Skip to main content
Log in

The evolution of pyrrolizidine alkaloid biosynthesis and diversity in the Senecioneae

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Pyrrolizidine alkaloids are characteristic secondary metabolites of the Asteraceae and some other plant families. They are especially numerous and diverse in the tribe Senecioneae and form a powerful defense mechanism against herbivores. Studies into the evolution of pyrrolizidine alkaloid biosynthesis using Senecio species have identified homospermidine synthase as the enzyme responsible for the synthesis of the first specific intermediate. These studies further indicated that the homospermidine synthase-encoding gene was recruited following gene duplication of deoxyhypusine synthase and that this occurred independently in several different angiosperm lineages. A review of published pyrrolizidine alkaloid data shows that the Senecioneae are characterized by a large qualitative and quantitative variation in pyrrolizidine alkaloid profiles and that these data demonstrate little phylogenetic signal. This suggests that although the first steps of this pathway are highly conserved, the diversification of secondarily derived pyrrolizidine alkaloids is extremely plastic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

cDNA:

Complementary DNA

DHS:

Deoxyhypusine synthase

E. coli :

Escherichia coli

eIF5A:

Eukaryotic initiation factor 5A

HSS:

Homospermidine synthase

J.:

Jacobaea

PA(s):

Pyrrolizidine alkaloid(s)

S.:

Senecio

References

  • Abdelhady MIS, Beuerle T, Ober D (2009) Homospermidine in transgenic tobacco results in considerably reduced spermidine levels but is not converted to pyrrolizidine alkaloid precursors. Plant Mol Biol 71:145–155

    PubMed  CAS  Google Scholar 

  • Adams R, Gianturco M (1956) Senecio alkaloids: the alkaloids of Senecio brasiliensis, fremonti and ambrosioides. J Am Chem Soc 78:5315–5317

    CAS  Google Scholar 

  • Adams R, Gianturco M (1957) Senecio alkaloids: spartioidine, the alkaloid from Senecio spartioides; stereochemical relationship to other Senecio alkaloids. J Am Chem Soc 79:174–177

    CAS  Google Scholar 

  • Agrawal AA, Fishbein M (2008) Phylogenetic escalation and decline of plant defense strategies. Proc Natl Acad Sci USA 105:10057–10060

    PubMed  CAS  Google Scholar 

  • Agrawal AA, Salminen J-P, Fishbein M (2009) Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): evidence for escalation. Evolution 63:663–673

    PubMed  CAS  Google Scholar 

  • Ahmad W, Ahmad Z, Najamul-Hussain Kazmi S et al (1994) Pyrrolizidine-alkaloid content of the genus Senecio. J Chem Soc Pak 16:64–81

    CAS  Google Scholar 

  • Anke S, Niemüller D, Moll S et al (2004) Polyphyletic origin of pyrrolizidine alkaloids within the Asteraceae. Evidence from differential tissue expression of homospermidine synthase. Plant Physiol 136:4037–4047

    PubMed  CAS  Google Scholar 

  • Anke S, Gonde D, Kaltenegger E et al (2008) Pyrrolizidine alkaloid biosynthesis in Phalaenopsis orchids: developmental expression of alkaloid-specific homospermidine synthase in root tips and young flower buds. Plant Physiol 148:751–760

    PubMed  CAS  Google Scholar 

  • Arciniegas A, Pérez Castorena AL, Villaseñor JL et al (2005) Chemical constituents of Senecio procumbens. J Mex Chem Soc 49:284–286

    CAS  Google Scholar 

  • Asada Y, Furuya T (1982) Neosenkirkine and senkirkine from Senecio pierotii. Planta Med 44:182

    PubMed  CAS  Google Scholar 

  • Asada Y, Furuya T, Shiro M et al (1982) Senecicannabine, a new pyrrolizidine alkaloid from Senecio cannabinifolius. Tetrahedron Lett 23:189–192

    CAS  Google Scholar 

  • Asibal CF, Zalkow LH, Gelbaum LT (1991) Acetylanonamine, a new secopyrrolizidine alkaloid from Senecio anonymus. J Nat Prod 54:1425–1426

    PubMed  CAS  Google Scholar 

  • Asres K, Sporer F, Wink M (2008) Occurrence of pyrrolizidine alkaloids in three Ethiopian Solanecio species. Biochem Syst Ecol 36:399–407

    CAS  Google Scholar 

  • Bah M, Bye R, Pereda-Miranda R (1994) Hepatotoxic pyrrolizidine alkaloids in the Mexican medicinal plant Packera candidissima (Asteraceae; Senecioneae). J Ethnopharmacol 43:19–30

    PubMed  CAS  Google Scholar 

  • Bai YL, Benn M, Majak W (1996) Pyrrolizidine alkaloids of three species of Senecio in British Columbia. Planta Med 62:71–72

    PubMed  CAS  Google Scholar 

  • Bai Y, Benn M, Duke N et al (2006) The alkaloids of Brachyglottis hectori. ARKIVOC III:34–42

    Google Scholar 

  • Barrero AF, Alvarez-Manzaneda Roldan EJ, Alvarez-Manzaneda Roldan R (1991) Pyrrolizidine alkaloids from Senecio nebrodensis L. Annales de Quimica 87:386–390

    CAS  Google Scholar 

  • Benn M, Gul W (2007) Pyrrolizidine alkaloids in the antipodean genus Brachyglottis (Asteraceae). Biochem Syst Ecol 35:676–681

    CAS  Google Scholar 

  • Benn M, Were O (1992) Ruwenine and ruzorine: pyrrolizidine alkaloids of Senecio ruwenzoriensis. Phytochemistry 31:3295–3296

    CAS  Google Scholar 

  • Benn MH, Mathenge S, Munavu RM et al (1995) The principal alkaloid of Senecio schweinfurthii. Phytochemistry 40:1327–1329

    CAS  Google Scholar 

  • Bicchi C, Caniato R, Tabacchi R et al (1989) Capillary gas chromatography/positive and negative ion chemical ionization mass spectrometry on pyrrolizidine alkaloids of Senecio inaequidens using ammonia and hydroxyl ions as the reagent species. J Nat Prod 52:32–41

    CAS  Google Scholar 

  • Bicchi C, Rubiolo P, Frattini C et al (1991) Off-line supercritical fluid extraction and capillary gas chromatography of pyrrolizidine alkaloids in Senecio species. J Nat Prod 54:941–945

    CAS  Google Scholar 

  • Bohlmann F, Zdero C, Bergert D et al (1979) Neue Furanoeremophilane und weitere Inhaltsstoffe aus südafrikanischen Senecio-Arten. Phytochemistry 18:79–93

    CAS  Google Scholar 

  • Bohlmann F, Gupta RK, Jakupovic J (1981) An acylpyrrole derivative and further constituents from Jamaican representatives of the tribe Senecioneae. Phytochemistry 20:831–832

    CAS  Google Scholar 

  • Bohlmann F, Zdero C, Jakupovic J et al (1986) Further pyrrolizidine alkaloids and furoeremophilanes from Senecio species. Phytochemistry 25:1151–1159

    CAS  Google Scholar 

  • Boppré M, Colegate SM, Edgar JA et al (2008) Hepatotoxic pyrrolizidine alkaloids in pollen and drying-related implications for commercial processing of bee pollen. J Agric Food Chem 56:5662–5672

    PubMed  Google Scholar 

  • Böttcher F, Adolph RD, Hartmann T (1993) Homospermidine synthase, the first pathway-specific enzyme in pyrrolizidine alkaloid biosynthesis. Phytochemistry 32:679–689

    Google Scholar 

  • Böttcher F, Ober D, Hartmann T (1994) Biosynthesis of pyrrolizidine alkaloids: putrescine and spermidine are essential substrates of enzymatic homospermidine formation. Can J Chem 72:80–85

    Google Scholar 

  • Bourauel T, Plassmeier C, Roeder E (1998) Pyrrolizidine alkaloids from Senecio nevadensis. J Nat Toxins 7:87–93

    PubMed  CAS  Google Scholar 

  • Bredenkamp MW, Wiechers A, van Rooyen PH (1985) A new pyrrolizidine alkaloid from Senecio latifolius DC. Tetrahedron Lett 26:929–932

    CAS  Google Scholar 

  • Bridgham JT, Brown JE, Rodriguez-Mari A et al. (2008) Evolution of a new function by degenerative mutation in cephalochordate steroid receptors. PLoS Genet 4 doi 10.1371/s1000191

  • Briggs LH, Crambie RC, Candy BJ et al (1965) Alkaloids of New Zealand Senecio species: part II. senkirkine. J Chem Soc 65:2492–2498

    PubMed  CAS  Google Scholar 

  • Cava MP, Rao KV, Weisbach JA et al (1968) Alkaloids of Cacalia floridana. J Org Chem 33:3570–3573

    CAS  Google Scholar 

  • Chen KY, Liu AY (1997) Biochemistry and function of hypusine formation on eukaryotic initiation factor 5A. Biol Signals 6:105–109

    PubMed  CAS  Google Scholar 

  • Cheng D-L, Niu J-K, Roeder E (1992) Pyrrolizidine alkaloids from Senecio kaschkarovii. Phytochemistry 31:3671–3672

    CAS  Google Scholar 

  • Chizzola R, Ozelsberger B, Langer T (2000) Variability in chemical constituents in Petasites hybridus from Austria. Biochem Syst Ecol 28:421–432

    PubMed  CAS  Google Scholar 

  • Chou MW, Fu PP (2006) Formation of DHP-derived DNA adducts in vivo from dietary supplements and Chinese herbal plant extracts containing carcinogenic pyrrolizidine alkaloids. Toxicol Ind Health 22:321–327

    PubMed  CAS  Google Scholar 

  • Christov V, Evstatieva L (2003) Alkaloid profile of Bulgarian species from genus Senecio L. Z Naturforsch C: Biosci 58c:300–302

    Google Scholar 

  • Christov V, Mikhova B, Alexandrova R et al (2002a) Alkaloids from the roots of Senecio macedonicus Griseb. Z Naturforsch C: Biosci 57:780–784

    CAS  Google Scholar 

  • Christov VS, Mikhova BP, Evstatieva LN (2002b) Alkaloids from Senecio aquaticus. Fitoterapia 73:171–173

    PubMed  CAS  Google Scholar 

  • Christov V, Kostova N, Evstatieva L (2005) 6α-Angeloylplatynecine: a new alkaloid from Senecio nemorensis subsp. fuchsii (C. C. Gmelin) Celak. Nat Prod Res 19:389–392

    PubMed  CAS  Google Scholar 

  • Cooper RA, Bowers RJ, Beckham CJ et al (1996) Preparative separation of pyrrolizidine alkaloids by high-speed counter-current chromatography. J Chromatogr A 732:43–50

    CAS  Google Scholar 

  • Coucourakis ED, Gordon-Gray CG (1970) The Senecio alkaloids. Suggested structures for isoline and bisline, two new alkaloids from Senecio othonniformis Fourcade. J Chem Soc C: Org: 2312–2315

  • Culvenor CCJ (1978) Pyrrolizidine alkaloids—occurrence and systematic importance in angiosperms. Botaniska Notiser 131:473–486

    CAS  Google Scholar 

  • Culvenor CCJ, Geissman TA (1961) The alkaloids of Senecio mikanioides Otto. Sarracine and sarracine N-oxide. J Org Chem 26:3045–3050

    CAS  Google Scholar 

  • Culvenor CCJ, Smith LW (1955) The alkaloids of Erechtites quadridentata DC. Aust J Chem 8:556–561

    CAS  Google Scholar 

  • Culvenor CCJ, Edgar JA, Smith LW et al (1976) The occurence of senkirkine in Tussilago farfara. Austr J Chem 29:229–230

    CAS  Google Scholar 

  • DaSilva CdM, Bolzan AA, Heinzmann BM (2006) Alcalóides pirrolizidínicos em espécies do gênero Senecio. Quim Nova 29:1047–1053

    Google Scholar 

  • DePristo MA (2007) The subtle benefits of being promiscuous: adaptive evolution potentiated by enzyme promiscuity. HFSP J 1:94–98

    PubMed  CAS  Google Scholar 

  • Dominguez DM, Reina M, Santos-Guerra A et al (2008) Pyrrolizidine alkaloids from Canarian endemic plants and their biological effects. Biochem Syst Ecol 36:153–166

    CAS  Google Scholar 

  • Ehmke A, von Borstel K, Hartmann T (1987) Specific uptake of the N-oxides of pyrrolizidine alkaloids by cells, protoplasts, and vacuoles from Senecio cell cultures. In: Marin BP (ed) Plant vacuoles. Plenum Press, New York, pp 301–304

    Google Scholar 

  • Ehmke A, von Borstel K, Hartmann T (1988) Alkaloid N-oxides as transport and vacuolar storage compounds of pyrrolizidine alkaloids in Senecio vulgaris L. Planta 176:83–90

    CAS  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Google Scholar 

  • Eich E (2007) Solanaceae and convolulaceae: secondary metabolites, biosynthesis, chemotaxonomy, biological and economic significance—a handbook. Springer, Berlin

    Google Scholar 

  • El-Shazly A (2002) Pyrrolizidine alkaloid profiles of some Senecio species from Egypt. Z Naturforsch C: Biosci 57c:429–433

    Google Scholar 

  • Fang Z, Chang-hong W, Wan W et al (2008) Quantitative analysis by HPLC-MS of the pyrrolizidine alkaloid adonifoline in Senecio scandens. Phytochem Anal 19:25–31

    Google Scholar 

  • Freer AA, Kelly HA, Robins DJ (1986) Rosmarinine: a pyrrolizidine alkaloid. Acta Crystallogr C 42:1348–1350

    Google Scholar 

  • Fröhlich C, Hartmann T, Ober D (2006) Tissue distribution and biosynthesis of 1, 2-saturated pyrrolizidine alkaloids in Phalaenopsis hybrids (Orchidaceae). Phytochem 67:1493–1502

    Google Scholar 

  • Fu PP, Xia Q, Lin G et al (2004) Pyrrolizidine alkaloids—genotoxicity, metabolism enzymes, metabolic activation, and mechanisms. Drug Metab Rev 36:1–55

    PubMed  CAS  Google Scholar 

  • Gardner DR, Thorne MS, Molyneux RJ et al (2006) Pyrrolizidine alkaloids in Senecio madagascariensis from Australia and Hawaii and assessment of possible livestock poisoning. Biochem Syst Ecol 34:736–744

    CAS  Google Scholar 

  • Gharbo SA, Habib AAM (1969) Phytochemical investigation of Egyptian Senecio. Part 2. Alkaloids of Senecio aegyptius, S. desfontainei, S. vulgaris, S. petasitis and S. mikanioides. Lloydia 32:503–508

    PubMed  CAS  Google Scholar 

  • Glinski JA, Asibal CF, Van Derveer D et al (1988) Anonamine, C19H27NO7, neosenkirkine, C19H27NO6, and hydroxysenkirkine, C19H27NO7.CH3OH. Macrocyclic secopyrrolizidine alkaloids from Senecio anonymus Wood. Acta Crystallogr C 44:1593–1598

    PubMed  Google Scholar 

  • González AG, De la Fuente MG, Reina M (1973) Alcaloides de la pirrolizidina I. Alcaloides del Senecio petasites D.C. (Compuesta). Anales de Quimica 69:1343–1345

    Google Scholar 

  • Gordon-Gray CG (1967) Senecio alkaloids. 19. Isolation of chlorodeoxysceleratine. J Chem Soc C: Org: 781–782

  • Gordon-Gray CG, Wells RB (1974) Senecio alkaloids—structure and absolute-configuration of swazine. J Chem Soc Perkin Trans I:1556–1561

    Google Scholar 

  • Grotewold E (2005) Plant metabolic diversity: a regulatory perspective. Trends Plant Sci 10:57–62

    PubMed  CAS  Google Scholar 

  • Grue MR, Liddell JR (1993) Pyrrolizidine alkaloids from Senecio chrysocoma. Phytochemistry 33:1517–1519

    CAS  Google Scholar 

  • Habermehl GG, Martz W, Tokarnia CH et al (1988) Livestock poisoning in South America by species of the Senecio plant. Toxicon 26:275–286

    PubMed  CAS  Google Scholar 

  • Habib A-AM (1981) Alkaloids from Senecio aegyptius and S. desfontainei. Planta Med 43:290–292

    PubMed  CAS  Google Scholar 

  • Hartmann T (1985) Prinzipien des pflanzlichen Sekundärstoffwechsels. Plant Syst Evol 150:15–34

    CAS  Google Scholar 

  • Hartmann T (2004) Plant-derived secondary metabolites as defensive chemicals in herbivorous insects: a case study in chemical ecology. Planta 219:1–4

    PubMed  CAS  Google Scholar 

  • Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846

    PubMed  CAS  Google Scholar 

  • Hartmann T, Dierich B (1998) Chemical diversity and variation of pyrrolizidine alkaloids of the senecionine type: biological need or coincidence? Planta 206:443–451

    CAS  Google Scholar 

  • Hartmann T, Ober D (2000) Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. In: Leeper FJ, Vederas JC (eds) Topics in current chemistry. Springer, Berlin, pp 207–244

    Google Scholar 

  • Hartmann T, Ober D (2008) Defense by pyrrolizidine alkaloids: developed by plants and recruited by insects. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Berlin, pp 213–231

    Google Scholar 

  • Hartmann T, Toppel G (1987) Senecionine N-oxide, the primary product of pyrrolizidine alkaloid biosynthesis in root cultures of Senecio vulgaris. Phytochemistry 26:1639–1643

    CAS  Google Scholar 

  • Hartmann T, Witte L (1995) Chemistry, biology and chemoecology of the pyrrolizidine alkaloids. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives. Pergamon Press, Oxford, pp 155–233

    Google Scholar 

  • Hartmann T, Zimmer M (1986) Organ-specific distribution and accumulation of pyrrolizidine alkaloids during the life history of two annual Senecio species. J Plant Physiol 122:67–80

    CAS  Google Scholar 

  • Hartmann T, Sander H, Adolph RD et al (1988) Metabolic links between the biosynthesis of pyrrolizidine alkaloids and polyamines in root cultures of Senecio vulgaris. Planta 175:82–90

    CAS  Google Scholar 

  • Hartmann T, Ehmke A, Eilert U et al (1989) Sites of synthesis, translocation and accumulation of pyrrolizidine alkaloid N-oxides in Senecio vulgaris L. Planta 177:98–107

    CAS  Google Scholar 

  • Hartmann T, Witte L, Ehmke A et al (1997) Selective sequestration and metabolism of plant derived pyrrolizidine alkaloids by chrysomelid leaf beetles. Phytochemistry 45:489–497

    CAS  Google Scholar 

  • Hartmann T, Theuring C, Beuerle T et al (2004) Acquired and partially de novo synthesized pyrrolizidine alkaloids in two polyphagous Arctiids and the alkaloid profiles of their larval food-plants. J Chem Ecol 30:229–254

    PubMed  CAS  Google Scholar 

  • Hartmann T, Kutchan TM, Strack D (2005) Evolution of metabolic diversity. Phytochemistry 66:1198–1199

    PubMed  CAS  Google Scholar 

  • Heinrich M, Robles M, West JE et al (1998) Ethnopharmacology of Mexican Asteraceae (Compositae). Annu Rev Pharmacol Toxicol 38:539–565

    PubMed  CAS  Google Scholar 

  • Hirono I, Mori H, Yamada K et al (1977) Carcinogenic activity of petasitenine, a new alkaloid from Petasites japonicus Maxim. J Natl Cancer Inst 58:1155–1156

    PubMed  CAS  Google Scholar 

  • Hirschmann GS, Jakupovic J (1988) Pyrrolizidine alkaloids from Senecio deferens. Planta Med 54:360

    PubMed  CAS  Google Scholar 

  • Hol WHG, Van Veen JA (2002) Pyrrolizidine alkaloids from Senecio jacobaea affect fungal growth. J Chem Ecol 28:1763–1772

    PubMed  CAS  Google Scholar 

  • Hösch G, Wiedenfeld H, Dingermann T et al (1996) A new high performance liquid chromatography method for the simultaneous quantitative analysis of pyrrolizidine alkaloids and their N-oxides in plant material. Phytochem Anal 7:284–288

    Google Scholar 

  • Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc R Soc Lond B Biol Sci 256:119–124

    CAS  Google Scholar 

  • Ingolfsdóttir K, Hylands PJ (1990) Pyrrolizidine alkaloids in Senecio vulgaris L. growing in Iceland. Acta Pharm Nord 2:343–348

    PubMed  Google Scholar 

  • Ji L, Chen Y, Liu T et al (2008) Involvement of Bcl-xL degradation and mitochondrial-mediated apoptotic pathway in pyrrolizidine alkaloids-induced apoptosis in hepatocytes. Toxicol Appl Pharmacol 231:393–400

    PubMed  CAS  Google Scholar 

  • Jones CG, Firn RD (1991) On the evolution of plant secondary chemical diversity. Phil Trans R Soc London Ser B 333:273–280

    Google Scholar 

  • Kapadia GJ, Ramdass A, Bada F (1990) Pyrrolizidine alkaloids of Senecio glabellus. Pharm Biol 28:67–71

    CAS  Google Scholar 

  • Klásek A, Reichstein T, Šantavy F (1968) Die Pyrrolizidin-Alkaloide aus Senecio alpinus (L.) Scop., S. subalpinus Koch und S. incanus L. subsp. carniolicus (Willd.) Br.-Bl. Pyrrolizidin-Alkaloide, 13. Mitteilung. Helv Chim Acta 51:1088–1095

    PubMed  Google Scholar 

  • Kostova N, Christov V, Cholakova M et al (2006) Pyrrolizidine alkaloids from Bulgarian species of the genus Senecio. J Serb Chem Soc 71:1275–1280

    CAS  Google Scholar 

  • Koulmann A, Seeliger C, Edwards PJB et al (2008) E/Z-Thesinine-O-4′-α-rhamnoside, pyrrolizidine conjugates produced by grasses (Poaceae). Phytochemistry 69:1927–1932

    Google Scholar 

  • Krebs HC, Carl T, Habermehl GG (1996) Pyrrolizidine alkaloid composition in six brazilian Senecio species. Phytochemistry 43:1227–1229

    CAS  Google Scholar 

  • Kunec EK, Robins DJ (1986) Evidence for different 1-hydroxymethylpyrrolizidines as intermediates in the biosynthesis of retronecine and rosmarinecine. J Chem Soc Chem Commun 250–252

  • Laing M, Sommerville P (1972) Crystal and molecular structure of methiodide of swazine, an alkaloid from Senecio swaziensis Compton. Tetrahedron Lett 51:5183–5186

    Google Scholar 

  • Leonard NJ (1959) Senecio alkaloids. In: Manske RHF, Holmes HL (Eds) The alkaloids. Elsevier pp. 108–166

  • Li S-L, Lin G, Fu PP et al (2008) Identification of five hepatotoxic pyrrolizidine alkaloids in a commonly used traditional Chinese medicinal herb, Herba Senecionis scandentis (Qianliguang). Rapid Commun Mass Spectrom 22:591–602

    PubMed  CAS  Google Scholar 

  • Liddell JR (1999) Pyrrolizidine alkaloids. Nat Prod Rep 16:499–507

    CAS  Google Scholar 

  • Liddell JR, Logie CG (1993a) 7-Angelyl-1-methylenepyrrolizidines from Senecio chrysocoma. Phytochemistry 34:1198–1199

    CAS  Google Scholar 

  • Liddell JR, Logie CG (1993b) A re-investigation of the alkaloids of Senecio pterophorus. Phytochemistry 34:1629–1631

    CAS  Google Scholar 

  • Liddell JR, Stermitz FR (1994) Pyrrolizidine alkaloids from Trollius laxus. In: Colegate SM, Dorling PR (eds) Plant-assoc. Toxins: agricultural, phytochemical, and ecological aspects Proc Int Symp Poisonous Plants (ISOPP4, 1993). CAB International, Wallingford, pp 217–220

    Google Scholar 

  • Lin W-Y, Teng C-M, Tsai I-L et al (2000) Anti-platelet aggregation constituents from Gynura elliptica. Phytochemistry 53:833–836

    PubMed  CAS  Google Scholar 

  • Liu K, Roeder E (1991) Pyrrolizidine alkaloids from Senecio argunensis. Phytochemistry 30:1303–1305

    CAS  Google Scholar 

  • Lock Sing OR (2006) Diversidad química el género Werneria. Rev Soc Quím Perú 72:32–48

    Google Scholar 

  • Luethy J, Zweifel U, Schlattter C et al (1980) Pyrrolizidine alkaloids in coltsfoot (Tussilago farfara) of various sources. Mitteilungen Geb Lebensm 71:73–80

    CAS  Google Scholar 

  • Luethy J, Zweifel U, Karlhuber B et al (1981) Pyrrolizidine alkaloids of Senecio alpinus L. and their detection in feedingstuffs. J Agric Food Chem 29:302–305

    Google Scholar 

  • Luethy J, Zweifel U, Schlatter C (1983) Pyrrolizidin-alkaloide in Petasites hybridus L. und P. albus L. Pharm Acta Helv 58:98–100

    CAS  Google Scholar 

  • Macel M, Vrieling K, Klinkhamer PG (2004) Variation in pyrrolizidine alkaloid patterns of Senecio jacobaea. Phytochemistry 65:865–873

    PubMed  CAS  Google Scholar 

  • Macel M, Bruinsma M, Dijkstra SM et al (2005) Differences in effects of pyrrolizidine alkaloids on five generalist insect herbivore species. J Chem Ecol 31:1493–1508

    PubMed  CAS  Google Scholar 

  • Mackay MF, Mitrprachachon P, Culvenor CCJ (1985) Hygrophylline, C18H27NO6: a pyrrolizidine alkaloid. Acta Crystallogr C 41:395–397

    Google Scholar 

  • Maldonado R JI, Arciniegas A, Pérez-Castorena A-L et al (2008) Furanoeremophilanes and other constituents of Pittocaulon bombycophole. Heterocycles 75:3035–3042

    CAS  Google Scholar 

  • Mandic BM, Godevac DN, Beškoski VP et al (2009) Pyrrolizidine alkaloids from seven wild-growing Senecio species in Serbia and Montenegro. J Serb Chem Soc 74:27–34

    CAS  Google Scholar 

  • Manske RHF (1944) The alkaloids. Annu Rev Biochem 13:533–548

    CAS  Google Scholar 

  • Marín-Loaiza JC, Céspedes C, Beuerle T et al (2007) Ceroplastes albolineatus, the first scale insect shown to sequester pyrrolizidine alkaloids from its host-plant Pittocaulon praecox. Chemoecology 17:109–115

    Google Scholar 

  • Marín-Loaiza JC, Ernst L, Beuerle T et al (2008) Pyrrolizidine alkaloids of the endemic Mexican genus Pittocaulon and assignment of stereoisomeric 1, 2-saturated necine bases. Phytochemistry 69:154–167

    PubMed  Google Scholar 

  • Mattocks AR (1968) Toxicity of pyrrolizidine alkaloids. Nature 217:723–728

    PubMed  CAS  Google Scholar 

  • Mattocks AR (1986) Chemistry and toxicology of pyrrolizidine alkaloids. Academic Press, London

    Google Scholar 

  • Mattocks AR, Driver E (1987) Toxic actions of senaetnine, a new pyrrolizidine-type alkaloid, in rats. Toxicol Lett 38:315–319

    PubMed  CAS  Google Scholar 

  • McGaw LJ, Steenkamp V, Eloff JN (2007) Evaluation of Athrixia bush tea for cytotoxicity, antioxidant activity, caffeine content and presence of pyrrolizidine alkaloids. J Ethnopharmacol 110:16–22

    PubMed  CAS  Google Scholar 

  • Moll S, Anke S, Kahmann U et al (2002) Cell-specific expression of homospermidine synthase, the entry enzyme of the pyrrolizidine alkaloid pathway in Senecio vernalis, in comparison with its ancestor, deoxyhypusine synthase. Plant Physiol 130:47–57

    PubMed  CAS  Google Scholar 

  • Molyneux RJ, Johnson AE, Roitman JN et al (1979) Chemistry of toxic range plants. Determination of pyrrolizidine alkaloid content and composition in Senecio species by nuclear magnetic resonance spectroscopy. J Agric Food Chem 27:494–499

    PubMed  CAS  Google Scholar 

  • Mroczek T, Glowniak K (2002) Pyrrolizidine alkaloids. Their chemistry, occurence and significance as natural compounds. In: Rauter AP, Palma FB, Justino J, Araújo ME, Dos Santos SP (eds) Natural products in the new millenium: propspects and industrial application. Kluwer, Dordrecht, pp 1–46

    Google Scholar 

  • Mroczek T, Glowniak K, Wlaszczyk A (2002) Simultaneous determination of N-oxides and free bases of pyrrolizidine alkaloids by cation-exchange solid-phase extraction and ion-pair high-performance liquid chromatography. J Chromatogr A 949:249–262

    PubMed  CAS  Google Scholar 

  • Mroczek T, Ndjoko K, Glowniak K et al (2004) On-line structure characterization of pyrrolizidine alkaloids in Onosma stellulatum and Emilia coccinea by liquid chromatography-ion-trap mass spectrometry. J Chromatogr A 1056:91–97

    PubMed  CAS  Google Scholar 

  • Nawaz HR, Malik A, Muhammad P et al (2000) Chemical constituents of Ajuga parviflora. Z Naturforsch 55b:100–103

    Google Scholar 

  • Ndjoko K, Wolfender J-L, Roeder E et al (1999) Determination of pyrrolizidine alkaloids in Senecio species by liquid chromatography/thermospray-mass spectrometry and liquid chromatography/nuclear magnetic resonance spectroscopy. Planta Med 65:562–566

    PubMed  CAS  Google Scholar 

  • Niwa H, Ishiwata H, Kuroda A et al (1983) Farfugine, a new pyrrolizidine alkaloid isolated from Farfugium japonicum Kitam. Chem Lett 12:789–790

    Google Scholar 

  • Niwa H, Ishiwata H, Yamada K (1985) Isolation of petasitenine, a carcinogenic pyrrolizidine alkaloid from Farfugium japonicum. J Nat Prod 48:1003–1004

    CAS  Google Scholar 

  • Noorwala M, Mohammad FV, Ahmad VU et al (2000) Pyrrolizidine alkaloids from Senecio lorenthii. Fitoterapia 71:618–620

    PubMed  CAS  Google Scholar 

  • Ober D (2005) Seeing double: gene duplication and diversification in plant secondary metabolism. Trends Plant Sci 10:444–449

    PubMed  CAS  Google Scholar 

  • Ober D (2010) Gene duplications and the time thereafter—examples from plant secondary metabolism. Plant Biol (in press)

  • Ober D, Hartmann T (1999a) Deoxyhypusine synthase from tobacco: cDNA isolation, characterization, and bacterial expression of an enzyme with extended substrate specificity. J Biol Chem 274:32040–32047

    PubMed  CAS  Google Scholar 

  • Ober D, Hartmann T (1999b) Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase. Proc Natl Acad Sci USA 96:14777–14782

    PubMed  CAS  Google Scholar 

  • Ober D, Hartmann T (2000) Phylogenetic origin of a secondary pathway: the case of pyrrolizidine alkaloids. Plant Mol Biol 44:445–450

    PubMed  CAS  Google Scholar 

  • Ober D, Kaltenegger E (2009) Pyrrolizidine alkaloid biosynthesis, evolution of a pathway in plant secondary metabolism. Phytochemistry 70:1687–1695

    PubMed  CAS  Google Scholar 

  • Ober D, Harms R, Witte L et al (2003) Molecular evolution by change of function: alkaloid-specific homospermidine synthase retained all properties of deoxyhypusine synthase except binding the eIF5A precursor protein. J Biol Chem 278:12805–12812

    PubMed  CAS  Google Scholar 

  • Paiva JA, Barata LES, Trigo JR (2004) Pyrrolizidine alkaloids in three Senecio species from southern Brazil. Biochem Syst Ecol 32:1219–1222

    CAS  Google Scholar 

  • Park MH, Lee YB, Joe YA (1997) Hypusine is essential for eukaryotic cell proliferation. Biol Signals 6:115–123

    PubMed  CAS  Google Scholar 

  • Pelser PB, van den Hof K, Gravendeel B et al (2004) The systematic value of morphological characters in Senecio sect. Jacobaea (Asteraceae) as compared to DNA sequences. Syst Bot 29:790–805

    Google Scholar 

  • Pelser PB, de Vos H, Theuring C et al (2005) Frequent gain and loss of pyrrolizidine alkaloids in the evolution of Senecio section Jacobaea (Asteraceae). Phytochemistry 66:1285–1295

    PubMed  CAS  Google Scholar 

  • Pelser PB, Nordenstam B, Kadereit JW et al (2007) An ITS phylogeny of tribe Senecioneae (Asteraceae) and a new delimitation of Senecio L. Taxon 56:1077–1104

    Google Scholar 

  • Pelser PB, Kennedy AH, Tepe EJ et al (2010) Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies. Am J Bot 97:856–873

    CAS  Google Scholar 

  • Perez-Castorena A-L, Arciniegas A, Alonso RP et al (1998) Callosine, a 3-alkyl-substituted pyrrolizidine alkaloid from Senecio callosus. J Nat Prod 61:1288–1291

    PubMed  CAS  Google Scholar 

  • Pérez-Castorena A-L, Arciniegas A, Castro A et al (1997) Pyrrolizidine alkaloids from Senecio roseus and Senecio helodes. J Nat Prod 60:1322–1325

    Google Scholar 

  • Pérez-Castorena A-L, Arciniegas A, Perez R et al (1999a) Iodanthine, a pyrrolizidine alkaloid from Senecio iodanthus and Senecio bracteatuss. J Nat Prod 62:1039–1043

    Google Scholar 

  • Pérez-Castorena A-L, Arciniegas A, Villaseñor JL et al (1999b) Alkaloids from three Senecio species. Biochem Syst Ecol 27:835–837

    Google Scholar 

  • Pérez-Castorena A-L, Arciniegas A, Martinez F et al (2000) Pyrrolizidine alkaloids from four Senecio species. Biochem Syst Ecol 28:279–282

    Google Scholar 

  • Pestchanker MJ, Ascheri MS, Giordano OS (1985) Uspallatine, a pyrrolizidine alkaloid from Senecio uspallatensis. Phytochemistry 24:1622–1624

    CAS  Google Scholar 

  • Pieters LA, Vlietinck AJ (1988) Spartioidine and usaramine, two pyrrolizidine alkaloids from Senecio vulgaris. Planta Med 54:178–179

    PubMed  CAS  Google Scholar 

  • Qi X, Wu B, Cheng Y et al (2009) Simultaneous characterization of pyrrolizidine alkaloids and N-oxides in Gynura segetum by liquid chromatography/ion trap mass spectrometry. Rapid Commun Mass Spectrom 23:291–302

    PubMed  CAS  Google Scholar 

  • Ray AC, Williams HJ, Reagor JC (1987) Pyrrolizidine alkaloids from Senecio longilobus and Senecio glabellus. Phytochemistry 26:2431–2433

    CAS  Google Scholar 

  • Reimann A, Nurhayati N, Backenköhler A et al (2004) Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages. Plant Cell 16:2772–2784

    PubMed  CAS  Google Scholar 

  • Reina M, Gonzalez-Coloma A, Gutierrez C et al (2000) Defensive chemistry of Senecio miser. J Nat Prod 64:6–11

    Google Scholar 

  • Rizk A-FM (1990) The pyrrolizidine alkaloids: plant sources and properties. In: Rizk A-FM (ed) Naturally occuring pyrrolizidine alkaloids. CRC Press, Boca Raton, pp 1–89

    Google Scholar 

  • Robins DJ (1982) The pyrrolizidine alkaloids. Prog Chem Org Nat Prod 41:115–202

    CAS  Google Scholar 

  • Robins DJ (1994) Pyrrolizidine alkaloids. Nat Prod Rep 11:613–619

    PubMed  CAS  Google Scholar 

  • Roeder E (1995) Medicinal plants in Europe containing pyrrolizidine alkaloids. Pharmazie 50:83–98

    PubMed  CAS  Google Scholar 

  • Roeder E (2000) Medicinal plants in China containing pyrrolizidine alkaloids. Pharmazie 55:711–726

    PubMed  CAS  Google Scholar 

  • Roeder E, Abdel-Ghani A (1990) Pyrrolizidine alkaloids from Petasites paradoxus (Retz.) Baumg. Sci Pharm 58:403–407

    CAS  Google Scholar 

  • Roeder E, Liu K (1991) Pyrrolizidine alkaloids from Senecio integrifolius var. fauriri. Phytochemistry 30:1734–1737

    CAS  Google Scholar 

  • Roeder E, Wiedenfeld H (1977) Isolierung und Strukturaufklärung des Alkaloids Fuchsisenecionin aus Senecio fuchsii. Phytochemistry 16:1462–1463

    CAS  Google Scholar 

  • Roeder E, Wiedenfeld H, Pastewka U (1979) Pyrrolizidinalkaloide aus Senecio vernalis. Planta Med 37:131–136

    CAS  Google Scholar 

  • Roeder E, Wiedenfeld H, Frisse M (1980a) Pyrrolizidinalkaloide aus Senecio doronicum. Phytochemistry 19:1275–1277

    CAS  Google Scholar 

  • Roeder E, Wiedenfeld H, Stengl P (1980b) Das Pyrrolizidinalkaloid O7-Angelylheliotridin aus Senecio ovirensis. Planta Med Suppl 182–184

  • Roeder E, Wiedenfeld H, Stengl P (1981) Die Pyrrolizidinalkaloide Senecionin und Retrorsin aus Senecio inaequidens. Planta Med 39:412–413

    Google Scholar 

  • Roeder E, Wiedenfeld H, Hoening A (1983) Pyrrolizidinealkaloide aus Senecio aureus. Planta Med 49:57–59

    CAS  Google Scholar 

  • Roeder E, Wiedenfeld H, Britz-Kirstgen R (1984a) Pyrrolizidine alkaloids from Senecio cacaliaster. Phytochemistry 23:1761–1763

    CAS  Google Scholar 

  • Roeder E, Wiedenfeld H, Knözinger-Fischer P (1984b) Pyrrolizidinalkaloide aus Senecio abrotanifolius, ssp. abrotanifolius und ssp. abrotanifolius var. tiroliensis. Planta Med 2:203–204

    Google Scholar 

  • Roeder E, Hille T, Wiedenfeld H (1986) Pyrrolizidin-alkaloide von Senecio sylvaticus L. Sci Pharm 54:347–350

    CAS  Google Scholar 

  • Roeder E, Wiedenfeld H, Pfitzer A (1988) Doriasenine, a pyrrolizidine alkaloid from Senecio doria. Phytochemistry 27:4000–4001

    CAS  Google Scholar 

  • Roeder E, Wiedenfeld H, Kersten R (1990) The pyrrolizidine alkaloids of Senecio aquaticus Huds. Sci Pharm 58:1–8

    CAS  Google Scholar 

  • Roeder E, Bourauel T, Theisen I (1992) Pyrrolizidine alkaloids from Werneria nubigena. Nat Toxins 1:81–83

    PubMed  CAS  Google Scholar 

  • Roeder E, Bourauel T, Kersten R (1993a) Pyrrolizidine alkaloids from Senecio persoonii. Phytochemistry 32:1051–1053

    CAS  Google Scholar 

  • Roeder E, Eckert A, Bourauel T (1993b) Pyrrolizidine alkaloids from Petasites spurius. Pharmazie 48:953–954

    CAS  Google Scholar 

  • Roitman JN (1983) The pyrrolizidine alkaloids of Senecio triangularis. Aust J Chem 36:1203–1213

    CAS  Google Scholar 

  • Romo de Vivar A, Pérez A-L, Arciniegas A et al (1995) Pyrrolizidine alkaloids from Senecio mulgediifolius, two new 13-membered macrocyclic 7, 9-diesters. Tetrahedron Lett 51:12521–12528

    CAS  Google Scholar 

  • Romo de Vivar A, Peréz A-L, Vidales P et al (1996) Pyrrolizidine alkaloids from Senecio jacalensis and Senecio callosus. Biochem Syst Ecol 24:175–176

    CAS  Google Scholar 

  • Romo de Vivar A, Perez-Castorena A-L, Arciniegas A et al (2007) Secondary metabolites from Mexican species of the tribe Senecioneae (Asteraceae). J Mex Chem Soc 51:160–172

    CAS  Google Scholar 

  • Rose EF (1972) Senecio species: toxic plants used as food and medicine in the Transkei. S Afr Med J 46:1039–1043

    PubMed  CAS  Google Scholar 

  • Roth C, Rastogi S, Arvestad L et al (2007) Evolution after gene duplication: models, mechanisms, sequences, systems, and organisms. J Exp Zool B Mol Dev Evol 308:58–73

    PubMed  Google Scholar 

  • Rüeger H, Benn MH (1983) The alkaloids of Senecio triangularis Hook. Can J Chem 61:2526–2529

    Google Scholar 

  • Sander H, Hartmann T (1989) Site of synthesis, metabolism and translocation of senecionine N-oxide in cultured roots of Senecio erucifolius. Plant Cell Tissue Organ Cult 18:19–32

    CAS  Google Scholar 

  • Schaneberg BT, Molyneux RJ, Khan IA (2004) Evaporative light scattering detection of pyrrolizidine alkaloids. Phytochem Anal 15:36–39

    PubMed  CAS  Google Scholar 

  • Schmid P, Luethy J, Zweifel U et al (1987) GC/MS characterization of pyrrolizidine alkaloids in some species of Asteraceae. Mitt Lebensm Hyg 78:208–216

    CAS  Google Scholar 

  • Smith LW, Culvenor CCJ (1981) Plant sources of hepatotoxic pyrrolizidine alkaloids. J Nat Prod 44:129–152

    PubMed  CAS  Google Scholar 

  • Stelljes ME, Kelley RB, Molyneux RJ et al (1991) GC-MS determination of pyrrolizidine alkaloids in four Senecio species. J Nat Prod 54:759–773

    CAS  Google Scholar 

  • Stirling IR, Freer IKA, Robins DJ (1997) Pyrrolizidine alkaloid biosynthesis. Incorporation of 2-aminobutanoic acid labelled with 13C or 2H into the senecic acid portion of rosmarinine and senecionine. J Chem Soc Perkin Trans I 1:677–689

    Google Scholar 

  • Suau R, Cabezudo B, Rico R et al (2002) Pyrrolizidine alkaloids from three Spanish Senecio species. Biochem Syst Ecol 30:981–984

    CAS  Google Scholar 

  • Susag L, Parvez M, Mathenge S et al (2000) Structure revision of isoline (ruwenine), bisline and isolinecic acid. Phytochemistry 54:933–935

    PubMed  CAS  Google Scholar 

  • Tan A, Wang Z, He H et al (2003) New pyrrolizidine alkaloids from Ligularia tsangchanensis. Heterocycles 60:1195–1198

    CAS  Google Scholar 

  • Tang J, Akao T, Nakamura N et al (2007) In vitro metabolism of isoline, a pyrrolizidine alkaloid from Ligularia duciformis, by rodent liver microsomal esterase and enhanced hepatotoxicity by esterase inhibitors. Drug Metab Dispos 35:1832–1839

    PubMed  CAS  Google Scholar 

  • TheArabidopsisGenome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Thu Huong DT, Martin M-T, Litaudon M et al (1998) Pyrrolizidine alkaloids from Amphorogyne spicata. J Nat Prod 61:1444–1446

    PubMed  Google Scholar 

  • Toppel G, Witte L, Riebesehl B et al (1987) Alkaloid patterns and biosynthetic capacity of root cultures from some pyrrolizidine alkaloid producing Senecio species. Plant Cell Rep 6:466–469

    CAS  Google Scholar 

  • Trigo JR, Leal IR, Matzenbacher NI et al (2003) Chemotaxonomic value of pyrrolizidine alkaloids in southern Brazil Senecio (Senecioneae: Asteraceae). Biochem Syst Ecol 31:1011–1022

    CAS  Google Scholar 

  • Tundis R, Loizzo MR, Statti GA et al (2007) Pyrrolizidine alkaloid profiles of the Senecio cineraria group (Asteraceae). Z Naturforsch C: Biosci 62c:467–472

    Google Scholar 

  • Urones JG, Barcala PB, Marcos IS et al (1988) Pyrrolizidine alkaloids from Senecio gallicus and S. adonidifolius. Phytochemistry 27:1507–1510

    Google Scholar 

  • Villarroel LH, Varea P, Caceres R (1988) lntergerrimine and usaramine alkaloids from Senecio murorum. Bol Soc Chil Quím 33:107–109

    CAS  Google Scholar 

  • Von Borstel K, Witte L, Hartmann T (1989) Pyrrolizidine alkaloid patterns in populations of Senecio vulgaris, S. vernalis and their hybrids. Phytochemistry 28:1635–1638

    Google Scholar 

  • Vrieling K, de Vos H, van Wijk CAM (1993) Genetic analysis of the concentrations of pyrrolizidine alkaloids in Senecio jacobaea. Phytochemistry 32:1141–1144

    CAS  Google Scholar 

  • Were O, Benn M, Munavu RM (1991) Pyrrolizidine alkaloids from Senecio hadiensis. J Nat Prod 54:491–499

    CAS  Google Scholar 

  • Were O, Benn M, Munavu RM (1993) The pyrrolizidine alkaloids of Senecio syringifolius and S. hadiensis from Kenya. Phytochemistry 32:1595–1602

    CAS  Google Scholar 

  • Wiedenfeld H, Roeder E (1979) Das Pyrrolizidinalkaloid Senecionin aus Senecio fuchsii. Phytochemistry 18:1083–1084

    CAS  Google Scholar 

  • Wiedenfeld H, Pastewka U, Stengl P et al (1981) Zur gaschromatografischen Bestimmung der Pyrrolizidinalkaloide aus einigen Senecioarten. Pharmazie 41:124–128

    CAS  Google Scholar 

  • Wiedenfeld H, Hendriks H, Bruius AP et al (1989) Zur Alkaloidführung von Senecio nemorensis L. ssp. fuchsii (Gmel.) Celak und Senecio nemorensis L. ssp. nemorensis (Rchb.) Celak. Sci Pharm 57:97–104

    CAS  Google Scholar 

  • Wiedenfeld H, Altanchimeg D, Gantur A et al (2002a) Toxic pyrrolizidine alkaloids from three Mongolian plants. A possible risk for cattle poisoning. J Nat Toxins 11:187–192

    PubMed  CAS  Google Scholar 

  • Wiedenfeld H, Bourauel T, Roeder E (2002b) Pyrrolizidine Alkaloide in Petasites fragrans. Sci Pharm 70:407–411

    CAS  Google Scholar 

  • Wiedenfeld H, Narantuya S, Dumaa M et al (2003) Pyrrolizidine alkaloids from Ligularia sibirica Cass. and Tephroseris integrifolia L. Sci Pharm 71:129–132

    CAS  Google Scholar 

  • Wiedenfeld H, Montes C, Tawil B et al (2006) Pyrrolizidine alkaloid level in Senecio bicolor (Willd.) Tod, ssp. cineraria (DC.) from Middle Europe. Pharmazie 61:559–561

    PubMed  CAS  Google Scholar 

  • Witte L, Ehmke A, Hartmann T (1990) Interspecific flow of pyrrolizidine alkaloids; from plants via aphids to ladybirds. Naturwissenschaften 77:540–543

    CAS  Google Scholar 

  • Witte L, Ernst L, Adam H et al (1992a) Chemotypes of two pyrrolizidine alkaloid-containing Senecio species. Phytochemistry 31:559–565

    CAS  Google Scholar 

  • Witte L, Ernst L, Wray V et al (1992b) Revised structure of the main alkaloid of Senecio adonidifolius. Phytochemistry 31:1027–1028

    CAS  Google Scholar 

  • Wrobel JT (1985) Pyrrolizidine alkaloids. In: Brossi A (ed) The alkaloids, vol 26. Academic Press, London, pp 327–384

    Google Scholar 

  • Yamada K, Tatematsu H, Suziki M et al (1976) Isolation and the structures of two new alkaloids, petasitenine and neopetasitenine from Petasites japonicus Maxim. Chem Lett 5:461–464

    Google Scholar 

  • Zalkow LH, Asibal CF, Glinski JA et al (2004) Macrocyclic pyrrolizidine alkaloids from Senecio anonymus. Separation of a complex alkaloid extract using droplet counter-current chromatography. J Nat Prod 51:690–702

    Google Scholar 

  • Zdero C, Bohlmann F, King RM et al (1990) Co-occurrence of pyrrolizidine alkaloids and acylpyrrols in Senecio magnificus and constituents of other australian Senecio species. Phytochemistry 29:509–511

    CAS  Google Scholar 

Download references

Acknowledgments

Parts of the work were supported by the Deutsche Forschungsgemeinschaft (DFG) in grants to D. Ober.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dietrich Ober or Pieter B. Pelser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langel, D., Ober, D. & Pelser, P.B. The evolution of pyrrolizidine alkaloid biosynthesis and diversity in the Senecioneae. Phytochem Rev 10, 3–74 (2011). https://doi.org/10.1007/s11101-010-9184-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-010-9184-y

Keywords

Navigation