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ABSTRACT
Purpose Polymeric drugs, including patiromer (Veltassa®),
bind target molecules or ions in the gut, allowing fecal elimi-
nation. Non-absorbed insoluble polymers, like patiromer,
avoid common systemic drug-drug interactions (DDIs).
However, the potential for DDI via polymer binding to orally
administered drugs during transit of the gastrointestinal tract
remains. Here we elucidate the properties correlated
with drug-patiromer binding using quantitative structure-
property relationship (QSPR) models.
Methods We selected 28 drugs to evaluate for binding to
patiromer in vitro over a range of pH and ionic conditions
intended to mimic the gut environment. Using this in vitro data,
we developed QSPR models using step-wise linear regression
and analyzed over 100 physiochemical drug descriptors.
Results Four descriptors emerged that account for ~70% of
patiromer-drug binding in vitro: the computed surface area of
hydrogen bond accepting atoms, ionization potential, electron
affinity, and lipophilicity (R2= 0.7, Q2= 0.6). Further, certain
molecular properties are shared by nonbinding, weak, or
strong binding compounds.

Conclusions These findings offer insight into drivers of in vitro
binding to patiromer and describe a useful approach for
assessing potential drug-binding risk of investigational poly-
meric drugs.

KEY WORDS drug interaction . electron affinity . hydrogen
bonding . ionization potential . lipophilicity

ABBREVIATIONS
AB Acetate buffer
AUC Area under the curve
BCS Biopharmaceutics Classification

System
CI Confidence interval
Conc Concentration
CV Cross-validation
DDI Drug-drug interaction
HCl Hydrochloride
IP.ev,PM3 Calculated ionization potential
LogD Lipophilicity
LogP Partition coefficient
PK Pharmacokinetics
QPlogPw,QikProp Predicted water gas partition

coefficient
QSPR Quantitative structure-property

relationship
SAA1 Sum of surface area on acceptor

atoms
SGF Simulated gastric fluid
SIF Simulated intestinal fluid
X.amide Number of non-conjugated amide

groups
X.noncon Number of ring atoms not able to

form conjugated aromatic systems
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INTRODUCTION

Large polymer drugs typically have a high density of binding
sites and thus a large capacity to absorb their target species (1).
As large insoluble particles (>10 μm), they are excreted, along
with the bound material, rather than being digested and
absorbed into the blood stream. This has the advantage of
reducing the potential for systemic off-target effects or drug-
drug interactions (DDIs), such as cytochrome P450 enzyme
inhibition. However, the potential for DDIs during transit of
the gastrointestinal tract remains.

Veltassa® (patiromer; Relypsa, Inc., a Vifor Pharma
Group Company; Redwood City, CA) is a non-
absorbed, potassium binding drug approved for the
treatment of hyperkalemia (elevated serum potassium).
The active ingredient is patiromer sorbitex calcium
which consists of the active moiety, patiromer, a cross-
linked anionic polymer, and a calcium sorbitol counter-
ion (Fig. 1) (2). It is formulated as a powder that is
mixed with water and given orally, once daily at a
starting dose of 8.4 g. Patiromer binds potassium in
the gastrointestinal tract, particularly the colon. Results
of an in vitro study showed that patiromer has a binding
capacity of 8.5–8.8 mEq of potassium per gram of
polymer (3). Patiromer, along with bound potassium,
is eliminated in the feces, reducing serum potassium
levels (3).

In addition to binding potassium during transit of the gut,
there is the potential for negatively charged patiromer to bind
to co-administered oral drugs, particularly those that are pos-
itively charged or that bind its counter-ion, calcium. It is im-
portant to understand the clinical potential for patiromer-
drug interactions, as patients with hyperkalemia typically suf-
fer from chronic disease, notably chronic kidney disease, heart
failure, and diabetes, and may have multiple comorbid
conditions.

As previously reported, compounds tested for DDIs in hu-
man subjects were prescreened for the ability to bind

patiromer in vitro (4). Significant binding to patiromer (>30%
of drug bound) was observed with 14 of the 28 small molecule
drugs assessed and this formed the basis for compound selec-
tion in the clinical studies. In this clinical testing, 3 of the 12
compounds tested showed a potential for clinically relevant
DDIs when administered together with patiromer; however,
no clinically meaningful DDIs were observed when the drugs
were given 3 h apart (4).

Of necessity, clinical DDI studies are incomplete, as
only a subset of drugs that might be co-administered
can be tested. A limited literature exists on polymer
DDIs; however, the unique engineered properties of
each polymer make it unlikely that findings with one
can be generalized to another. Rather, in vitro assays
and in silico modeling can be used to help predict
those compounds most or least likely to bind a given
polymer. For example, Walker and colleagues (5) re-
ported the development of a quantitative structure-
property relationship (QSPR) model describing binding
in vitro to the polymer bile acid sequestrant, colesevelam
hydrochloride. Using partial least-squares regression
analysis, drug lipophilicity emerged as the primary de-
terminant of colesevelam-drug binding. The authors also
went on to show that in vitro binding sensitively identi-
fied compounds with a low probability of causing a
clinically significant DDI in vivo (5).

Here we report the development of QSPR models of
patiromer-drug binding in vitro based on step-wise linear re-
gression analysis of over 100 measured and calculated drug
properties and in vitro binding data (4). We identify the phys-
icochemical characteristics of drugs that best predict binding
to patiromer in vitro, as well as the molecular properties of
drugs with strong, weak, or no binding to patiromer. The
QSPRmodels reported here illustrate the utility of an in silico
approach to evaluate the potential for drugs to bind polymeric
drugs.

MATERIALS AND METHODS

Test Articles

Patiromer

Patiromer sorbitex calcium is manufactured by Relypsa, Inc.,
under good manufacturing practices.

Drugs

All test drugs were obtained from US Pharmacopeia
(Rockville, MD), except rivaroxaban, cinacalcet hydrochlo-
ride (TRC; North York, ON, Canada) and apixaban
(Alsachim; Strasbourg, France).

calcium-sorbitol counterion

patiromer anion
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Fig. 1 Chemical structure of patiromer sorbitex calcium. m=
number of 2-flouro-2-propenoate groups. n, p = number of crosslinking
groups. •H2O=Associated water. * = Indicates an extended polymeric net-
work. m= 0.91. n + p=0.09. Image reproduced with permission from
Relypsa, Inc. (2).
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pKa, LogP and LogD Determination

Test drug properties pKa, LogP, and LogD, as shown in
Table I, were experimentally determined as follows.

pKa

Test drug pKas were determined experimentally by titration
in aqueous solution. Ionization state was monitored by UV or
pH. Reported values are the average of three independent
determinations. For drugs with poor aqueous solubility, which
required a co-solvent (25 to 50%), pKa was determined by
Yasuda-Shedlovsky extrapolation. Drug concentration was in
the range 17–31 μM (UV) or ≥0.4 mM (pH).

logP

Compound logPs were determined by titration in various ra-
tios of octanol and water at concentrations no lower than
0.4 mM. The shift of the aqueous pKas in the presence of
octanol was used to determine the logP of the different species.

logD(7.4)

The logD of the sample was determined at pH 7.4 by liquid-
liquid distribution chromatography. Compounds were eluted
from an octanol-coated column with an octanol-saturated mo-
bile phase adjusted to pH 7.4. Compound retention time was
converted to logD value by comparison to the retention time of
a set of standard compounds with well-characterized logD
octanol values.

In Vitro Binding Assays

Patiromer binding to test compounds was assessed by comparing
free test drug concentrations after incubation with and without
patiromer. Patiromer anion was added to a concentration of
25.2 g/L, representing a maximal patiromer dose dispersed in
the approximate volume of fluid in the upper adult gastrointes-
tinal tract (1 L) (6). Test drug concentrations were based on the
lowest clinically relevant dose of test drug in US prescribing
information in a 1-L volume. Test drug stock solutions were
prepared at 5mg/mL (6mg/mL for lithium carbonate) in either
dimethyl sulfoxide or Milli-Q water and diluted to the final
desired concentration in test media. Drugs that were not soluble
at concentrations equivalent to the lowest prescribed dose (cip-
rofloxacin, furosemide, phenytoin) were used at the maximum
achievable concentration (see Table I for final values).

Three test buffers were used: simulated gastric fluid without
added pepsin (SGF; initial pH 1.2), acetate buffer (AB; initial
pH 4.5), and simulated intestinal fluid without added pancrea-
tin (SIF; initial pH 6.8). Tween-20 was included at 0.05% v/v as
a surfactant to aid in solubilizing test drugs. The final pH of the

media with patiromer added at 25.2 g/L was as follows: SGF
pH 3.0, AB pH 4.6, and SIF pH 5.9.

Binding studies were performed in a 10 ml volume in
16×100 mm borosilicate tubes, and incubated for 3 h at 37°C
with end-over-end rotation at ~25 rpm. After incubation,
patiromer was allowed to settle for 5 min; supernatants were
withdrawn and passed through a 0.45 μm filter, collected by
centrifugation, and transferred to chromatography vials for
analysis. Control samples containing buffer and drug, but with-
out patiromer, were subjected to the same experimental process.
For 24 of the test drugs, a reversed phase high performance
liquid chromatography method was used for analysis in the
three test matrices. Atorvastatin and digoxin were measured
using liquid chromatography-mass spectrometry methods, while
lithium was analyzed using ion chromatography. All analytical
methods were qualified to demonstrate specificity, linearity, ac-
curacy and precision, and stability. During method qualifica-
tion, we conducted a pretest of each drug in test media alone
to assure no significant loss in recovery during the incubation or
filtration steps. If there was not sufficient recovery compared to
theoretical concentration, the drug could not be evaluated in
that medium. The recovered drug in the presence or absence
of patiromer was used to calculate percent recovery of test drug,
and represents the geometric mean of 12 replicates.

Dose-response studies were performed using the same
method across a range of test drug concentrations.

Drug Structures and Properties

A total of 121 computed molecular descriptors were consid-
ered in the development of the QSPR models, including elec-
tronic, steric, topological, and hydrophobic terms
(Supplementary Table SI).

The molecular structure of each drug listed was downloaded
from the Division of Specialized Information Services website of
the National Laboratory of Medicine (http://chem.sis.nlm.nih.
gov/chemidplus/) and processed to produce an appropriate
three-dimensional representation with the LigPrep 3.0 applica-
tion in Schrödinger suite, accessible from the Maestro interface
(QikProp; Schrödinger, LLC; 2014). The LigPrep 3.0 program
used the following criteria: neutral charge state, generate possible
tautomers, generate conformers, force field: OPLS_2005. A final
energy minimization was carried out with the OPLS_2005 force
field, with implicit solvent (water).

Molecular properties were computed with several programs:
various charged partial surface area terms were computed with
the QikProp 3.9 program (using the –altclass option; QikProp;
Schrödinger, LLC; 2014); ACD Labs logD 12.00 (Advanced
Chemistry Development, Inc.; 2014); BioByte ClogP 4.9
(BioByte Corp); and an in-house program (polar version 1.1)
(7). The polar program utilized the AM1 semi-empirical
Hamiltonian to compute the molecular charges and molecular
orbital energies. As some of the test compounds may be ionized
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Table I Physicochemical Properties of Test Compounds and In Vitro Patiromer Binding

Properties In Vitro Binding (% Drug Recovered)

Name BCS Class pKa LogP LogD
pH 3.0, 4.5, 5.9

Conc Used
In Vitro (μg/mL)

SGF
(pH 3)

Acetate Buffer
(pH 4.5)

SIF
(pH 5.9)

No Significant Binding
≥70% drug recovered (ie, ≤30% drug bound) in all tested buffers

Allopurinol III 9.18 A
12.12 A

−0.3 (N) −0.3 (all) 100 85.7 90.1 94.2

Amoxicillin III 2.60 A
7.35 B
9.59 A

−0.02 (N)
2.19 (C)

1.65
0.46
0.00

500 NDa 99.2 99.4

Apixaban III NA <1.40 (N) <1.40 (all) 5 75.6 97.3 97.8

Aspirin III 3.50 A 0.90 (N) 0.78
−0.14
−1.50

81 100.7 99.8 99.9

Atorvastatin calcium II 4.47 A 4.01 (N)
1.04 (A)

3.99
3.69
2.58

10 91.2 93.3 101.1

Cephalexin III 2.56 A
7.10 B

−1.05 (N) −1.20
−1.06
−1.08

250 88.7 95 104.4

Digoxin II NA 1.64 (N) 1.64 (all) 0.125 NDa 109.3 103.4

Glipizide II 5.06 A 2.91 (N)
−0.45 (A)

2.91
2.82
2.08

5 72.9 96.5 98.5

Lisinopril III 1.63 A
3.13 A
7.13 B
10.75 B

−0.51 (N) −0.85
−0.52
−0.54

5 77.9 100.7 98.5

Phenytoin sodium II 8.18 A 2.43 (N)
−0.09 (A)

2.43 (all) 25 83.4 90.2 92.8

Riboflavin I 9.87 A <−1.50 (C) <−1.50 (all) 1.2 95.6 NDb 96.5

Rivaroxaban II NA 1.43 (N) 1.43 (all) 10 71.9 92.9 95.1

Spironolactone II NA 2.53 (N) 2.53 (all) 25 78.7 98.6 96.8

Valsartan II 3.73 A
4.4 A

3.98 (N)
1.48 (A)

3.9
2.83
0.46

40 86.4 101.4 98.0

Weak Binding
45–70% drug recovered (30–55% drug bound) in one test media only

Clopidogrel bisulfate II 4.66 B 4.06 (N)
0.95 (C)

2.40
3.67
4.03

75 66 NDa NDa

Furosemide IV 3.62 A
10.16 A

2.20 (N)
−0.82 (A)

2.10
1.25
−0.03

20, 10 (SGF) 67.3 94.5 79.1

Lithium carbonate* I NA NA NA 600 93.3 88.8 56.9

Metformin HCl III 2.94 B
13.7 B

<−1.50 (N) <−1.50 (all) 500 48.9 81.8 80.2

Metoprolol tartrate I 9.61 B 1.91 (N) −4.70
−3.20
−1.80

25 71.7 85.9 68.6

Verapamil HCl I 8.95 B 4.20 (N)
0.52 (C)

0.52
0.59
1.24

120 51.7 88.6 77.9

Warfarin (R/S) II 4.94 A 3.25 (N)
−0.77 (A)

3.25
3.12
2.25

2 66.3 92.5 97.3
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at various pH levels, logD values were computed [logD= logP -
log(1+ 10pKa - pH)], at various pH values (pH=1.2, 3.0, 4.5, 5.9,
6.8). All statistics were performed with the R program 3.1.0 and
standard statistical modules therein (8).

QSPR Modeling

Step-wise linear regression was used to develop QSPR
models describing properties driving drug-patiromer
in vitro binding in each of the three test media used.
For each drug evaluated by QSPR modeling, the mean
geometric ratio of recovered drug with and without
patiromer in each buffer was calculated and used in
the subsequent regression analysis, along with the mo-
lecular properties shown in Supplementary Table SI.

Most of the molecular parameters used in model building
were computed based on the neutral species, as required in
QikProp. For this reason, lithium and thiamin were not includ-
ed in the regression analysis. For factors that vary with pH (eg,
LogD, pKa), the relevant values were included in the modeling

of patiromer binding at that pH. Levothyroxine was not includ-
ed in the regression analysis because in vitro binding could not
be measured due to precipitation of levothyroxine in the
presence of the patiromer calcium counter-ion.

The R2 value was calculated for each QSPR equation. In
order to assess the accuracy of each linear regression model, a
leave-one-out cross-validation was performed and the results
were reported as a Q2 value (9). In addition, p-values for coef-
ficients in the QSPR equations were calculated.

RESULTS

We selected 28 drugs to evaluate for binding to patiromer in vitro
over a range of pH and ionic conditions intended to mimic the
gut environment. Test drugs were initially selected based on
relevance to the patiromer patient population and represented
a chemically and functionally diverse group. The test panel in-
cluded compounds with varied physicochemical properties from
all four of the Biopharmaceutics Classification System (BCS)

Table I (continued)

Properties In Vitro Binding (% Drug Recovered)

Name BCS Class pKa LogP LogD
pH 3.0, 4.5, 5.9

Conc Used
In Vitro (μg/mL)

SGF
(pH 3)

Acetate Buffer
(pH 4.5)

SIF
(pH 5.9)

Strong Binding
≤45% drug recovered (≥55% bound) in 2 or more test media

Amlodipine besylate I 9.21B 3.39 (N)
1.44 (C)

1.44
1.44
1.46

2.5 10.8 36.6 13.1

Cinacalcet HCl IV 8.85 B 5.58 (N)
2.41 (C)

2.41
2.44
2.83

30 13.4 19.3 18.3

Ciprofloxacin HCl IV 6.35 A
8.33 B

−0.27 (N) −3.75
−2.25
−0.98

250, 100 (SIF) 18 24.8 6.9

Quinidine I 4.39 B
9.06 B

3.75 (N)
0.85 (C)

−0.07
0.63
1.03

300 12.6 43.1 24.3

Thiamin* III 4.88 B <−1.50 (C) <−1.50 (all) 1 28.8 50.7 42.9

Trimethoprim II 7.14 B 0.78 (N) −3.36
−1.87
−0.49

100 36.3 55.3 28.4

Could not be tested in vitro

Levothyroxine sodium* II 2.00 A
6.65 A
8.73 B

3.44 (N) 3.44
3.44
3.37

NA NDa NDa NDa

Values shown are % test drug recovered following co-incubation in the specified buffer

Legend: A= acid, B = base, (A) = anionic, (C) = cationic, (N) = neutral

An asterisk * designates compounds not included in subsequent QSPR model building, due to limitations of computational methodology or instability
a Drug could not be tested in the indicated condition due to instability; b Subject to lysis in acetate buffer

BCS, Biopharmaceutics Classification System; Conc, concentration; HCl; hydrochloride; NA, not applicable; ND, not determined; QSPR, quantitative structure-
property relationship; SGF, simulated gastric fluid; SIF, simulated intestinal fluid
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drug classes (Table I). Drugs thatmight bemore likely to interact
with patiromer due to positive charge, basicity, or hydrophilicity
were also included in the test panel, as were several drugs with a
narrow therapeutic index, as it is particularly important to be
able to control the exposure of these types of therapeutics.

Values for pKa, logD and logP and in vitro binding data at
three different pHs were determined experimentally (Table I).
To measure binding, each compound was co-incubated with
patiromer using the highest single clinical dose of polymer and
the minimum clinical dose of test drug. This approach is expect-
ed to maximize the availability of drug binding sites on
patiromer and the ability to detect drug-patiromer interaction.
A 3-h co-incubation time was selected, as that is anticipated to
be the longest time that the polymer and the co-administered
drug will routinely be in close contact prior to absorption of the
co-administered drug. Stomach exposure (SGF conditions) is
less than 3 h (10) and upper GI exposure (AB buffer conditions)
is about 3 h (11,12). The majority of tested drugs have a Tmax
of less than 3 h (4), and little drug will be present in the colon
(SIF conditions). Following co-incubation, patiromer and any
bound drug were removed by centrifugation and the remaining
unbound (recovered) drug was measured in the supernatant.

As shown in Table I, 14 of the 28 drugs tested (50%) did not
show significant binding to patiromer, which was defined as
≥70% of the drug being recovered in the supernatant following
co-incubation. Thirteen other compounds showed significant
binding to patiromer: 8 drugs were weak binders, with 30–
55% of drug bound to patiromer in a single test condition; 5
were strong binders, with >55% of drug bound in multiple test
conditions. Levothyroxine, a known calcium binder, (13) could
not be tested as it precipitated in the presence of patiromer and its
calcium counter-ion. Four other drugs in the panel (clopidogrel,
amoxicillin, digoxin, and riboflavin) could not be assayed in all
buffer conditions due to instability (see Table I footnotes).

We investigated whether the in vitro binding data could be
used to generate aQSPR thatmight allow in silico prediction of

the potential of an untested drug to bind to patiromer. As the
in vitro binding of each drug was assessed at a single concentra-
tion, and that concentration depended on the clinically relevant
dose for each drug, we sought to demonstrate that the resulting
binding was not strongly dependent on the tested concentration
of drug. Consequently, we conducted further in vitro testing of
patiromer’s interaction with three of the strong binders,
amlodipine besylate, quinidine gluconate and trimethoprim,
across a range of drug concentrations to determine the impact
of drug concentration on binding (Supplementary Figure
S1). Binding to patiromer did not show strong concentration
dependence across a clinically relevant dose range for the three
drugs tested. Thus, despite the varied concentrations of drug
used in the in vitro studies, the data were judged suitable to
develop in silico models for patiromer-drug binding.

Having confirmed that the test panel included a well-
balanced set of binding and nonbinding drugs, data from 25
of the original 28 compounds were used to build QSPR
models of patiromer-drug binding in vitro. The data for
patiromer binding to the test drugs reported in Table I do
not suggest a simple relationship between in vitro binding and
any single structural feature or physical property of the com-
pounds, such as lipophilicity, charge, or polarity. To build
predictive models, we measured or calculated 121 physical
property descriptors for the drugs (Supplementary Table
SI; see Wessel et al. [7] for more on these descriptors) and
applied step-wise linear regression with both forward and
backward search selection to produce a model of
patiromer-drug binding in each buffer. The resulting
QSPR models were validated using the leave-one-out
method, following an approach similar to that used by
Walker et al. (2009) to define QSPR models for binding
to colesevelam (5).

The QSPR model terms identified for patiromer-drug
binding in vitro are given below and the corresponding coeffi-
cients and p values are reported in Table II.

Table II Summary of QSPR Model Regression Coefficients and P-Values

Model Intercept SAAA1 IP.eV EA.eV QPlogPw X.noncon X.amide

SGF −396.3906 (0.0000) NA 46.4826 (0.0000) NA 4.0192 (0.0005) −2.1771 (0.0288) −22.2272 (0.0659)

AB −189.9966 (0.0052) 0.3818 (0.0001) 26.5812 (0.0012) −16.8010 (0.0274) NA −1.6017 (0.0070) NA

SIF −294.4202 (0.0009) 0.4371 (0.0002) 36.8472 (0.0004) −13.3460 (0.1402) NA −2.2171 (0.0036) NA

Values in parentheses represent p-values from the linear regression model; see definition of terms, below

Coefficients:

SAAA1, sum of surface area on acceptor atoms (oxygen, nitrogen) Å2

IP.eV, PM3 calculated ionization potential (negative of HOMO energy)

EA.eV, PM3 calculated electron affinity (negative of LUMO energy)

QPlogPw, QikProp predicted water/gas partition coefficient

X.noncon, number of ring atoms not able to form conjugated aromatic systems (eg, sp3C)

X.amide, number of non-conjugated amide groups

AB, acetate buffer; NA, not applicable; QSPR, quantitative structure-property relationship; SGF, simulated gastric fluid; SIF, simulated intestinal fluid
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In SGF buffer (pH 3.0), binding was best predicted by the
physical parameters:

IP:eVþQPlogPwþX:nonconþX:amide

where IP.eV is the ionization potential, QPlogPw is the pre-
dicted partition coefficient in water/gas, X.noncon is the
number of ring atoms not able to form conjugated aromatic
systems, and X.amide is the number of non-conjugated amide
groups.

The QSPR models for binding in SIF (pH 4.6) and AB
(pH 5.9) test media also incorporate the ionization potential
and X.noncon terms. However, two other terms appear,
yielding the equation:

SAAA1þ IP:eVþX:nonconþ EA:eV

where SAAA1 is the computed surface area of hydrogen bond
acceptor atoms and EA.eV is electron affinity.

Predicted binding to patiromer was calculated for each
drug using the relevant QSPR equation and compared to
the experimentally observed values, as shown graphically in
Fig. 2 and detailed in Supplementary Table SII. All of the
models yielded a traditional R2 of ~0.7. A cross-validated Q2

value was generated using leave-one-out analysis. Q2 values of
~0.6 were obtained. An R2 of 0.7 implies that the var-
iables in the model together account for ~70% of the
variation in the binding to patiromer under the speci-
fied in vitro conditions. The remaining 30% variance is
likely attributable to untested variables and to variability
inherent in the assay system. The small difference be-
tween R2 and Q2 values (ie, R2 - Q2 < 0.3) suggests that
our models are not over-fit and should be predictive for
compounds that have not been included in the current
study (14).

To further characterize the influence of the terms iden-
tified in the QSPR models on patiromer-drug binding
in vitro, we compared the properties of the strong, weak,
and non-binding compound groups identified earlier
(Table III). The non-binding test compounds typically
have multiple polar functional groups, such as cephalexin
and riboflavin; or acidic groups, such as valsartan. Drugs
that bound patiromer in vitro tended to have fewer polar
groups and were more lipophilic than the nonbinders.
Weak binders of patiromer, such as clopidogrel or meto-
prolol, were neutral to weakly basic, with limited polar
functionality. Strong patiromer binding was seen in vitro

a SGF buffer

bAcetate buffer

c SIF buffer

�Fig. 2 (a-c) Measured vs. predicted values for drug-patiromer
binding derived from QSPR equations. Both the model (training set),
and leave-one-out cross-validation set (CV set) are plotted, along with the
best-fit line to the training set for each buffer. AB, acetate buffer; CV, cross-
validation; QSPR, quantitative structure-property relationship; SGF, simulated
gastric fluid; SIF, simulated intestinal fluid.
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with drugs containing basic amines not balanced by a near-
by polar group, such as cinacalcet.

Thus, in this manuscript, we have demonstrated that the
QSPR models predicted in vitro binding. However, as pub-
lished previously, in vitro binding was not predictive of in vivo
DDIs (4).

DISCUSSION

A QSPR model has been used to illustrate an in silico ap-
proach to evaluate potential binding of drugs to polymer ther-
apeutics. Such QSPR models can be developed based on a
subset of possible interacting drugs, and can reveal the molec-
ular characteristics most predictive of in vitro binding to poly-
mers, as evidenced by the close correlation between predicted
and observed binding values.

The QSPR models developed for patiromer-drug
binding in vitro reflect interactions between multiple

drug properties, rather than a univariate relationship
to lipophilicity or charge (in contrast, lipophilicity
[LogD] was identified as the major determinant of
in vitro binding to colesevelam [5]). For patiromer, ion-
ization potential and availability of surface hydrogen
bond acceptors were key factors over the physiological pH
range of the gut. At the lowest pH tested (3.0), lipophilicity
(QPlogPw) was also influential, but this factor was not predic-
tive in matrices with higher pH values.

When test drugs were stratified based on the extent of
binding to patiromer (strong, weak, or none), shared mo-
lecular characteristics emerged for each set. In general,
non-binding test drugs had multiple polar functional
groups. They included examples from multiple drug clas-
ses (eg, amoxicillin, glipizide, furosemide), and relatively
small, highly polar compounds, such as allopurinol and
warfarin. In particular, the inclusion of carboxylates and
multiple hydroxyl groups appears to greatly decrease the
likelihood of binding to patiromer.

Table III Patiromer Binding In Vitro, Molecular Properties Affecting Binding, and Observed Clinical DDI Results (4)

Binding categories Test drug Level of in vitro interaction
with patiromer

QSPR molecular properties AUC reduced when
co-administration (4) (lower
bound of the 90% CI <80%)

No binding Allopurinol
Amoxicillin
Apixaban
Aspirin
Atorvastatin
Cephalexin
Digoxin
Glipizide
Lisinopril
Phenytoin
Riboflavin
Rivaroxaban
Spironolactone
Valsartan

<30% drug bound in any
test matrix14

Non-binding compounds tend to be highly polar with
multiple polar functional groups (eg, nitro, sulfonamide,
etc.). Compounds with acidic groups also show no
binding

Not tested: no binding in vitro

Weak binder Clopidogrel
Furosemide
Lithium
Metformin
Metoprolol
Verapamil
Warfarin (−R,−S)

30–55% bound in one
test matrix

Weak in vitro drug binding to patiromer begins to occur
as the number of polar groups on the test drug
decreases or its lipophilicity increases. Weak binders of
patiromer tend to be neutral to weakly basic, with
limited polar functionality, such as clopidogrel or
metoprolol

Metformin, 1000 mg

Strong binder Amlodipine
Cinacalcet
Ciprofloxacin
Levothyroxine**
Thiamin*
Trimethoprim
Quinidine*

>55% bound in two or
three test matrices

The strongest in vitro binding to patiromer is predicted to
occur with drugs that contain basic amines that are not
balanced by a polar functionality, eg, a carboxylate or
cyano group or multiple amides, in close proximity to
the basic group.

Ciprofloxacin, 500 mg
Levothyroxine, 0.6 mg

*In vitro binders not included in clinical study; **Not tested in vitro

AUC, area under the plasma concentration–time curve from 0 to infinity; CI, confidence interval; DDI, drug-drug interaction; QSPR, quantitative
structure-property relationship
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Those drugs that did bind patiromer in vitro tended to have
fewer polar groups and were more lipophilic than the
nonbinders. The weak binders were generally neutral to weak-
ly basic, with limited polar functionality, as exemplified by
clopidogrel or metoprolol. The strongest in vitro binding to
patiromer is predicted to occur with drugs that contain basic
amines that are not balanced by a polar functionality, eg, a
carboxylate or cyano group or multiple amides, in close
proximity to the basic group.

It is important to note, however, that while the QSPR
models for patiromer have predictive value for in vitro binding,
additional factors, such as drug dissolution, absorption and
binding to other gut contents, intervene in vivo to determine
whether a significant DDI will occur. Our findings (4) and
those of Walker et al. (5) both suggest that in vitro polymer-
drug binding studies tend to over-predict clinically
meaningful DDIs. In the case of patiromer, only 3 of
12 drugs that bound patiromer in vitro showed a poten-
tially clinically relevant pharmacokinetics (PK) change,
defined as 80–125% of the 90% confidence interval
for the area under the plasma concentration–time curve
from 0 to infinity (AUC). No clinically relevant DDIs
were observed when test drug and patiromer were given
3 h apart (4). Of the four strong in vitro patiromer
binders that were tested clinically, only ciprofloxacin
showed a decrease in systemic absorption when admin-
istered together with patiromer. Because both ciproflox-
acin and levothyroxine bind calcium, the effects on PK
observed upon administration of either drug together
with patiromer may reflect binding to patiromer’s calci-
um counter-ion, rather than to the anion itself.

The data generated for metformin are also illustrative of
the principle that other factors beyond in vitro binding influ-
ence the potential for clinical DDIs with nonabsorbable poly-
meric drugs. Metformin is a weak binder in vitro, but also
showed a moderate reduction in AUC in healthy volunteers
when co-administered with patiromer. Metformin has low
permeability and its uptake is transporter-mediated, thus sat-
urable (15). Interaction with patiromer may compete with
transporter-mediated absorption and, in the presence of
patiromer, a greater proportion of the drug may fail to bind
to transporters during the gut transit period, leading to a re-
duced AUC.

CONCLUSION

The potential for polymeric therapeutics to reduce the bio-
availability of co-administered drugs is limited to binding that
may occur in the lumen of the gastrointestinal tract, because
the polymers are not systemically absorbed. In this pa-
per we demonstrate that an in silico QSPR approach
can be used to characterize the drivers of in vitro

binding and has the potential to predict which drugs
are more likely to show a binding interaction. Thus,
in vitro binding combined with QSPR can be used pro-
actively to narrow the subset of drugs that are tested
clinically for drug interactions with polymers.
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