, ) = (B}, 4.0 r(G) - llpr WR(G)).

P:9q,

For Sobolev spaces H"”(G) and H"P(G) and their properties we refer to [9, Section 4].

We also note that similar results would hold if we chose right-invariant (instead of left-
invariant) Rockland operator in the definition of Besov spaces, see Remark 5.4. Additionally,
as the reviewer of this paper has observed, the following result follows automatically form the
general theory of interpolation of linear operators from Theorem 6.1. We present a detailed
proof of such a fact for completeness.

Theorem 5.2 Let G be a graded Lie group of homogeneous dimension Q and let r € R.
Then

(1) Byt (G) — B}, (G) < B, . (G) <> B}, (G),&>0,0<p=<000<gq <

p-a1 P41 P2
q2 =< 00.
(2) Blr,j’;]ﬁ(G) > B), ,(G),e>0,0<p<o0,1<g <q <o
(3) Blr},,q(G) s B;}zyq(G), l <pr <pp<00,0<gqg<oo,r € Randr, =
_ 1 _ 1
"1 Q(Pl Pz)‘

(4) H™(G) = B} ,(G) and B}, ,(G) < H"P(G) — B/, ,(G), 1 < p <2.

(5) B;,,](G);) L1(G), 1 <p<qg=<oo,r= Q(%_é)
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Proof For the proof of (1) we observe that

1 1
Wy = sup 2 Is(R¥) fllLe < N2 15 (R FllLrdsens i avgy = 1111

-
seNy P2

IA

1
2 19 (R fllzrdseno lin avgy = 1 f 1l
1
< 2O (RY) fll o Ysemo a1 o)
= /1l -

For the proof of (2) we use Holder inequality as follows,
1
1/, = M2 IS (RO FllLr ey it

_ 1
= 25O Y (RY) £ Lr Ysemo 192 o)

1

) 1 ) o _Sedpq L L

< 2Ly (RO f 1P dsemo 1B, [Y 27 @)oo
172 (No) JeNy

< I e -

In order to prove (3) we use Nikolskii inequality from Theorem 3. So, by taking into
account the estimate

R fllm < €220 gy (RY) £l (5.6)
we deduce
7 q
Y 2P RD gy | S| 2 2O B g R 1 g
seNp s€No

Now we will prove (4), that is B;,p(G) < H"P(G) < B;yz(G), forl < p<2.In

fact, if d E (1) denotes the spectral resolution of R%, we have

(o.¢]
115, = IRY£IE, =1 / WAEG)FIIF,
0

2A‘+1 25+]

1Y [ waEawRDAL, < S0 [ wdEGw®RN I,
SEZ x SEZ :
2x+1 ]
=Y 2 [ 2 s RS,
SEZ 2z
25+l . 9s+1
=y 27| /2 CAEGYROfIT, = Y27 | B WAEGSIL

SEZ seNp

= 3 2P RO LI, = 1 £15,

p.p
seNg

For the other embedding we use the following version of the Minkowski integral inequality

[ Hwdnenn < [(F 5 eniduc. fiw=0. aexex.
J X J

X
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where (X, ) is a o-finite measure space, and @ = %. So, we get

1

2

> 22y (RO f13,

seNp

1715,

S
==

— | S b e
seNp
— 1

f[Z 22 g (RY) f ()| 77 dx]

seNp

IA

—| [1X 2R pPant?

4
s€ NO

1Y 22 1 (RO £ Pdx)Z e = I0Y 19 (RD) f ) Pdx1 o

seNp seNp
=R flie = 1f N grops

using Littlewood-Paley theorem (Theorem 4.1). We observe that in the embedding
B’ p(G) — H™P(G) < B’ 2(G), if p = 2 then H™2(G) = 322(G) Now, for the
proof of (5) we use Nikolskii 1nequa11ty,

1 flle = | /jr[n(x)f(n)]dnnm

=1 f Tl (x) s [ (R)1f () 1d 7w | o

seNp
< 21 [ sl R P
seNg
= S RN flle = 3 22672 |y (R il
seNp seNp
=If1 oip-p-

pl

This completes the proof.

In the following theorem we present embeddings properties for inhomogeneous Besov

spaces B), ,(G). The proof is similar to the homogeneous case, so we omit it.

Theorem 5.3 Let G be a graded Lie group of homogeneous dimension Q and let r € R.
Then

(1) B;‘ZEI(G) — qu](G) — quz(G) > B;,oo(G)’ e>0,0<p<o00,0<q <
q2 = 00.
(2) BI’,JQIFI(G)C—>B;qz(G),8>O,0<p§oo,1§q2<q1<o<>.

(3) Bplq(G) — szq(G), 1 < pr < pp <00,0<¢qg <o0,7r1 € Randry =
— 0G5 = )
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(4) H'(G) = B} ,(G) and B, ,(G) — H"?(G) — B;’Z(G), l<p<2.

(5) By ((G) = LY(G), 1 < p<q=<oo,r=0(;— 2.

Remark 5.4 (Right Besov spaces) Throughout this section we have considered Besov spaces
associated to (left-invariant) positive Rockland operators. A similar formulation of homoge-
neous and inhomogeneous (right) Besov spaces can be obtained if we choose (right-invariant)
positive Rockland operators. It can be shown that these spaces satisfy (right) versions of
Theorems 5.2 and 5.3. When properties that we want to consider hold for left and right
Besov spaces, we omit the prefixes left and right, nevertheless, we consider in the proofs the
case of (left) Besov spaces.

6 Independence of Rockland Operators and Interpolation Properties

In this section we prove the independence of the choice of Rockland operator and the dyadic
partition v, in the definition of Besov spaces. For this, we show that Besov spaces can be
obtained as interpolation of Sobolev spaces. If X and X are Banach spaces, the main notion
in real interpolation theory is the K-functional, defined by

K(f,t) =inf{]l follx, + ¢l fillx, - f = fo+ f1, fo € Xo, f1 € X1}, t =0.  (6.1)

If0 <0 < land 1 < g < oo, the real interpolation space Xg 4 := (Xo, X1)g,4 is defined
by those vectors f € X + X satisfying

0 d ql
1 llog = ( /0 UK (S, z))‘f{) < 00if g < oo, 6.2)

and for g = oo
I fllo.g =supt K (f.,1) < co. (6.3)
>0

For our purposes, the following discrete form (see [17], p. 1136) will be useful
1

1fllo.q < inf (Zmax{ufknxo,2"||fk||x1}q> =Y 26t (64

keZ keZ

with 1 < g < oo.

Theorem 6.1 Let G be a graded Lie group, and let R and R’ be two positive Rockland
operators with homogeneity degrees v > 0 and v' > 0, respectively. If ({); and (), are
sequences satisfying (5.1), 1 < p < ocoand 1 < g < 00, the spaces B;’q’w’R(G) and

B;,q,w’,R’(G) coincide and have equivalent norms, as well as the spaces B;,q,xp,R(G) and

B;’q’w/’R/(G). We also have the following interpolation properties:

B;,q(G) = (H"?(G), H"P(G))g,q, a<r<b, r=>b(l—-0)+ab, (6.5)
and

B, ,(G) = (H"?(G), H"*(G))oq. a<r <b, r=>b(l—0)+ab. (6.6)

Proof Tt was proved in [9, Theorem 4.4.20], that the definition of (homogeneous and inho-
mogeneous) Sobolev spaces (H"”(G) and H"?P(G), respectively) does not depend on the
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choice of Rockland operators. Hence the independence of the choice of Rockland opera-
tors and of the dyadic decomposition v, in the case of Besov spaces would follow if we
show that Besov spaces can be obtained by interpolation of Sobolev spaces. So, it suffices
to prove (6.5) and (6.6). First we will show that for r > 0, B, , = (H"P, H"P)y , where
O<ro<r<rr=ro+v,r=r1+ (ro—r)f, and later we will deduce the general case
from this fact. For f € H'1"P + H'0-P we write

F=Y RN =32"F, f=27"p®R0S. (6.7)

>0 >0

Hence

q 1
1ANG < S maxtl e 2147 o Y.

=0

. . . 1
Now, if (E;)>0 denotes the spectral resolution associated to Rv, we have

_ 1 1
1G5 <27 max{lyu(R¥) fll gryos 2" 192 (RV) £ ro. )
>0
21+l 21+1

=Y 27" max(| YiO)Es f 1l rins 2 VIOV Es | jro.}
21—1 2[—1
=0
21+l 2l+1

= 27" max{| f WY E; fllLe, 2| f WO 0)dE; fllLe}!
20-1 20—1
>0
2[+1 2H~]

< 2 max(12 | i dEnfllLe 2020 | i OdEf )
>0

=3 27 max {127 Yy (R¥) e, 2120 Y (R¥) fll o).

>0
Since
1 1 1
max{ (2" (R¥) fllLe, 21270 9y (RY) £l 1o} = max {27, 20} |y (RV) £ o,
we obtain

1
L£18, S Y270 max(2mt, 20l Hay gy (R) £119,

>0
_ _ 1
= Y max(2119700 la a0y gy (R 117,
>0
— Z max{zquB(rofrlJrl), 2ql(179)(r07r1+1)}2rql ”1//1 (R%)f”%p
>0

Taking into account that ro — r; + v = 0 we have
1
1A18, S D 2" R FIS, = 11, (6.8)
120 p.q

Now, in order to proof the converse inequality we use the following estimate on the

operator norm of y; for / large enough : ||y (R% )l z(Lry = O(1), which can be obtained by
interpolation between the trivial estimate for p = 2, (4.21), and the duality argument. We

@ Springer



Littlewood-Paley Theorem, Nikolskii Inequality... 997

observe that by the Liouville theorem (see Geller [14] or [9, Section 3.2.8]), . = 0 is not an
eigenvalue of R. So, we have,

1
LA, = 2" yR) £1IY,
p.q

=0
1., _
= My RHRTRN I,
=0
2l+1
=Yy [ wn s R A1,
10 2
2l+1
- lrg—iriq r/v g
=32 I nGdERY fI,
=0 20—1
1
= Y 2y ROR £,
=0
S Q2R fI1L, S CIRNYY FI,-
=0

Hence
1115y, < Cllflirv-

In a similar way, we can prove the estimate
113, S 1Flarr-
So, we have the embedding H'iP s Blr,yq fori =0, 1. Hence (H"'p, 1:1’0’1’)9,4 — B;,q.

Soweconcludethat || £l 3- < || fllo,q- Inthe case where r < 0 we observe that (/+R) o :
P.q

B‘pr’lq — BI’, q is an isomorphism and for 0 < ry < |r| < ro + v = r; we obtain,

- _ \r\;r |r\;r \r\;r
B,,=U+TR)

(BYl)= (U +R) 7 HOP (I +7R))
— ([_'[r0+r*|r|,P’ 1_'1V1+r*\rlﬁﬂ)0,q’

Hrl,p)g’q

with |r| =r; 4+ 6(ro — r1). The general case where a < r < b and r = b(1 — 6) + ab now
follows if we consider ro = r — 5, ri = r + 5 and by observing that

1 1 1
r=ar + 3= + §(V2 —r1).
So we get
(I_'Ib,p7 Ha,p)eyq — (I_'Irl,ﬂ7 I_’Irosp)%yq_ (6.9)

Since (H'»P, H'0-P) ¢ = BI’, 4 We conclude the proof of the homogeneous case. An anal-
1 .
ogous proof can be adapted to the inhomogeneous case.

6.1 Interpolation Inequalities in Besov Spaces

In this subsection we consider the problem of interpolation inequalities on Besov spaces
on graded Lie groups. The following theorem generalises a version for Besov spaces in R”
proved by Machihara and Ozawa [18]. In turn, this extended many other known families of
inequalities, we refer to [18] for the review of the literature.
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Theorem 6.2 Let A, i1, p, q, r and 0 be real numbers. If 1 < p,q <r < 00,
1 1 1 1
O(———-)< Xt and pu< Q(——-), (6.10)
p T q T
then we have the following inequalities:
D 1189, = UG o)1 1 6y | € Broo(@) N Bloo(G),
(ii) 1f 150, 6y = CIfIe, @I gy I € By oo(G) N Blo(G),
(iii) 1 fllzr) = CIIfIIHx,,(G)IIfIIHM(G), f e H*P(G) N H*1(G),

where

1 1 1 1
O —Q0(=—-N+U-0)n—-0(-—--)=0. (6.11)
p q r

Proof In order to prove (i), we consider f € BI}; (G)N B -0 (G) such that f # 0 almost
everywhere with A, , p and ¢ satisfying (6.10). If 1_; is some smooth function supported
in [—1, 2], then by using the fact that the corresponding Littlewood-Paley decomposition
satisfies

supp(Y) Nsupp(¥j) =9, |j —kl =2, j k= —1, (6.12)

we can write

1130 6y = 2 IR fllry = Y I Y veRWIR) fllr )

=0 =0 k=0
oo 00 oo I+1
<3 S W RUR) fllre =Y. Y. IWaRWR) fllr o)
=0 k=—1 =0 k=I—-1
oo I+1

||%01(72“)f>’< Z& @RV L )

1 [—1

Il
=}

k

If we use the Young inequality, for 4+ 1= + <, we have

||Wl(735)f * 951[1#k(n[72])]||u<c) < N FclWir(@RDILm(G) ||1/f1(72'l’)f||LS(G)- (6.13)

By the action of the dilations D; on G we have fork > 1, and r = 2_5, that
176 [ G IRD o () = /G |75 (YT (R) (x)|™ dx
= /G 176 W@ Fx(R)](x0)|™ dx
= /G 176 o [RDI(x)|™ dx
- /G = 2 o (e [RDI(D, 1) "

=/G ~OmFQ) Z o (w [RD)] ()™ dx.
Hence we obtain

125 Wk (R [RDl| L6y = 2C0—3 1125 o [RD]l| gy S 24C0—0),
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If I > 2, then by using (6.13) for s = p, ¢ simultaneously, we obtain

oo j+l1

£ g0 ) <D D IR * ZG W@ RN @)

j=0k=j—1

j+1
roLl-1
<SS 22Ty + R e

j=l k=j~1
Jj+1
k —
+3° 3 2R )
j<l k=j—1
il 1 ioL_1
<SR fllre + Y 27251 (R fllLao
>l j<l
<3Py R Fllery+ Y 20T D2 (R flacy
il ]<l
. 1_1_2y = _;00l_1_
$ Y 270G 1l +3 270G N fllge
=l ’<l
Jlo(L_1_2% 1Q(;—+—
< 910G Q>||f|| +2Q< r Q>||f||35_oo,

the last inequality due to (6.10). If we put A := ||f||3§,oo ”f”;él‘oc’ then

2ZQ(p r Q)”f” +21Q(

1o -1- 10(:—1-%) —
S e A VAN i

Let us define the positive parameter o = (A — Q4 g) —(u— % + %), and assume that

. P
[ satisfies .

<27 (6.14)

al—

2l < A

We can assume (6.14) if we take [ = [5 log,(A)], where [ - ] denotes the integer part function
on the real numbers. Then we have
NOG=3=5) A1-0 4 910G =7 =) 40

< AT G FRO-F4 D) | pr G- Rt s =D

where in the last estimate we have used that

1—9_f(x—9+9) and —0——(u—§+%) (6.15)

Hence we obtain

17130, S W W o) 11"

which shows the estimate (i). The inequality in (ii) can be proved in a similar way. Finally,
we have (iii) if we use (i) together with the embeddings Bi)’] (G) — L"(G)and H""(G) —
Bﬁ ~(G) proved in Theorem 5.2.
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7 Localisation of Besov Spaces on Graded Lie Groups

In this section we prove local embedding properties of Besov spaces B;y q (G) with the ones
defined in a local way on R". First we recall the notion of Besov spaces on R”. For x, h € R"
and f € LP(R"), let us denote

M@ =) Ch (=D f(x + ki) (7.1)
k=0
and
w, (t, f) = I?j‘P AR fllLe@ny. (7.2)
<t

Then, by following [27] for r > O and 1 < p, g < 0o, the Euclidean Besov space B;’ q R™)
can be considered endowed with the norm

n 00 ql
£ 115y @y = I f Lo + ) </(; ("l (t, f))qdl> (7.3)
m=0

for ¢ < oo, and with an obvious modification in the case ¢ = 0o. As the reviewer of this
paper noticed, the formula in (7.3) in the Euclidean case appeared first in the fundamental
work due to Besov [4].

By considering the property (I — L)% (B, 4@®R") = B, /*(R"), where L is the Laplace
operator on R”, for r < 0, we can consider on B;!q(R”), 1 < p, q < oo, the norm

£ 1lm = = £)72 fll gosr anys (7.4)

where s is a fixed real satisfying s 4+ r > 0. It is a known fact that the definitions of Besov
spaces on R” by using the functional (7.2) are equivalent to those using Littlewood-Paley
partitions for the Laplacian on R”, in a analogous way as we have defined Besov space
on graded Lie groups by using Rockland operators. It can be obtained if in particular in
Definition 5.1 we put G = R” and R = A,, the positive Laplacian over R". If we denote
for a graded Lie group G the localisation space by

Blrqu(G, locy={feD(G):¢-f€ B[’)’q(G), forall ¢ € CG°(G)} (7.5)
we have the following result.

Proposition 7.1 If B;’ q (G, loc) denotes the local Besov space defined above, then for all
reR, 1 <p<ooand(0 < g < oo we have

r

B,'4(G.loc) C Bl (R",loc) C Byy(G. loc), (7.6)
where vy and v, are respectively the smallest and the largest weights of the dilations.

Proof 1t was proved in [9, Theorem 4.4.24] that the following embedding of local Sobolev
spaces holds:

H''P(G, loc) C H P (R", loc) C Hin P (G, loc), 1.7

for all s € R. Thus, the result now follows by using real interpolation in the sense of
Theorem 6.1.

Remark 7.1 A number of embeddings results describing relations between subelliptic and
classical functional spaces were given by Rothschild and Stein [24]. As for a comparison
with the norm in (7.3) we refer the reader to Pesenson [21].
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8 Fourier Multipliers and Spectral Multipliers

In this section we give results for the boundedness of spectral and of Fourier multipliers in
Besov spaces on graded Lie groups.

8.1 Negative Results for Left-Invariant Operators

There are some restrictions on indices for Besov spaces on which left-invariant operators
may be bounded.

Theorem 8.1 Let G be a graded Lie group and let T be a linear left-invarz:qnt operator
bounded from B;’q (G) (respectively, B;,q(G)) into B;;.g (G), (respectively, B; q(G)), for
l<p,p<oo,—c0o<r,F<oo,and0 <q,qg <oco.lfl <p<p<oo,thenT =0.

Proof Let | - | be a homogeneous norm on G. It is known (see [8, Lemma 3.2.5]) that

1
lim || f + 7t fllLre) =27 1 f ey,

|h|—o00

where 73 is defined by 1, f(x) = f(hx), x,h € G. First, we will prove the case where
0 < g < oo in the inhomogeneous case. By the boundedness of T we have || T f]| g (G =
P.q

T ||f||3;q(c), where |T|| = T8¢, p.q:7,5,g) 18 the usual operator norm. So, for every
h € G we have

IIT(f+Thf)||B;g(G) =Clf+uwflsy, -

Now, we compute both sides as || — oco. We observe that

(
;

1
Because, T and ¥;(RV), [ € Ny, are left-invariant, we obtain

1
q

IT(f + Dl 6 27y (1 + RIDT(f + f)ni,;(c))

e 0

1
2y (I + RYDNTF + (I +R)‘1’)Tfhf||iﬁ(c;)) :

Il
o

im0+ RYDTF 490+ RIT o f iy
= Jim i+ RIDTF +un(( +RIDTS i)

1 1
=27y (I +R) ")Tf||Lﬁ(G)~
Hence |
Jm T+ 0 ) 6= 21T g g

With a similar proof we obtain

1
lim | fllsy ) =27 1flBy, @G-

|h|— o0

Hence . 1
270 Tf e 6y =27 1T NN fllBy G-
p.q
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1 1
The last inequality implies that ||T|| < 27 ?||T||. Thus, if p > p then T is the null
operator. The proof for ¢ = oo is analogous.

8.2 Fourier Multipliers on Besov Spaces

Throughout this subsection we consider (right) homogeneous and inhomogeneous Besov
spaces. In order to introduce our main result of this subsection we consider the following
remark on the commutativity of operators with spectral measures.

Remark 8.2 Let R be a self-adjoint operator with spectral measure E (1), . Then, the spec-
tral theorem gives R = f M E;, and by the Stone’s formula we have the following integral
representation for every spectral projection E(A), (see Theorem 7.17 of [28])

yum)
E() = lim lim (It —ie — RI™' — [t +ie — R V)dt. (8.1
§—>0t e—>01 J_oo
If a closed operator 7T commutes with R, then 7 commutes with its resolvent operator
(z— R)~! and hence with its spectral measure (E (1)), 0. Now, if f is a bounded continuous
function on [0, o) and

F(R) = f FONEQ), 8.2)

then we can write o
R)= 1 MIEL — Ex ], 8.3
f(R) ”Pulglo+iz§ep[f< NEs, — s,y (8.3)

where in the limit above, P = {0 = A9 < A1 < A» < ---} denotes a partition of [0, 00). So,
if T commutes with R, then it also commutes with every bounded continuous function of R
defined by the functional calculus.

Now we present the following theorem on Fourier multipliers in Besov spaces where we
establish a connection between L” boundedness and Besov continuity of Fourier multipliers.

Theorem 8.3 Let G be aAgraded Lie group. Let 0 = {o () : m € 6} be a pu-measurable
field of operators in L*>(G). Let us assume that the corresponding operator T = T, given
by
Tou(x) = /;Tr(ﬂ(x)a(ﬂ)ﬁ(ﬂ))du(ﬂ),
G

is a bounded operator from LP'(G) into LP*(G), 1 < p; < oo. Then T is a bounded
operator from the (right) Besov space B;l q (G) into the (right) Besov space B;z’q (G), for
all —oo < r < ocoand0 < g < co. Moreover, T is also a bounded operator from the (right)
Besov space B[’)_q (G) into the (right) Besov space B,’)’q (G).

Proof For f € . (G) we have Zg(Tf)(rw) = a(n’)f(ﬂ) = Fc(f = (9610))(71). IfRis
aright invariant positive Rockland operator, then for every a € C (see Proposition 4.4.30 of
9D

RITf =RUf * F5'0) = (R f)  Fg'o = T(ROf), (8.4)
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in particular 7 commutes with R. Since T commutes with R, it commutes with its spectral
measures, and with every bounded function of R defined by the functional calculus (see,
Remark 8.2). So,

1
1TSS, 6y = 2 2 I RITL 1,
2 leN

= > 2 TYRY) £14,,

leNy

1
< D 2T Ly Loy IR I
leNy

— T 4
= ITlzwn ) L@ 6

Thus |7 )%
us || fIIB;M(G
case is similar. So we end the proof.

) < ||T||£(Ll’1 (G),LP2(G)) ||f||Br (G)* The proof for the inhomogeneous
P14

We end this section with applications of Theorem 8.3 to some examples for the Fourier
multipliers bounded on L? and (right) Besov spaces. For notations and terminologies we
follow [9].

Example 8.4 LetT : .(G) — ¥ (G), G be a graded Lie group of homogeneous dimension
Q. If T is left-invariant and homogeneous of degree v with

— 0 <Re(v) <0, (8.5)

and such that the right convolution kernel of T is continuous away from the origin, then
T : LP(G) — L4(G) is a bounded operator for | < p, g < 0o and
I 1 Re(

- ——= . 8.6
qg P 0 (8.0

(c.f. Proposition 3.2.8 of [9, p. 138]). By Theorem 8.3, T is a bounded operator from the
right Besov space B;,S (G) into the right Besov space B;,S (G) with p and ¢ satisfying (8.6),
reRand0 < s < oco.

Example 8.5 Let T : L%*(G) — L*(G) be a bounded and left-invariant operator. Let us
assume that its distributional kernel coincides on G \ {0} with a continuously differentiable
function k with

[ kwlar =4 <oo. sup Wik < A
|x|=

3 O<x|<1

sup x| 2TV X k()] < A, j=1,2,...,

O<|x|<1
for some homogeneous quasi-norm | - | on G and for some A > 0. Then T is weak type (1,1)
and bounded on L?(G), 1 < p < o0, (c.f. [9, p. 145]). By using Theorem 8.3 we obtain the
boundedness of 7" on the right Besov space B), ,(G), 0 < g <ocoandr € R.
Example 8.6 Let G be a graded Lie group. Let o € L%(G). If

lolas iu,Lgrs lolHs 1w, R, R < OO
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with s > %, then the corresponding multiplier 7, extends to a bounded operator on L? (G)
forall 1 < p < oo. By Theorem 2.4 we have

1T5 Ml crcy < Cmax{llollgs iu,Lyrs lolHs 1u,RnR}- (8.7)

This is the Hormander-Mihlin Theorem presented in [8]. By Theorem 8.3, we obtain the
boundedness of 7 on the right Besov space B), ,(G) and by observing the proof of such
theorem we conclude that

175 llcBy ) < Cmax{llo g ruLn. R 1o 1S 1u Ry RY- (8.8)
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