Skip to main content
Log in

N-soliton solutions and nonlinear dynamics for two generalized Broer–Kaup systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under consideration in this paper are two nonlinear evolution models: One is the (1 + 1)-dimensional generalized Broer–Kaup (gBK) system derived by Zhang et al. (Appl Math Comput 219:5837–5848, 2013), and the other is the (2 + 1)-dimensional gBK system reported for the first time. Based on the bilinear forms given in this paper, novel N-soliton solutions of these two gBK systems are obtained by using Hirota’s bilinear method. As a comparison, the obtained two-soliton solutions of the (1 + 1)-dimensional gBK system are taken to demonstrate the difference from the known ones constructed by Darboux transformation. In order to understand the nonlinear dynamics localized in the gBK systems, local structures of the obtained one-, two-, three- and four-soliton solutions are shown. This paper reveals that each pair of the obtained N-soliton solutions of the gBK systems couple bell and kink soliton dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

The authors declare that all data supporting the findings of this study are available within the article.

References

  1. Gardner, C.S., Greene, C.S., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  MATH  Google Scholar 

  2. Ablowitz, M.J., Newell, A.C.: Nonlinear evolution equations of physical significance. Phys. Rev. Lett. 31, 125–127 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805–809 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, H.H., Liu, C.S.: Solitons in nonuniform media. Phys. Rev. Lett. 37, 693–697 (1976)

    Article  MathSciNet  Google Scholar 

  5. Hirota, R., Satsuma, J.: N-soliton solutions of the KdV equation with loss and nonuniformity terms. J. Phys. Soc. Jpn. 41, 2141–2142 (1976)

    Article  Google Scholar 

  6. Calogero, F., Degasperis, A.: Exact solution via the spectral transform of a generalization with linearly x-dependent coefficients of the modified Korteweg-de Vries equation. Lett. Nuovo Cim. 22, 270–273 (1978)

    Article  Google Scholar 

  7. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522–526 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  9. Matveev, V.B., Salle, M.A.: Darboux Transformation and Soliton. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  10. Wang, M.L.: Exact solutions for a compound KdV-Burgers equation. Phys. Lett. A 213, 279–287 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Serkin, V.N., Hasegawa, A.: Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85, 4502–4505 (2000)

    Article  Google Scholar 

  12. Fan, E.G.: Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and a coupled MKdV equation. Phys. Lett. A 282, 18–22 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan, E.G.: Travelling wave solutions in terms of special functions for nonlinear coupled evolution systems. Phys. Lett. A 300, 243–249 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  15. He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Soliton. Fract. 30, 700–708 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, S., Xia, T.C.: A generalized F-expansion method and new exact solutions of Konopelchenko–Dubrovsky equations. Appl. Math. Comput. 183, 1190–1200 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007)

    Article  Google Scholar 

  18. Zhang, S., Xia, T.C.: A generalized auxiliary equation method and its application to (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations. Phys. A Math. Theor. 40, 227–248 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wazwaz, A.M.: The Hirota’s bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Kadomtsev-Petviashvili equation. Appl. Math. Comput. 200, 160–166 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Zhang, S., Tong, J.L., Wang, W.: Exp-function method for a nonlinear ordinary differential equation and new exact solutions of the dispersive long wave equations. Comput. Math. Appl. 58, 2294–2299 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma, W.X., Lee, J.H.: A transformed rational function method and exact solutions to 3+1 dimensional Jimbo-Miwa equation. Chaos Soliton. Fract. 42, 1356–1363 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tian, S.F., Zhang, H.Q.: Riemann theta functions periodic wave solutions and rational characteristics for the (1+1)-dimensional and (2+1)-dimensional Ito equation. Chaos Soliton. Fract. 47, 27–41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yan, Z.Y.: Localized analytical solutions and parameters analysis in the nonlinear dispersive Gross-Pitaevskii mean-field GP(m, n) model with space-modulated nonlinearity and potential. Stud. Appl. Math. 132, 266–284 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, S., Liu, D.: Multisoliton solutions of a (2+1)-dimensional variable-coefficient Toda lattice equation via Hirota’s bilinear method. Can. J. Phys. 92, 184–190 (2014)

    Article  Google Scholar 

  25. Wang, D.S., Wei, X.Q.: Integrability and exact soluions of a two-component Korteweg-de Vries system. Appl. Math. Lett. 51, 60–67 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, S., Tian, C., Qian, W.Y.: Bilinearization and new multi-soliton solutions for the (4+1)-dimensional Fokas equation. Pramana-J. Phys. 86, 1259–1267 (2016)

    Article  Google Scholar 

  27. Zhang, S., Gao, X.D.: Exact N-soliton solutions and dynamics of a new AKNS equations with time-dependent coefficients. Nonlinear Dyn. 83, 1043–1052 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dai, C.Q., Chen, R.P., Wang, Y.Y., Fan, Y.: Dynamics of light bullets in inhomogeneous cubic-quintic-septimal nonlinear media with PT-symmetric potentials. Nonlinear Dyn. 87, 1675–1683 (2017)

    Article  Google Scholar 

  29. Zhang, S., Hong, S.Y.: Lax integrability and exact solutions of a variable-coefficient and nonisospectral AKNS hierarchy. Int. J. Nonlinear Sci. Numer. Simul. 19, 251–262 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dai, C.Q., Wang, Y.Y.: Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals. Nonlinear Dyn. 102, 1733–1741 (2020)

    Article  Google Scholar 

  31. Xu, B., Zhang, Y.F., Zhang, S.: Line soliton interactions for shallow ocean-waves and novel solutions with peakon, ring, conical, columnar and lump structures based on fractional KP equation. Adv. Math. Phys. 2021, 6664039 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, B.Q., Ma, Y.L.: The non-traveling wave solutions and novel fractal soliton for the (2+1)-dimensional Broer-Kaup equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 16, 144–149 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, S., Liu, D.D.: The third kind of Darboux transformation and multisoliton solutions for generalized Broer-Kaup equations. Turk. J. Phys. 39, 165–177 (2015)

    Article  Google Scholar 

  34. Zhang, S., Zhang, H.Q.: An exp-function method for new N-soliton solutions with arbitrary functions of a (2+1)-dimensional vcBK system. Comput. Math. Appl. 61, 1923–1930 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, Y.F., Han, Z., Tam, H.W.: An integrable hierachy and Darboux transformations, bilinear Bäcklund transformations of a reduced equation. Appl. Math. Comput. 219, 5837–5848 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Zhou, Z.J., Li, Z.B.: A Darboux transformation and new exact solutions for Broer-Kaup system. Acta Phys. Sin. 52, 262–266 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, Y.H.: Construction of rational solutions for the (2+1)-dimensional Broer-Kaup system. Mod. Phys. Lett. B 33, 1950377 (2019)

    Article  MathSciNet  Google Scholar 

  38. Wazwaz, A.M.: Multiple soliton solutions for three systems of Broer-Kaup- Kupershmidt equations describing nonlinear and dispersive long gravity waves. Mod. Phys. Lett. B 26, 1250126 (2012)

    Article  MathSciNet  Google Scholar 

  39. Rizvia, S.T.R., Younis, M., Baleanuc, D., Iqbal, H.: Lump and rogue wave solutions for the Broer-Kaup-Kupershmidt system. Chin. J. Phys. 68, 19–27 (2020)

    Article  MathSciNet  Google Scholar 

  40. Wang, Y.Y., Dai, C.Q.: Elastic interactions between multi-valued foldons and anti-foldons for the (2+1)-dimensional variable coefficient Broer-Kaup system in water waves. Nonlinear Dyn. 74, 429–438 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lin, G.D., Gao, Y.T., Gai, X.L., Meng, D.X.: Extended double Wronskian solutions to the Whitham-Broer-Kaup equations in shallow water. Nonlinear Dyn. 64, 197–206 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xu, T., Zhang, Y.: Fully resonant soliton interactions in the Whitham-Broer-Kaup system based on the double Wronskian solutions. Nonlinear Dyn. 73, 485–498 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Meng, D.X., Gao, Y.T., Wang, L., Xu, P.B.: Elastic and inelastic interactions of solitons for a variable-coefficient generalized dispersive water-wave system. Nonlinear Dyn. 69, 391–398 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lan, Z.Z., Guo, B.L.: Nonlinear waves behaviors for a coupled generalized nonlinear Schrödinger-Boussinesq system in a homogeneous magnetized plasma. Nonlinear Dyn. 100, 3771–3784 (2020)

    Article  Google Scholar 

  45. Zhao, X.H.: Dark soliton solutions for a coupled nonlinear Schrödinger system. Appl. Math. Lett. 121, 107383 (2021)

    Article  MATH  Google Scholar 

  46. Wazwaz, A.M., El-Tantawy, S.A.: Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota’s method. Nonlinear Dyn. 88, 3017–3021 (2017)

    Article  MathSciNet  Google Scholar 

  47. Wazwaz, A.M., Kaur, L.: Complex simplified Hirota’s forms and Lie symmetry analysis for multiple real and complex soliton solutions of the modified KdV-sine-Gordon equation. Nonlinear Dyn. 95, 2209–2215 (2019)

    Article  MATH  Google Scholar 

  48. Wazwaz, A.M.: Two-mode fifth-order KdV equations: necessary conditions for multiple-soliton solutions to exist. Nonlinear Dyn. 87, 1685–1691 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their sincerest thanks to the anonymous referees for the helpful comments. This work was supported by Liaoning BaiQianWan Talents Program of China (2019 year), the Natural Science Foundation of Education Department of Liaoning Province of China (LJ2020002) and the National Science Foundation of China (11547005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zheng, X. N-soliton solutions and nonlinear dynamics for two generalized Broer–Kaup systems. Nonlinear Dyn 107, 1179–1193 (2022). https://doi.org/10.1007/s11071-021-07030-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07030-w

Keywords

Navigation