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Abstract Multifractality, that is, self-similaritywhere
in scaling follows a continuous spectrum of exponents,
is a ubiquitous property of the morphology and dynam-
ics of large-scale complex systems. However, to date,
the prerequisites for the generation of multifractal time
series by dynamical systems remain an open issue.
Thiswork demonstrates thatmultifractality can emerge
in the time series spontaneously generated by a small
ensemble of cascaded nonlinear oscillators, which are
deterministic, autonomous and delayless. Namely, a
chain of four Rössler systems with directed couplings
is investigated numerically and realized experimentally
in the form of analog electronic circuits. The observa-
tion ofmultifractality is established using the detrended
fluctuation analysis and confirmed through surrogate
tests, wavelet-based analyses and cascade structure
visualization. Multifractality consistently arises when
the oscillation frequencies of the coupled oscillators
span a sufficient range along the chain, and the cou-
plings have an intermediate strength which engenders
partial entrainment between the adjacent nodes. These
results affirm that neither external entropy injection nor
driving are indispensable, and provide a blueprint for
the design of self-contained generative circuits toward
diverse applications across physiology modeling and
unconventional computing.

Keywords Analog electronic circuits · Bifurcation
cascade · Complexity · Multifractal spectrum ·
Multiscaling · Times series classification
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1 Introduction

1.1 Background

Multifractal analyses have been widely used to char-
acterize the scaling properties of time series across
diverse scientific problems in physics [1–3], chem-
istry [4], neuroscience [5,6], economy [7–9] litera-
ture and art [10,11]. Determining the scaling expo-
nents α and thus forming a spectrum of singularities
f (α) provides a detailed description of the fractal-
ity of a time series, consequently offering profound
insights into the physics of the underlying processes
[12] and representing a primary basis for defining mea-
sures of complexity [13]. Since nonlinear dynamics
are the fundamental source of multifractality, the scal-
ing exponents contain information that is invisible to
linear analyses based on the autocorrelation or power
spectrum. The usefulness of multifractal analysis has
led to the development of algorithms for directly esti-
mating the singularity spectra of time series without
requiring reconstructing the geometry of the under-
lying attractor [14–16]; these algorithms have subse-
quently been generalized to the assessment of cross-
correlation [17]. At the same time, the pervasiveness
of multifractality in nature has motivated considerable
efforts toward understanding the conditions necessary
for its generation and toward devising generative mod-
els. Currently, approaches based on multiplicative cas-
cades, whereby multifractal time series are generated
as a product of tree-like cascades with deterministic or
stochastic parameters called multipliers, are prevalent
[18,19]. An alternative to cascade-like processes with
a discrete scaling ratio is a multifractal random walk
that generates multifractal time series with stationary
increments and a continuous invariance ratio [20].

In parallel with a growing appreciation of the impor-
tance of fundamental aspects of complexity such as
multifractality, over the recent years, there has been
a growing emphasis on investigating the universality
of nonlinear dynamical phenomena, for example, con-
cerning phase transitions and pattern formation via syn-
chronization [21]. The interest in realizing electronic
models of the most diverse dynamics found across
physics, biology and other disciplines finds its roots in
the early days of computing when analog circuits were
widely used to integrate equation systems [22]. Unlike
digital calculating machines, which directly embody
numerical algorithms, analog electronic circuits are

continuous physical devices; the latter are also con-
siderably more versatile than mechanical apparatuses
and easier to realize and manipulate than optical setups
[23]. Therefore, researchers from diverse fields have
not only used circuit synthesis techniques to deploy
analog computing by realizing equation systems as
close as possible to verbatim. They have also, and
especially, been trying to establish parallels between
the behaviors of elementary analog electronic circuits,
including nonlinearities such as multipliers, diodes and
transistors, and the most diverse large-scale systems in
physics, biology, social science and so on [24,25]. On
the one hand, this is interesting from the perspective
of investigating the universality of nonlinear dynam-
ical phenomena. On the other hand, it is important
from an applications perspective: as the limits of digi-
tal computing in terms of power efficiency and inte-
gration become evident, engineers are searching for
new paradigms inspired by nature to address problems
in signal generation, control and pattern analysis [26].
A notable example is the notion of physical reservoir
computing, whereby elementary apparatuses, circuits
and networks can be used to project an input vector to
a higher-dimensional representation where linear sep-
arability is possible [27].

1.2 Multifractality in electronic circuits

Through a multitude of different analog circuits, often
endowedwith a certain level of structural elegance, fun-
damental dynamical phenomena such as low- and high-
dimensional chaos, quasiperiodicity, criticality, first-
and second-order phase transitions have been exten-
sively demonstrated [25,28,29]. Intriguingly, despite
its pervasiveness in nature, the literature is consider-
ably more sparse as regards electronic generators of
multifractality. Multifractal scaling has been reported
as an emergent property in the dynamics of telecommu-
nication networks, power distribution networks and in
CMOS circuits subject to random excitation; however,
there are almost no examples of elementary circuits
that generate multifractal time series by design [30–
32]. The notion of multifractality is intimately linked
to that of turbulence, and accordingly, its observation
is almost invariably associated with dynamics that pos-
sess a stochastic component [33,34]. However, to the
authors’ knowledge, it is not possible to rigorously
assert that noise is a fundamental prerequisite for it:
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on the contrary, the analytical properties of the bino-
mial cascade and the generation of multifractal geome-
tries by iterated maps point in the opposite direction
[35]. Nevertheless, one prevailing perspective on mul-
tifractality has been that of random multiplicative pro-
cesses, whereby the influence of noise unfolds over
time depending on the evolution of a system’s state.
This notion has proven highly relevant to understand-
ing, for example, the dynamics of fluids and agents in
noisy environments [36,37].

From an electronic viewpoint, the coexistence of
multiple sources of differently colored noise is well
established, dominated but not limited to thermal noise.
Leveraging these generators, realized, for example,
using a resistor or diode, noise source circuits are read-
ily obtainable, and can be easily combinedwith an addi-
tional stage providing the multiplicative effect, yield-
ing power law effects [38,39]. Using this approach, the
possibility of generating amultifractal time series using
just two operational amplifiers was shown; however,
this remains an isolated observation [40]. This paucity
of multifractal signal-generating circuits in the litera-
ture is surprising also given that early papers on the
f (α) formalism demonstrated broad spectra close to
of chaotic transitions, in the attractor geometries gener-
ated by circuits such as driven diode-resonator systems
and other apparatuses. However, as discussed below, a
crucial limitation is that those studies did not address
the multifractality of the time series as such, as is cus-
tomarily done today to investigate it in the context of
large-scale complex systems [28,41,42]. Furthermore,
recent work has highlighted the potential of multifrac-
tality as a generative mechanism in optical and opto-
electronic systems [43].

1.3 Purpose

Ultimately, whether multifractal time series could be
generated by a dynamical system that is fully deter-
ministic, that is, wherein noise does not play a funda-
mental generative role, and, consequently, by its elec-
tronic circuit realization, essentially remains an open
question. The distinction is important since, effec-
tively, circuits that fundamentally require an external
noise source do not correspond to autonomous dynam-
ics and are therefore considered not self-contained,
thus less fundamental and desirable, and more vul-
nerable to external attacks [44]. Throughout previous

attempts omitted for brevity, the authors had exten-
sively searched for signatures of multifractal time
series in the dynamics of individual low-dimensional
chaotic, high-dimensional chaotic and hyperchaotic
analog electronic circuits, without finding any convinc-
ing evidence. In this paper, the first successful and con-
sistent observation based on a fully deterministic and
autonomous ensemble of dynamical systems is pre-
sented. The arrangement is elementary and consists of
a cascade of four Rössler systems, which are studied
both numerically and through experimental recordings
from the corresponding circuit realization.

2 Detrended fluctuation analysis

To date, the fractal properties of a time series are usu-
ally characterized through the well-established multi-
fractal detrended fluctuation analysis (MFDFA) [15].
According to this approach, the self-similarity of a sig-
nal is quantified by a set of exponents representing the
scaling properties of the fluctuations with respect to
their amplitudes. The usefulness of this method has led
to its widespread use in describing signal complexity
across various fields of research [45,46]. The MFDFA
comprises several steps, which are described in detail
below and can be summarized as follows:

• Step 1: Obtain the integrated time series through
subtracting the mean and calculating the cumula-
tive sum;

• Step 2: Divide such time series into Ns non-
overlapping segments of identical length s;

• Step 3: Calculate and remove the local trend for
each segment;

• Step 4: Gather the averaged local variances into the
qth-order fluctuation functions. Repeat this opera-
tion for each time scale s;

• Step 5: Determine the multifractal properties of the
time series by estimation slope coefficients h(q) of
the fluctuation functions;

• Step 6: Calculate the multifractal spectrum f (α),
its width �α and asymmetry Aα .

A comprehensive and accessible tutorial on MFDFA
can be found in Ref. [47].
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More in detail, as Step 1, the profile, or mean-
subtracted cumulative sum, U ( j) of a sample vector
ui having length N , is calculated as

U ( j) =
j∑

i=1

[ui − 〈u〉], (1)

where j = 1, 2 . . . N and 〈x〉denotes the averagevalue.
The presence of self-similar patterns, alias the fractal-
ity, of the time series is quantified by analyzing the sig-
nal statistical properties over diverse temporal scales.
To this end, as Step 2, the time series is subdivided twice
into 2Ns non-overlapping segments of length s, where
Ns = �N/s�, once starting from the beginning and
once starting from the end of the time series. This pro-
cedure ensures that none of the data points are missed
by the analysis. To attenuate possible nonstationarity,
as Step 3, a polynomial of order m is fitted to each
segment, identified with an index ν = 1, 2 . . . Ns and
obtained in this way, and then subtracted from the data.
To remove possible trends from the data adequately
while preserving the fluctuation structure, the polyno-
mial order has to be relatively low. Throughout this
paper, we assumem = 2, but this setting is not critical.

Subsequently, as Step 4, the detrended variances are
calculated over all the segments ν according to

F2(ν, s) = 1

s

s∑

k=1

U ((v − 1)s + k) − P(m)
ν (k))2, (2)

where P(m)
ν denotes the fitted polynomial of orderm in

the segment of index ν. To assess the multifractal prop-
erties of the signal, the fluctuation function is thereafter
calculated with

Fq(s) =
{ 1

2Ns

2Ns∑

ν=1

[F2(ν, s)]q/2
}1/q

, q ∈ � \ {0}.(3)

As Step 5, the usage of the q exponent in Eq. (3)
reflects the application of the q-filtering technique,
through which the scaling properties of the fluctua-
tions can be quantified as a function of their amplitude.
Specifically, small q values enhance the influence of
minor fluctuations, whereas large q values amplify the
major ones. For fractal time series, the power law-like
behavior of the fluctuation function holds over a large
span of scales, with

Fq(s) ∼ sh(q), (4)

where h(q) is the generalized Hurst exponent. This
relation can be depicted in a double logarithmic plot

representation as a linear one having slope coefficients
h(q), which can be estimated by the least squares
method. In particular, for monofractals, h(q) is inde-
pendent ofq and equals theHurst exponent H ,whereas,
for multifractals, h(q) is a decreasing function of q
(with h(2) = H ). The Hurst exponent quantifies
the linear interdependencies between time points: for
H > 0.5, the signal features positive autocorrelation
(persistence), whereas, for H < 0.5, negative depen-
dencies are preferentially observed (antipersistence).
For H = 0.5, there is no consistent linear relationship
between adjacent samples in the signal. To visualize
the spectrum of the scaling exponents and the differ-
ence between the monofractal and multifractal struc-
ture, h(q) is transformed into a multifractal spectrum
using

α = h(q) + qh
′
(q), f (α) = q[α − h(q)] + 1, (5)

where α is the Hölder exponent, and f (α) denotes the
fractal dimension of the data supported by a particular
α.

Finally, as Step 6, the strength of multifractality is
finally quantified in terms of the width of the multifrac-
tal spectrum,

�α = αmax − αmin; (6)

the broader the spectrum (larger �α), the more devel-
oped the multifractality. Another feature of the multi-
fractal spectrum is its asymmetry, which reflects other
aspects of the temporal organization of the data. For the
artificially generated deterministic binomial cascade
spectrum, f (α) is symmetric, indicating a balanced
organization of large and small fluctuations. However,
for real-world signals the spectrum is often asymmet-
ric, indicating a more developed correlation structure
for large fluctuations (left-sided asymmetry) or small
ones (right-sided asymmetry). The asymmetry param-
eter is defined as

Aα = (�αL − �αR)/(�αL + �αR), (7)

where�αL = α(max)−αmin and�αR = αmax−α(max),
with f

(
α(max)

) = max[ f (α)] [48]. According to this
definition, positive and negative values of Aα denote,
respectively, leftwards- and rightwards-stretched spec-
tra.

In keeping with previous work searching for mul-
tifractality in the time series generated by oscillator
circuits, we generated two kinds of surrogates to con-
firm the statistical reliability of the results [16]. The
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Fig. 1 Fluence diagram of Eq. (8). Blue: Inter-level couplings.
Red: Preferential variable for multifractality observation (see
text)

first set was obtained by randomly shuffling the origi-
nal time series, thus destroying the temporal organiza-
tion of the data. The second set was obtained by ran-
domly shuffling the phases of the Fourier transform of
the signal while preserving the amplitudes [49]. Con-
sequently, the linear autocorrelation structure, reflected
in the Fourier amplitudes, remains unchanged, but all
the nonlinear properties are destroyed. In both cases,
the multifractal spectrum is expected to collapse into a
point, located, respectively, either around α = 0.5 or
overlapping the spectrum of the original data.

3 Simulations

3.1 System definition

As depicted in Fig. 1, throughout the paper, we con-
sider the Rössler system as node dynamics and real-
ize a chain of four nodes coupled unidirectionally,
referred to as levels 1-4. This selection of node dynam-
ics was made not only in virtue of the fact that the
Rössler system is considered a canonical example of
low-dimensional chaos but also because it is consid-
erably less prone to undergoing orbit ejection when
driven by an arbitrary external signal compared to the
alternatives [50–54]. For example, the Lorenz system is
similarly three-dimensional andwell-studied; however,
it features double-scroll dynamics and the topology
of the underlying attractor is accordingly profoundly
different. While there is no strong theoretical motiva-
tion for choosing the Rössler system over the Lorenz
system for this work, in preliminary investigations the
Rössler system was found to be more robust to diver-
gence (orbit ejection) in the present configuration. No
less importantly, the electronic realizationof theLorenz
system is more complex, as it requires two instead of
one analog multiplier. At the same time, Chua’s cir-
cuit and the jerk circuit represent equally suitable low-

dimensional system alternatives; however, their nonlin-
earity is more complex from a mathematical point of
view, consisting, respectively, of an exponential term
and a piece-wise nonlinearity, instead of a product
[55]. High-dimensional chaos generators, such as those
basedon fractal resonators,would alsobeworth consid-
ering; however, in earlier works, they were not found to
generate multifractal signatures, and are considerably
more complex, structurally and electronically [56]. A
systematic investigation of other chaotic systems in the
context of the present arrangement is acknowledged to
be necessary and left for others to pursue.

The idea of cascading chaotic systems has already
been explored in other areas for the purpose of obtain-
ing high-dimensional signals [57]. A brief reflection
on the advantages and disadvantages of this approach
is motivated. The primary advantage is that cascading
is, in principle, agnostic to the specific dynamical sys-
tem instantiated at each level and, therefore, general-
izable. Furthermore, it inherently enjoys some concep-
tual affinity to the concept of binomial cascade, which
is a mathematical model of a multifractal [58,59]. The
obvious disadvantage is the lack of compactness, in that
observing multifractality in an individual dynamical
systemwould bemore compelling, andmore conducive
toward understanding the underlying mechanisms.

Here, the arrangement as a cascade was realized
through four choices. First, each node provides energy
to the next one through a unidirectional coupling, in
the direction from the slower to the faster dynamics,
as elaborated below. A reason for this choice is that,
since the Rössler system includes a low-pass frequency
filtering effect, a slower node could effectively dis-
turb a faster one, but external signals at frequencies
higher than the intrinsic dynamics are attenuated. This
may be observed and considering the transfer function
from an external input i(t) to variable y(t) assuming
z = 0, which reads TF(s) = kω2

i

/ (
s2 + ω2

i

)
and thus

has a complex conjugate pole at ωi , and considering
the RC integrators instantiated in the electronic cir-
cuit described in the next Section. Another reason is
conceptual, namely that the notion of a cascade fun-
damentally entails the coarser scales influencing the
finer ones, and not vice versa [58,59]. Finally, during
initial evaluation omitted for brevity, replacing unidi-
rectional with bidirectional coupling was confirmed to
have a negligible effect on the emergence of multifrac-
tality; therefore, the most parsimonious configuration
was retained.
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Second, the couplings are realized through an addi-
tional forcing-like term +ki(t), such that the energy
exchange rate is independent of the mismatch, as nor-
mally associated with the periodic forcing terms found
in non-autonomous systems [60]. From a physical per-
spective, this form of coupling is different from the dif-
fusivemechanisms realized, for example, using springs
and resistors, and akin to mechanisms such as optical
pumping and synapses, where the amount of photons
entering a cavity or neurotransmitter released toward a
dendrite is independent of its current state [21]. Con-
ceptually, this is also in line with the fact that in a cas-
cade, each level influences the ones below in a way
that is not determined by their state [58,59]. Prelimi-
nary analyses, omitted for brevity, indicated that mul-
tifractality emerged with coupling terms of the form
+ki(t) and not +k[i(t) − x(t)]; therefore, this choice
was retained.

Third, the coupling is realized on the x variable.
While the effect of the coupling variable(s) on syn-
chronizability can in certain cases be determined using
the master stability function, in this case, the coupling
mechanisms and strong frequencymismatch hinder the
application of this approach [61]. During initial experi-
ments with the present arrangement, coupling using the
variable x was found to be considerably more robust to
divergence compared to using the y variable; the former
variable is also the onemost frequently selected for cou-
pling in the chaos synchronization literature [62]. The
answer can be found considering the fluence graph of
the systemalongside its transfer functions. The variable
z on which the nonlinearity acts both draws from and
influences the x variable. The transfer function from
the input to the variable to which it is structurally cou-
pled has a zero at the origin, which has a differenti-
ating effect. Therefore, if the input is coupled to the
x variable, it is differentiated before being integrated,
whereas, if it is coupled to y, the converse is true, pro-
moting the emergence of large swings in x and, in turn,
divergence [52]. On the other hand, given the jerky
nature of its motion, the z variable itself was not con-
sidered for coupling.

Four, the time scales of the dynamics across the cou-
pled nodes, regulated by the parameters ωki , follow a
geometric sequence in the powers ki with base value
2, so that, for i > 1, the ratio ki+1/ki = 2 remains
constant for each pair of cascaded oscillators, whereby
the slower nodes drive the faster ones. In other words,
ω1 = 1, ω2 = ω, ω3 = ω2 and ω4 = ω4. In a binomial

cascade, a level divides each subinterval of the previ-
ous one into 2, whereas, in these oscillators, each level
i divides the characteristic period of the previous one
by a power of ω in geometric progression. The role of
the time scale ω, therefore, is to steeply determine the
separation between levels. For ω = 1, there is no sep-
aration, namely ω1 = ω2 = ω3 = ω4. On the other
hand, considering the typical setting ω = 2.5 reported
below, the frequency ratio between the fastest and the
slowest dynamics is ω4/ω0 = 39. Adding a fifth level
would have resulted inω8/ω0 = 1526; since, as shown
below, four levels were sufficient for observing multi-
fractality, and adding a fifth one would have caused a
prohibitive computational load in the simulations due
to its influence on the solver step size and practical
issues related to frequency span and recording length
in the experiments, the cascade was truncated at four
levels. The investigation of deeper cascades and differ-
ent scaling progressions is left for future work.

The resulting 12-dimensional system,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt

= −y1 − z1
dy1
dt

= x1 + ay1
dz1
dt

= b + (x1 − c)z1
dx2
dt

= ω(−y2 − z2 + kx1)

dy2
dt

= ω(x2 + ay2)

dz2
dt

= ω[b + (x2 − c)z2]
dx3
dt

= ω2(−y3 − z3 + kx2)

dy3
dt

= ω2(x3 + ay3),
dz3
dt

= ω2[b + (x3 − c)z3]
dx4
dt

= ω4(−y4 − z4 + kx3)

dy4
dt

= ω4(x4 + ay4)

dz4
dt

= ω4[b + (x4 − c)z4]

(8)

has three control parameterswhichwere tuned in the
below analyses: the bifurcation parameter a as defined
in the Rössler system, varied globally over the four
levels, the coupling coefficient k controlling the energy
exchange between the nodes, and the rateω, controlling
the degree of temporal separation across the levels. The
other parameters of the Rössler system were fixed to
b = 0.2 and c = 5.7, representing a well-studied con-
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figuration for this system [53,54]. For these settings,
the Rössler system undergoes a bifurcation cascade for
increasing a, and a greater coupling strength k is nec-
essary to attain a given level of synchronization as the
value of a is increased [21,50,51]. Unless otherwise
noted, we focus on the case a = 0.15, approximately
corresponding to the beginning of the bifurcation cas-
cade (i.e., period 4 limit cycle), where the dynamics are
maximally responsive to external influences. The tem-
poral separation determined by ω has a similar effect
on the coupling strength needed to attain synchroniza-
tion. For parsimony, the coupling strength k was set
homogeneously across xi → xi+1. The system was
integrated with adaptive step size using the explicit
Runge–Kutta Prince-Dormand order 4,5 formula until
tmax = 250 × 103 [63]. The initial conditions were
randomly set in x ∈ [6, 8], y = z = 0; as these val-
ues are in the vicinity of those assumed by the system
variables crossing the (y, z) plane, the initial transient
is kept relatively short [53,54]. Analogous results, not
shown for brevity, were obtained using other suitable
solvers.

3.2 Multifractal properties of the time series

To apply the multifractal detrended fluctuation anal-
ysis, the q moments as per Eq. (3) were considered
over the range [−4, 4] with a step of 0.1 and excluding
zero [64]. Throughout the paper, unless noted other-
wise, 12× 12 bidimensional sweeps over the coupling
strength k ∈ [0.09, 1] and frequency ω ∈ [1.82, 5]
were performed, andmultifractal spectrawere obtained
for all the time series derived from the x , y and z vari-
ables. An issue with the Rössler system and similar
chaos generators is that their trajectories possess strong
temporal autocorrelation, unlike the activity of large-
scale complex systems such as financial time series
[50–52]. To address this common situation in nonlinear
time series analysis, the local maxima were identified
using the first and second derivatives [65].

The qualitative features of the dynamics of the cas-
caded systems could be initially appreciated consider-
ing representative parameter settings, namely k = 0.7
and ω = 2.5. As shown in Fig. 2, by construction,
given the unidirectional couplings, the dynamics of the
first system in the cascade coincided with the known
periodic behavior of a Rössler system for these set-
tings. Already the second system displayed consider-

Fig. 2 Time series obtained integrating the variables x , y and z
in Eq. (8), given ω = 2.5 and k = 0.7

able irregularity, which became gradually more pro-
nounced down along the chain, accompanied by a
marked increase in the span of values visited by the
zi variables. As depicted in Fig. 3, a period 4 closed
orbit was well evident at the first level, whereas, fur-
ther down the chain, the corresponding area of the
phase space became gradually more densely filled. The
overall shape of the attractor appeared increasingly dis-
torted compared to the original one, becoming devoid
of the funnel-like profile and characterized by large
excursions particularly for the z variable. The corre-
sponding cumulative sums, visible in Fig. 4, were char-
acterized by a gradual increase in volatility and fluc-
tuation amplitude: the transition from the first to the
second level featured a qualitative change from regu-
lar to highly irregular profiles, while, further down the
chain, one could appreciate the establishment of irreg-
ular fluctuations over a broader range of scales, partic-
ularly visible through the appearance of large jumps.

Representative characteristics obtained for the z4
variable and two sets of system parameters, namely,
ω = 2.45 and k = 0.63, and ω = 2.14 and k = 0.09
are depicted in Fig. 5. The properties of the signals
showed a marked, easily appreciable difference. For
the first set, the analyzed signal revealed a clear mul-
tifractal organization, manifest through the family of
power-laws governing the behavior of the fluctuation
functions Fq(s), visible in the form of a broad distri-
bution of well-differentiated slopes of Fq(s) vs. s as
a function of q in Fig. 5a. By contrast, for the second
set, the signal showed at most monofractal features, as
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Fig. 3 The attractors of the four cascaded systems, obtained
integrating Eq. (8) with ω = 2.5 and k = 0.7

Fig. 4 Cumulative mean-subtracted sums Zi for the series of
local maxima of the zi time series, obtained integrating Eq. (8)
with ω = 2.5 and k = 0.7

depicted in Fig. 5b by the fact that the dependence of
Fq(s) on swas largely insensitive toq and, accordingly,
the fluctuation functions largely overlapped.

As regards the multifractal spectrum, the first case
resulted in a large width, �α = 0.64, notable espe-
cially when compared to surrogate data �α = 0.02,
and a characteristic shape of the distribution of f (α) vs.
α resembling an inverted parabola, clearly confirming
the multifractality. Moreover, the high symmetry of the
spectrum Aα = 0.03 indicated a near-perfect balance
between correlations of fluctuations of different ampli-
tudes, closely resembling the known properties of the
multifractal cascades [18–20]. By contrast, for the sec-
ond set, the signal showed atmostmonofractal features,
as depicted in Fig. 5b, with weak scaling of the fluctu-
ation functions and, consequently, narrow multifractal

Fig. 5 Sample fluctuation functions Fq (s) andmultifractal spec-
trum f (α) obtained for time series of variable z4 generated inte-
grating Eq. (8) with a ω = 2.45, k = 0.63 (corresponding
to multifractality), b ω = 2.14, k = 0.09 (corresponding to
monofractality)

Fig. 6 Wavelet transform of the z4 variable signal, obtained inte-
grating Eq. (8) for ω = 2.77 and a k = 0.09 (corresponding to
monofractality), b k = 0.73 (corresponding to multifractality)
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spectra (�α = 0.03), essentially collapsed down to a
point indistinguishable from the surrogates. For z1 and
z2, multifractality was absent and, for z3, it was weak,
therefore, in the interest of brevity, throughout the rest
of the paper, we consider directly z4. A detailed analy-
sis of the implications of the number of levels and type
of scaling sequence is left for future work.

A further indication of the validity of multifractality
was provided through the analysis of the local wavelet
transform coefficients, conducted through the methods
detailed in Ref. [16]. As depicted in Fig. 6a, for param-
eter settings associated with monofractality, the cumu-
lative sum time series featured limited volatility. This
was reflected in a relatively homogeneous distribution
of the wavelet coefficients, devoid of large-scale regu-
larity, that is, without hierarchical structure across the
scales. By contrast, as shown in Fig. 6b, in the presence
of multifractality, the cumulative sum series featured
a markedly stronger volatility. Of fundamental impor-
tance, the wavelet coefficients enjoyed a well-formed
tree-like organization, which was evident on the dis-
tribution of the same as a function of n and log(s),
and stemmed from the self-similar organization of the
fluctuations. If multifractality had been artifactual, as
previously reported, isolated singularities would have
reflected into separate lines on the space-scale half-
plane [16].

A more systematic view of the system’s multifrac-
tal organization was provided through the parameter
sweeps in Fig. 7a, visualizing the width �α. It could
be readily appreciated that the evolution of the local
maxima belonging to the x4 and y4 variables was char-
acterized by simple dynamics, with monofractal orga-
nization at most, and this observation was essentially
independent of the settings of the control parameters k
and ω. In stark contrast, for the z variable, the multi-
fractality was manifest as broad spectra delineating a
kind of “complexity path” on the heatmap. Along this
path, corresponding to intermediate combinations of
coupling strength and frequency scaling, the spectral
width reached �α ≈ 0.6 (reduced down to �α ≈ 0.1
for the surrogates), confirming an evident influence of
the control parameters on the multifractal organization
of the generated time series.

Closer inspection of the statistical properties of the
x4, y4 and z4 variables revealed in more detail the
manifold differences that developed among them at the
last level of the cascade. The corresponding probabil-
ity density functions, shown in Fig. 8 after normaliza-

Fig. 7 Parametric maps of�α as a function of k and ω obtained
integrating Eq. (8). a Comparison of the variables x4, y4 and
z4, given a = 0.15. b Effect of the bifurcation parameter a,
visualized for the variable z4

Fig. 8 Probability distribution functions (PDFs) for the time
series of the x4, y4 and z4 variables generated integrating Eq.
(8). Median filter smoothing applied

123
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Fig. 9 Auto-correlation functionsC(τ ) for the time series of the
x4, y4 and z4 variables generated integrating Eq. (8)

tion, demonstrated that, for parameter settings associ-
ated withmonofractal dynamics, the distributions of all
variables were compact and approximately symmetric.
By contrast, for the multifractal case, the distribution
of z4 appeared distinctly different than its counterparts
for the other variables. Namely, its probability density
function possessed a long exponential tail, illuminating
a significant prevalence of large fluctuations in the sig-
nal, whereas the distribution tails of the other variables
decayed considerably faster. Major differences were
also visible in the corresponding autocorrelation func-
tions, charted in Fig. 9. Namely, the autocorrelation
function of z4 decreased monotonically toward zero,
whereas for the other variables, it fluctuated around
zero. The effects are plausibly related to the known dif-
ferences in the qualitative aspects of the dynamics of
the variables of the Rössler system, which in turn stem
from the fact that the nonlinearity acts on the governing
equation of the z variable.

To assess the system’s sensitivity to the bifurca-
tion parameter a, we performed addition calculations
sweeping a ∈ [0.1, 0.2], assessing the width of f (α)

as illustrated in Fig. 7b. Since compelling multifractal-
ity was been identified for the z4 variable, we focused
on this variable. It can be seen that the multifractality
was strongly dependent on the setting of the bifurca-
tion parameter a, in that well-developed spectra ensued

for a = {0.125, 0.15}, corresponding to the beginning
of the bifurcation cascade (i.e., respectively, period 2
and period 4), whereas, for smaller and larger settings,
monofractal behavior or lack of fractality prevailed.
These observations were validated by surrogate data,
not shown for brevity.

3.3 Relation to hyperchaos and synchronization

To investigate a possible relationship between mul-
tifractality and hyperchaos, the Lyapunov exponents
were estimated via the “standardmethod”, which relies
on evaluating orthogonal deviation vectors computed
from the Jacobian matrix via Gram-Schmidt orthonor-
malization [66,67]. While solving the system in Eq.
(8) assuming a = 0.15, all terms of the corresponding
Jacobianmatrix were also integrated, allowing estimat-
ing the entire spectrum of Lyapunov exponents. For
this analysis, the integration was carried out over 107

steps via the explicit embedded Runge–Kutta Prince–
Dormand order 8,9 method using a fixed step size of
dt = 0.0025/ω4, considerably less than the typical
time scale of the system’s evolution resulting from a
given value of theω parameter. The orthonormalization
was set to takeplace every80 steps.As shown inFig. 10,
the distributions of theLyapunov exponentsλi and con-
sequently of the Kaplan–Yorke dimension DKY were
evidently uncorrelated to �α. The first three largest
Lyapunov exponents tended to be positive everywhere;
in other words, there was no correlation between the
positiveness of the exponents and the presence of well-
developed multifractality. The region where multifrac-
tality emerged was, instead, associated with intermedi-
ate values of these exponents and of the corresponding
dimension which were, instead, maximized for strong
couplings, thus refuting the hypothesized association.

In the presence of sufficiently intense coupling,
structurally identical chaotic systems undergo phase
synchronization at a unitary frequency ratio [21]. How-
ever, in Eq. (8), the coupled systems are by construction
strongly mismatched due to the frequency scaling fac-
tors. This offered the opportunity to examine the pos-
sible locking between them assuming either a unitary
ratio, or a ratio reflecting their characteristic frequen-
cies. As the coupling coefficient is gradually increased,
one expects that the frequencies of the coupled systems
may be brought closer, shifting away from the n:m ratio
directly determined by the ωk coefficients and toward

123



Multifractal signal generation by cascaded chaotic systems... 5717

Fig. 10 Parametric maps of the five largest Lyapunov exponents
λi and Kaplan–Yorke dimension DKY as a function of k and ω,
generated integrating Eq. (8)

the 1:1 ratio supported by energy exchange through
the couplings. To examine this possibility, as detailed
in Refs. [68,69] the analytic signals corresponding to
the xi variables were calculated according to

ψi (t) = xi (t) + j x̃i (t) = ai (t)e
jθi (t), (9)

where i = 1, 2 · · · 4, j = √−1, and ũ(t) denotes the
Hilbert transform of u(t), namely,

ũ(t) = 1

π
p.v.

[∫ ∞

−∞
u(τ )

t − τ
dτ

]
, (10)

with p.v. signifying the Cauchy principal value of the
integral, and the instantaneous phases were obtained
with

θi (t) = arg [ψi (t)] . (11)

The 1:1 and n:m phase synchronization values between
the nodes i and i+1 could then bewritten, respectively,
as

ri,i+1 = |〈e j (θi−θi+1)〉t |, (12)

and

r̃i,i+1 = |〈e j (θi /ωi−θi+1/ωi+1)〉t |, (13)

where, as previously indicated, ωi ∈ {0, 1, 2, 4} [70].
The corresponding parametric maps of phase synchro-
nization are shown in Fig. 11. It can be seen that,
for the 1 : 1 ratio, the level of entrainment gradu-
ally decreased with ω and increased with k, in line

Fig. 11 Parametric maps of the phase synchronization accord-
ing to 1:1 and n:m ratios (i.e., given by the couplings vs. the
predetermined ω values), generated integrating Eq. (8)

with the expectation that stronger coupling is neces-
sary to overcome a larger mismatch between the lev-
els. A large region of imperfect phase synchronization,
with r ≈ 0.3, was observed at intermediate settings
of these parameters. By contrast, the parametric maps
for the n : m ratio featured an almost inverse dis-
tribution. For low levels of the coupling strength k,
the entrainment was strong regardless of the spacing
between levels determined by ω (reflecting, therefore,
the parameter settings rather than an interaction). With
increasing k, the range of ω associated with high val-
ues of r̃ became progressively narrower, reflecting the
fact that, for low values of ω, the coupling was suf-
ficient to “pull away” the system from n : m ratio
toward 1 : 1 ratio, that is, toward actual synchroniza-
tion. In other words, the distributions of these parame-
ters indicated that, under sufficiently strong coupling,
the dynamics underwent a transition from being related
at the ratio determined by the ω coefficients, namely
as a consequence of the choice of characteristic fre-
quencies, toward being actually synchronized at unity
ratio phase locking, especially for small values of ω,
owing to the energy exchange through the couplings.
While not exactly overlapping, the region of most evi-
dent multifractality was located in the vicinity of this
transition, i.e., with r ≈ 0.3 and r̃ < 0.5. It, there-
fore, appears plausible that a kind of “competition”
between two states at different frequency ratios gave
rise to turbulence-like phenomena, opening the way to
multifractality [33,34]. Confirming and elucidating the
significance of this possible association is left for future
work.
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Fig. 12 Experimental realization of the cascaded systems. aCir-
cuit diagram, b View of the breadboard

4 Experiments

To confirm the generation of multifractal dynamics in
a physical scenario, the cascaded Rössler systems were
built in the form of analog electronic circuits based on
operational amplifiers and analog multipliers. These
physical circuits are not only inherently continuous,
but they are also affected by parametric heterogeneities
and non-ideal behaviors stemming, for instance, from
component tolerances as well as further poles, zeros
and offsets in the amplifiers. Therefore, they are suit-
able for realizing an apparatus confirming the physical
observability of multifractality. Here, the differential
equations were translated into circuits by associating
the system variables with voltages across three capac-
itors to ground, and realizing the algebraic operations

via resistive networks at the inputs of the operational
amplifiers [52,55]. Other possible schemes involve, for
instance, configuring the amplifiers themselves as inte-
grators [71]. The resulting circuit corresponding to each
of the four cascaded systems included in Eq. (8) is
shown in Fig. 12a.

In order to avoid saturation due to the limited avail-
able voltage swing, the system variables were rescaled
by a factor of R20/R18 = 5, namely, into vXi = xi/5 V,
vYi = yi/5 V, and vZi = zi/5 V, as applied across the
capacitorsC1i ,C2i andC3i , respectively. The equations
corresponding to each of the four cascaded systems in
Eq. (8) and the amplifiers U1, U3 and U5 are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dvXi
dt

=
− R6

R2
vYi − R6

R3
vZi − R6

R1
vIi +

(
R6

R4
− 1

)
vXi

C1i R7

dvYi
dt

=
R11

R10
vXi +

(
R11

R12
− 1

)
vYi

C2i R13
,

dvZi
dt

=
R20

R19
vBi + R20

R18
vWi + R20

R17
vZIi − vZi

C3i R21

(14)

where i = 1, 2 . . . 4 and, for i > 1, U2 provides
vIi = −RV

/
R8vXi−1, and, for i = 1, vIi = 0 V. Fur-

thermore, U4 generates vWi = (R14 + R15)
/

(10R14)

vXivZi , U6 provides vZIi = −R23
/
R22vZi , and the

control parameters are given by a = R11
/
R9 −1, with

R9 = R12, b = R20/R19vB
/
V, and c = R23

/
R22 + 1.

It is worth underlining that the values of R5 and R16 do
not appear explicitly in Eq. (14) as they are uniquely
determined, through circuit laws, by the other resistors.

Assuming a base resistance value of 100 kΩ, we
set R1 = R2 = R3 = R4 = R6 = 100 kΩ for
the x-variable adder. Consequently, one would have
R5 = 33 kΩ, and only in this case the schematic in
Fig. 12a corresponds to Eq. (14). However, this value
had to be empirically adjusted to 40 kΩ to ensure sus-
tained oscillation; while introducing a deviation from
the algebraic relations in an ideal case, such adjust-
ments are often necessary when realizing the Rössler
system as an analog circuit, especially in the presence
of external driving signals [52,72]. Similarly, for the
y-variable adder, we set R10 = R11 = 100 kΩ and
R9 = R12 = 87 kΩ to obtain a = 0.15. For the z-
variable adder, we set R17 = R19 = R20 = 100 kΩ,
R18 = 20 kΩ, and R16 = 16.5 kΩ, alongside R14 =
1 kΩ and R15 = 9 kΩ for multiplier scaling. Instead
of applying the canonical value of 40 mV, the voltage
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vB was empirically adjusted for each system to com-
pensate the amplifier offsets and align the effect of the
bifurcation parameter a to the theoretical expectation;
this yielded vBi = {133, 100, 90, 95} mV. To realize
diversified coupling strengths, we set R8 = 50 kΩ and
swept RV ∈ [0, 100] kΩ. Throughout the experiment,
a fixed setting ω = 2.5 was adopted. We set R7 =
R13 = R21 = 1 kΩ. The capacitor values were set
to Cu1 = 2.2 μF, Cu2 = 880 nF, Cu3 = 350 nF, and
Cu4 = 68 nF, for u = {1, 2, 3}, yielding corresponding
frequencies f1 = 72 Hz, f2 = 181 Hz, f3 = 455 Hz,
and f4 = 2341 Hz, thus implementing f2/ f1 = 2.5,
( f3/ f1)1/2 = 2.51, and ( f4/ f1)1/4 = 2.38.

As shown in Fig. 12b, the circuit was assembled on
a breadboard, using operational amplifiers type TL082
or equivalent, four-quadrant analog multipliers type
AD633 or equivalent and digital potentiometers type
AD7376A100 or equivalent. The latter were controlled
via an SPI connection, and the dual power supply volt-
age was provided as ±15 V. The waveforms were dig-
itized at 16-bit, 1.25 MSa/s (aggregate over 3 or 4
channels). The signal-to-noise ratio was on the order of
100, or better. The experimental time series data have
been made freely available from Ref. [73]. In brief,
the recorded dynamics had qualitative features closely
resembling the numerical simulations, albeit with some
differences stemming from non-ideality of the physi-
cal apparatus. In particular, the volatility increased less
markedly along the chain, plausibly due to the empir-
ical adjustments described above alongside the finite
supply voltage restricting the span of values accessible
by the zi variables. As the focus of this paper is on the
multifractal features, for brevity these differences are
not discussed in detail.

In Fig. 13, the sample fluctuation functions Fq(s)
and associated multifractal spectra f (α) obtained for
the signals generated with two values of coupling
parameter, namely k = 1.04 and k = 0.72, are
depicted. In the former case, shown in Fig. 13a, the fluc-
tuation functions revealed scaling dependent on the q-
moment, hallmarking multifractality. The multifractal
spectrum appeared wide, with �α = 0.45, the maxi-
mum being located at αmax = 0.48, alongside an asym-
metry Aα = 0.3 indicating a slightly more complex
organization of the larger fluctuations compared to the
smaller ones. On the contrary, the fractal characteris-
tics estimated for k = 0.72 confirmed the monofractal
character of the analyzed signal. The fluctuation func-
tions Fq(s) in Fig. 13b were, accordingly, essentially

Fig. 13 Sample fluctuation functions Fq (s) and multifractal
spectrum f (α) obtained for the signals from the experimental
realization of the cascaded system with ω = 2.5 and a k = 1.04
(corresponding to multifractality), and b k = 0.72 (correspond-
ing to monofractality)

Fig. 14 Wavelet transform of the z4 variable signal, recorded
from the experimental realization, for ω = 2.5 and k = 1.04
(corresponding to multifractality)

parallel, and the shape of the multifractal spectrumwas
close to a point, hallmarking monofractality. As previ-
ously observed for the numerical simulations, the spec-
tra obtained for the Fourier surrogates collapsed down
to a point in both cases. Furthermore, as depicted in
Fig. 14, in the presence of multifractality, the cumula-
tive sum series featured an appreciable level of volatil-
ity and the wavelet coefficients developed a tree-like
organization resembling the simulation results.

The results of a systematic analysis of the experi-
mental system concerning the coupling parameter k are
depicted in Fig. 15; it should be noted that, due to the
design of the physical apparatus, the bifurcation param-
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Fig. 15 Hurst exponent and width of the multifractal spectrum
estimated for the z4 variable recorded from the experimental
realizationof the cascadedRössler systemgivendifferent settings
of the bifurcation parameter k

eter was kept fixed at a = 0.15 for the experiments, and
the values of k had to be increased, plausibly due to the
synchronization-hindering effect of non-idealities and
mismatches. Formost of the signals, theHurst exponent
assumed a value close to 0.5, indicating weak or absent
linear dependencies. However, the width of the multi-
fractal spectrum changed systematically as a function
of the coupling strength k. The most developed multi-
fractality, with�α ≈ 0.45, was observed for k = 1.04,
and accompanied by a gradual decay into monofractal-
ity away from this setting in both directions. Using both
the Fourier and reshuffled surrogates, the spectra width
shrank drastically, reassuring about the validity of the
identified multifractality.

In order to more deeply investigate the multifrac-
tal character of the signals, the properties of the self-
similar cascade-likemodel delivering the analyzed data
can be analyzed. In particular, the multiplier distribu-
tion called intrinsic probability density can be recov-
ered and examined [74]. To assess the multiplier distri-
bution, the following procedurewas applied [75,76]. In
brief, the time series of the absolute valueswere divided
into mother boxes of uniform size, and the measure
within the box was estimated as a sum of the values.
Then, each of these boxes was divided into sub-boxes
(daughters) of size l, and correspondingmeasures were
calculated. The multiplier was estimated as the ratio of
the daughter to mother measure. By iterative repetition
of the procedure with constant l going from large to
small boxes, one can obtain the skeleton of the underly-
ing cascade with assumed l (l = 2 in our case) produc-

Fig. 16 Distribution of the cascade multipliers w reconstructed
for the z4 variable recorded from the experimental realization
of the cascaded Rössler systems given different settings of the
coupling strength k

Fig. 17 Visualization of the cascade structure reconstructed for
the time series of the z4 variable recorded from the experimental
realization of the cascaded Rössler systems, a) in the presence of
monofractality (k = 0.72), and b) in the presence of multifrac-
tality (k = 1.04). See Fig. 14 for the color scale

ing the time series. The distribution of the multipliers
is heterogeneous for multifractals, whereas monofrac-
tality is characterized by homogeneous multipliers.

Here, we retrieved the cascade structures and mul-
tipliers distribution for each analyzed signal accord-
ing to above-described procedure. The distributions of
the multipliers w for the time series depending on the
k parameter are depicted in Fig. 16. It is well evi-
dent that the broadest distributions and highest kur-
tosis were related to signals with well-developed mul-
tifractality, whereas monofractals were associated to
smaller values of kurtosis and more uniform multi-
plier distribution. The degree of cascade heterogeneity
for monofractal and multifractal structures can also be
conveniently visualized by means of Pythagoras’ tree,
which provides an immediate way to represent their
inter-relationships. As shown in Fig. 17, wherein the
values of the multipliers are coded by means of the
color scale, there was considerably stronger variation
of the self-similarity skeleton of the cascade for the
multifractal compared to the monofractal case.
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5 Discussion

5.1 Multifractal time series from deterministic chaos

According to the authors’ knowledge, this work pro-
vides the first evidence of multifractal time series being
generated by a fully deterministic dynamical system.
In the numerical simulations, the dynamics were deter-
ministic by construction, whereas, in the experiments,
the signal-to-noise ratio was sufficiently high as to ren-
der the influence of noise negligible. There appeared
to be several requirements, which we posit may be
generalizable beyond the specific case of the Rössler
system considered here. First, the presence of a mul-
titude of instances of the system, diversified so as to
cover a sufficient range of time scales. Second, the pres-
ence of a suitablemechanism allowing them to interact,
specifically, causing the slower instances to transfer a
disturbance to the faster ones. Third, operation close
to the transition to chaos at an intermediate coupling
strength in the vicinity of the transition between oscil-
lation maintaining the individual system frequencies
and unitary-ratio synchronization. Fourth, observation
of the time series from the fastest system, through the
variable where the nonlinearity acts, taking snapshots,
for example via the maxima, to obtain a map-like rep-
resentation.

The contribution of this paper is showing that mul-
tifractal time series can arise in such a scenario, which
is fundamentally different from both random multi-
plicative processes, that involve an extrinsic source of
turbulence, and abstract mathematical constructs such
as the binomial cascade and iterated maps, which are
more removed from the nonlinear dynamics of physi-
cal, biological and other systems. In a previous paper,
it was shown that artefactual multifractal-like signa-
tures could emerge in the dynamics of chaotic systems
such as the Saito circuit [16]. By contrast, here, an
extended set of analyses confirmed the true and fully
developed multifractality of the signals. Representa-
tive results revealed an almost perfect scaling with a
broad and symmetric multifractal spectrum similar to
the one identified for the binomial cascade. Moreover,
bidimensional parametric sweeps highlighted a sort of
multifractal path along an edge between two extreme
system behaviors, corresponding to different dynami-
cal states. On the other hand, there appeared to be no
immediate correspondence with the Lyapunov spec-
trum. Numerical simulations of the processes related

to the observed variable based on the cascade approach
and analysis of the recovered cascade parameters con-
firmed the statistical similarity to the well-established
multifractal cascades. At the same time, experimen-
tal realization confirmed that the approach is immedi-
ately viable to obtain a physical apparatus. The corre-
sponding electronic circuit is arguably more complex
than the one previously proposed based on the ran-
dom multiplicative approach but, crucially, its opera-
tion is not based on the presence of a noise source; in
other words, here, multifractality was a intrinsic prod-
uct of the dynamics as opposed to a consequence of a
non-trivial manipulation of externally supplied entropy
[39,40].

5.2 Time series vs. attractor geometry

The relationship between multifractality and turbulent
dynamics has been investigated extensively, and so
has the multifractal organization of attractor geome-
tries and iterated maps [33,77]. The gap that this work
intended to plug specifically pertains to the properties
and the generation of multifractal time series, com-
monly observed using the detrended fluctuation anal-
ysis and wavelet decomposition [15]. This is distinct
from early methods based on the reconstruction of
attractor geometry, which are ill-suited for analyzing
the time series generated by large-scale complex sys-
tems, such as financial, social and biological ones, due
to the issues in finding suitable embeddings because
of their inherently high-dimensional nature [12,78,79].
For example, the f (α) formalism was applied to study
the attractor geometries generated by a relaxation oscil-
lator based on an operational amplifier and driven
by an external signal, by diode-resonator systems as
well as by mercury convection apparatuses [41,80–
82]. Those observations, notably, predate by several
years the introduction of the MFDFA and the usage of
wavelets to investigate multifractality as is common-
place today, f (α)measured the dimension of the set of
singularities on the attractor, which is not equivalent to
the present time series analyses [15,83].

In fact, our resultsmotivate further research attempt-
ing to clarify the precise relationship between mul-
tifractality observed on time series, as prevalently
applied nowadays to study large-scale complex sys-
tems, and multifractality observed on attractor geome-
try, as extensively investigated in earlier works onmore
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elementary, small-scale physical apparatuses. Such an
effort, which goes well beyond the scope of the present
work, should include systematically reanalyzing the
results of those experiments using current methods
such asMFDFA.One aspect of similaritywith this liter-
ature is that, as previously observed for diode-resonator
circuits and other systems, also in the present case
multifractality tended to arise preferentially for control
parameter settings close to the onset of chaos, namely,
within the period-doubling cascade characterizing the
Rössler system [41,81,82]. Another previously estab-
lished observation is that of the transfer of multifractal-
ity frommore turbulent to more regular systems, which
recalls the cascade structure of the present arrangement
and the fact that multifractality was increasingly evi-
dent along the chain [33]. Future work should explore
the generality of our findings in the context of other
chaotic systems having different qualitative properties
such as double- and multi-scroll attractors, as well as
in more elementary electronic circuits including single
transistor-based chaotic oscillators [24,25]. It is worth
underlining further that, even though the multifractal
analysis was performed on the series of maxima, pri-
marily to attenuate the effect of autocorrelation, the
underlying dynamics are continuous, therefore, funda-
mentally different from iterated maps. Another aspect
of interest that remains unexplored is the potential rela-
tionship between the topology of the structural con-
nections and the emergence of multifractality in more
complex networks [84].

5.3 Future work

One motivation for the present work was related to
the ongoing efforts to create numerical systems and
physical apparatuses as simple as possible that can
capture key statistical properties of neural dynamics
across scales, to be used both in the construction of “toy
models” of biological brains and toward the advance-
ment of physical reservoir computing [29]. While
diverse mechanisms of pattern formation via synchro-
nization and the relationship between connectivity and
dynamics have been successfully captured, multifrac-
tality remained somewhat elusive. This represented an
important shortcoming, considering that multifractal-
ity is a fundamental statistical signature of physiologi-
cal function across signals as diverse as the electrocar-
diogram, electroencephalogram, brain hemodynamic

and autonomic recordings; accordingly, a variety of
means have been proposed to estimate the singularity
spectrum from such signals and investigate its alter-
ation in pathological states [5,6,85–89]. Taking the
apparatus introduced here as a model of multifractal-
ity as observed at the meso- and macroscopic scales in
physiological systems, future work will investigate the
network-level phenomena that can arise when multi-
ple systems are made to interact. It appears plausible
that this model will be both richer and more plausible
compared to the low-dimensional chaotic circuits, gen-
eratingmonofractal dynamics, that have been proposed
thus far.
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