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Abstract
Spatial information on flood risk and flood-related crop losses is important in flood mitiga-
tion and risk management in agricultural watersheds. In this study, loss of water bound in 
agricultural products following damage by flooding was calculated using water footprint 
and agricultural statistics, using the Talar watershed, northern Iran, as a case. The main 
conditioning factors on flood risk (flow accumulation, slope, land use, rainfall intensity, 
geology, and elevation) were rated and combined in GIS, and a flood risk map classified 
into five risk classes (very low to very high) was created. Using average crop yield per hec-
tare, the amount of rice and wheat products under flood risk was calculated for the water-
shed. Finally, the spatial relationships between agricultural land uses (rice and wheat) and 
flood risk areas were evaluated using geographically weighted regression (GWR) in terms 
of local R2 at sub-watershed scale. The results showed that elevation was the most critical 
factor for flood risk. GWR results indicated that local R2 between rice farms and flood risk 
decreased gradually from north to south in the watershed, while no pattern was detected 
for wheat farms. Potential production of rice and wheat in very high flood risk zones was 
estimated to be 7972 and 18,860 tons, on an area of 822 ha and 7218 ha, respectively. Loss 
of these crops to flooding meant that approximately 34.04 and 12.10 million  m3 water used 
for production of wheat and rice, respectively, were lost. These findings can help managers, 
policymakers, and watershed stakeholders achieve better crop management and flood dam-
age reduction.
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1 Introduction

Flooding is one of the most devastating and costly natural hazards. It has severe socio-
economic and environmental consequences, including destroying farmland, reducing crop 
yield, and causing regional freshwater shortages (Mind’je et al. 2019). Flooding can only 
occur not only in lowland areas but also in mountainous environments. Analysis of flood-
ing and its relationships with explanatory variables can help water managers identify the 
most effective variable in flooding (Hosseini et al. 2020). Therefore, identification of flood-
prone areas and of the most influential conditioning factors is an essential tool in mitigat-
ing the effects of flooding (Khosravi et al. 2016). Various models have been developed to 
estimate potential flood risk areas and simulate flow (Darabi et  al. 2019; Rahmati et  al. 
2019). However, some of these models cannot simulate and evaluate flood risk under dif-
ferent scenarios, while in some heterogeneity of input data, e.g., on land use and geology, 
makes determining the threshold flow more difficult (Zhao et al. 2018). Other models have 
limitations especially in ungauged and extensive areas. As a solution, multi-criteria analy-
sis (MCA) is a useful first step in mapping and evaluating flood risk areas. In MCA, it is 
possible to select, evaluate, and combine relevant factors to map the final flood risk (Santos 
et  al. 2019). Understanding the particular interrelationships between water and food can 
enhance the resilience of water-food systems, since food security is highly associated with 
water and both are affected by a changing climate. Therefore, quantifying the effects of 
floods on crop production, and consequently on food security, are important (Pacetti et al. 
2017). These detrimental effects can influence food availability, identified by the Food and 
Agriculture Organization of the United Nations (FAO) as a pillar of food security  (FAO 
2015). Therefore, it is important to manage irrigated and rainfed agricultural systems in 
light of the relationship between agricultural land uses and flood-prone areas, in order to 
maintain the ecosystem service of food production. In an MCA approach to identify the 
effect of flooding on irrigated and rainfed agricultural crops in the present study, the "water 
footprint" (WF) concept introduced by Hoekstra (2003) was used. The WF of an agricul-
tural crop is defined as the total volume of water (rainfall or irrigation) used to produce the 
product (Hoekstra 2009). The damage caused by floods to crop production can thus be con-
verted to WF as a complementary indicator. Some previous case studies have evaluated the 
effects of flood events on food availability, e.g., Pacetti et al. (2017) calculated the damage 
of flooding to agricultural areas in Bangladesh and Pakistan in terms of lost calories. How-
ever, previous studies have estimated flood damage using conventional statistical analyses, 
which produce average parameter estimates, and thus spatial variations in flood damage to 
crops and their associated WF have been ignored. A more sophisticated analytical tech-
nique was needed to overcome this limitation. In response, geographical weighted regres-
sion (GWR), a statistical model, was developed to investigate spatial correlation and het-
erogeneity (Xia et al. 2018). GWR examines spatially non-stationary parameters, so model 
performance is improved by reducing spatial autocorrelations. In recent years, GWR has 
been widely employed to good effect in different fields, to analyze, e.g., groundwater quan-
tity (Taghipour Javi et al. 2014; Almeida et al. 2018), rainfall and environmental indices 
(Georganos et al. 2017; Ahmadi et al. 2018b; Salimi et al. 2018), land surface temperature 
(Kalota 2017; Zhao et al. 2018), urban and regional differences (Dadashpoor et al. 2019; 
Duncan et al. 2019) and ecology and human geography (Tu 2011; Li et al. 2018).

The staple foods in Iran are rice-based and wheat-based foods (Nejad et al. 2011; Kari-
zaki 2016) and the Talar watershed in Mazandaran province, northern Iran, is one of the 
most important regions for domestic cultivation of these crops. Therefore, these two major 
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crops and the Talar watershed were selected as a case for calculating the risk of potential 
crop-water losses due to flooding using the WF approach. Floods cause severe damage to 
agricultural land and residential areas in Mazandaran province (Darabi et al. 2020), with 
70% of available credit going to repair the damage caused by flooding (Sadeghi-Pouya 
et al. 2017). In this MCA study, the crop damage and associated water loss caused by flood-
ing were calculated by integrating satellite images, field data, and agricultural for northern 
Iran. Specific objectives of the study were to: (i) create a flood risk map using condition-
ing factors; (ii) determine the water losses associated with flood-related losses of wheat 
and rice, through the WF approach; and (iii) explore the spatial relationships between area 
of flood risk classes and areas of main crops (e.g., wheat and rice) in the study watershed 
using the GWR technique.

2  Materials and methods

2.1  Study area

The Talar watershed in northern Iran (36° 36′–36° 46′ N; 55° 23′–54° 31′ E) extends along 
the coast of the Caspian Sea, to which the Talar river drains in a south-north direction 
(Fig. 1). This mountainous watershed (mean altitude ~ 1800 masl) covers 2055 km2 and has 
a Mediterranean rainfall regime, with mean annual precipitation of 552.7 mm, the major-
ity falling in spring. Rice and wheat, which together account for about 23% of agricul-
tural land, are the main crops (Maghsood et  al. 2019). The terrain is mountainous, with 
steep slopes covering more than 60% of the area. The main land uses are rangeland, forest, 

Fig. 1  Maps showing the location of the Talar watershed in northern Iran
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rainfed agriculture, irrigated agriculture, and residential area (Shooshtari and Gholamali-
fard 2015). The watersheds in northern Iran have experienced drastic changes due to min-
ing activities, road construction, and residential development. Large areas of forest and 
rangelands have been converted to cropland, orchards, and residential areas in the past four 
decades (Kavian et al. 2018; Pirnia et al. 2019). These changes have affected the hydrologi-
cal response, ultimately altering runoff volume and flow regime in watersheds (Haghighi 
et al. 2020). In the Talar watershed, recent decades due to intensive deforestation and land 
use change, the potential of runoff generation and peak flow have been increased 12.38% 
and 41.8%, respectively (Khaleghi 2017). In Table 1, characteristics of rainfall station are 
presented. 

2.2  Data sets

For the purposes of this study, Talar watershed border and sub-watersheds of the Talar 
River were delineated using digital elevation model (DEM) with resolution 30 m and Arc-
SWAT extension 2012.10_4.21v. A land use map of the Talar watershed was extracted 
using Landsat 8/Operational Land Imager (OLI) image (21.06.2016) and supervised classi-
fication algorithm in the ENVI 5.3 (Torabi Haghighi et al. 2018). Five land use types were 
identified: forest, rangeland, irrigated agriculture, rainfed agriculture, and residential area.

The spatial variability in flood risk was determined based on six factors (Fig. 2): slope 
(S), elevation (E), flow accumulation (F), geology (G), land use (L), and rainfall intensity 
(R), see Eq. (1), which have direct important impacts on flood risk (Kourgialas and Karat-
zas 2011, 2016; Kazakis et al. 2015). These factors were prepared as six thematic maps, 
which were then combined into one final flood risk map using linear algebraic function and 
their weights in the GIS environment. Factors F and G are qualitative, whereas factors S, 
E, and R are considered quantitative. The factors were classified into five flood risk zones 
(FRZ): very low, low, moderate, high, and very high. Jenk’s natural breaks method was 
applied to classify quantitative (numerical) factors, whereas qualitative factors were clas-
sified based on their effect in flood recharging. For example for factor L (land use), forest 
was classified as very low flood risk, but residential area as very high flood risk. For each 
classified factor’s flood risk rating, a numerical value was allocated (very low (1), low (2), 
moderate (5), high (8), and very high (10)) (Kourgialas and Karatzas 2016).

Since all factors do not have the same effect on flooding condition, two types of effects 
were considered: minor effect, where a change in one factor has an indirect effect on another 
factor (allocated 0.5 points), and major effect, where a change in one factor has a direct effect 

Table 1  Rainfall station characteristics

Station name X Y Elevation Fornie Erosivity

Alasht 678,538 3,996,861 396 29.45 382.24
Darzikola 698,086 3,995,431 546 22.59 234.24
Golafshan 673,335 4,031,900 2268 94.64 3792.61
Paland 671,409 3,987,865 464 21.27 209.54
Sangdeh 701,131 3,993,651 764 26.57 316.05
Shirgha 669,274 4,019,097 1077 34.23 504.72
Soleymantangeh 700,663 4,013,990 593 21.58 215.35
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on another factor (allocated 1 point). The final rating of each factor was calculated by add-
ing together the points allocated to minor and major effects (Table 2). All factors, FRZs, and 
points scores used were based on previous studies (Kourgialas and Karatzas 2011; Kazakis 
et al. 2015). Evaluation of the literature indicated that the six selected factors provide neces-
sary and useful information for improving flood risk modeling (Zerger 2002).

The final score for each factor (Table 2) was obtained by multiplying proposed weight of 
effect (RL) by factor rate (FR). Finally, a flood risk map of the Talar watershed was prepared 
using linear summation method of factors (FREGLS) in GIS as (Kourgialas and Karatzas 
2011):

(1)FREGLS =

∑

xiwi = FwF + SwS + LwL + RwR + GwG + EwE

Fig. 2  Maps indicating the intensity of different conditioning factors for flood risk in the Talar watershed

Table 2  Minor and major effects of flood risk conditioning factors and their interactions on flood recharge

Factor Minor effect Major effect Score

Rainfall intensity (R) (L) (F) 1.5 points (1 minor + 1 major)
Slope (S) (L), (F) 2.0 points (0 minor + 2 major)
Flow accumulation (F) (S) (L) 1.5 points (1 minor + 1 major)
Elevation (E) (S) (G), (F), (R), (L) 4.5 points (1 minor + 4 major)
Land use (L) (S), (G) (R), (F) 3.0 points (2 minor + 2 major)
Geology (G) (F), (L), (S) 3.0 points (0 minor + 3 major)
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where xi is the thematic map of each factor i, wi is the weight of each factor i and F, S, L, 
R, G, E are flow accumulation factor, slope factor, land use factor, rainfall intensity factor, 
geology factor, and elevation factor, respectively.

Using DEM with spatial resolution 30 m, the elevation (E) was classified, and a slope 
(S) map was produced using the 3D Analyst tool in GIS. Land use and land cover affect the 
volume of runoff, with a direct impact on both the time for which soil receives rainfall and 
the amount (Kazakis et al. 2015).

The geology (G) and land formation-based classification of the study area were pro-
duced based on the Iranian geological map (Geological Survey of Iran, 1997). Permeable 
geological formations with high porosity and fractures reduce runoff coefficient and run-
off volume, whereas fine-grained and impermeable formations increase runoff volume and 
flood risk (Table 2).

Flow (F) accumulation was generated using DEM and the spatial analyst tool in the GIS 
environment. In this map, pixels with higher values have more hydrological connections 
with other pixels, and thus make a higher contribution on flood risk.

In order to calculate rainfall intensity factor (R), precipitation data from seven rainfall 
stations in the Talar watershed were used. The map of rainfall intensity was created using 
Modified Fournier Index (MFI) (Morgan 2005), calculated as:

where p is the mean monthly rainfall for month i (1 ≤ I ≤ 12) and P is the mean annual 
rainfall. MFI shows the average monthly rainfall for stations, calculated using interpolated 
spline method. This method is a useful way to indicate spatial variation in, e.g., rainfall, 
especially in data-limited situations (Lloyd 2005). MFI can be used for the Mediterranean 
rainfall regime, in which flashy floods and overflow of stream banks are common (Bel-
monte and Beltrán 2001; Kourgialas and Karatzas 2016). All thematic maps were prepared 
with spatial resolution of 30 m × 30 m and summed with the Raster calculator tool in the 
GIS environment considering Eq. 1.

2.3  Flood damage to agricultural products and associated water loss

The effect of flood damage on agricultural products in terms of crop and water (irrigation 
water) loss was estimated using spatial data such as land use maps and agricultural statis-
tics (Brémond and Grelot 2013; Giang et al. 2020). Determining the damage to agriculture 
due to flooding involved estimating loss of agricultural products, taking into account the 
topography, land use, and characteristics of cultivated crops in the study area (Pacetti et al. 
2017). The effect of flooding on crop production includes loss of the crop itself, reduced 
food security, loss of energy, and loss of water used for production of the crop. Thus, the 
percentage of different land uses in each sub-watershed in the Talar watershed was cal-
culated. According to the annual agricultural organization report (Ahmadi et  al. 2018a), 
irrigated agriculture in this region is mostly rice, grown near the main river, while rainfed 
agricultural lands is mainly devoted to wheat production. Thus, rice and wheat land were 
assumed for irrigated and rainfed agriculture in the study area, respectively. In order to esti-
mate agricultural production, total amount of rice and wheat crops was calculated based on 
potential for agricultural production per unit area in sub-watersheds (Ahmadi et al. 2018a, 
b). For estimating agricultural product loss, all rice and wheat farms located in high and 

(2)MFI =

12
∑

i=1

p2
i

P
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very high flood risk areas were considered potential agriculture crop losses (Kourgialas 
and Karatzas 2016).

The amount of water loss associated with crop losses was estimated using WF (Eq. 3). 
This indicator represents direct or indirect use of water to produce goods or services and 
includes three types of WF: blue (using surface or groundwater), green (using rainwater), 
and grey (the amount of water to assimilate pollutants) (Hoekstra 2017). Flood damage to 
agricultural land represents loss of water, especially blue water used for, e.g., irrigation, 
which directly impacts future agricultural production. Therefore, in the present study, the 
amount of water footprint loss (WFL) was calculated based on water requirement of the 
crop (irrigation or rainfall) as:

where PAP is the potential of agriculture production, A is the area (ha) under rice and 
wheat production, P is the potential production of each crop (ton/ha), Ai is the wheat or rice 
area (ha) on land in high and very high flood risk classes, and  WFi is the water footprint of 
wheat or rice  (m3 kg−1), as suggested by Mekonnen and Hoekstra, (2011).

2.4  Geographically weighted regression

Geographically weighted regression (GWR) was used to assess relationships between agri-
cultural land uses (rice and wheat) and flood risk areas at sub-watershed scale. This model 
can explore the spatial relationship between dependent and independent variables consider-
ing no-stationarity properties of targeted phenomena (Stewart Fotheringham et al. 1996). 
The GWR equation is (Fotheringham et al. 1998):

where ( uj, vj ) is the coordinates for location j, βi ( uj, vj ) is the local regression coefficient 
for independent variables χi at location j, �0(uj, vj ) is the intercept, εj is an error term, and 
yj is the value of the dependent variable for the j th sample. Local R2 in the GWR model 
is an indicator of how dependent and independent variables are fitted together. The higher 
the value of local R2, the lower the residual square sum, indicating a higher correlation (Wu 
et al. 2017).

3  Results and discussion

Table 3 shows the conditioning factors and sub-classification of flood risk zones and their 
proposed rating. The effects of the different conditioning factors were as follows:

Flow accumulation A key factor in flood risk, as high value of this layer represents con-
centrated flow, and consequently higher flood risk.

Slope An important spatial factor for identification of flood risk through surface run-
off velocity and vertical percolation (Rahmati et al. 2016). The highest slope is assigned 
the highest rating (Table 3). In this study, the slope was extracted in percent based on the 
digital elevation model. The slope factor influence on the water velocity and plays a major 

(3)PAP = A × P

(4)WFL = WFi × Ai

(5)yj = �0
(

uj, vj
)

+

p
∑

i=1

�j
(

uj, vj
)

xij + �j



2014 Natural Hazards (2021) 105:2007–2025

1 3

Ta
bl

e 
3 

 In
flu

en
tia

l c
on

di
tio

ni
ng

 fa
ct

or
s i

n 
flo

od
 ri

sk
 c

la
ss

ifi
ca

tio
n 

in
 th

e 
Ta

la
r w

at
er

sh
ed

 a
nd

 th
ei

r w
ei

gh
ts

Fa
ct

or
s

D
om

ai
n 

of
 e

ffe
ct

Fl
oo

d 
ris

k 
zo

ne
Pr

op
os

ed
 

w
ei

gh
t o

f e
ffe

ct
 

(R
L)

R
at

e 
(F

R
)

W
ei

gh
te

d 
ra

tin
g 

(F
R

*R
L)

To
ta

l w
ei

gh
t

Pe
rc

en
ta

ge
 (%

)

Fl
ow

 a
cc

um
ul

at
io

n
0–

12
0,

47
1

Ve
ry

 lo
w

1
1.

5
1.

5
39

9.
68

12
0,

47
1–

42
1,

20
1

Lo
w

2
1.

5
3

42
1,

20
1–

80
1,

39
2

M
od

er
at

e
5

1.
5

7.
5

80
1,

39
2–

1,
34

6,
14

8
H

ig
h

8
1.

5
12

1,
34

6,
14

8–
2,

61
4,

98
2

Ve
ry

 h
ig

h
10

1.
5

15
Sl

op
e 

(%
)

0–
12

.0
2

Ve
ry

 lo
w

1
2

2
52

12
.9

0
12

.0
2–

19
.9

7
Lo

w
2

2
4

19
.9

7–
28

M
od

er
at

e
5

2
10

28
–3

7.
57

H
ig

h
8

2
16

37
.5

7–
73

.2
1

Ve
ry

 h
ig

h
10

2
20

La
nd

 u
se

Fo
re

st
Ve

ry
 lo

w
1

3
3

78
19

.3
5

R
an

ge
la

nd
Lo

w
2

3
6

R
ai

nf
ed

 a
gr

ic
ul

tu
re

M
od

er
at

e
5

3
15

Ir
rig

at
ed

 a
gr

ic
ul

tu
re

H
ig

h
8

3
24

Re
si

de
nt

ia
l a

re
a

Ve
ry

 h
ig

h
10

3
30

R
ai

nf
al

l i
nt

en
si

ty
 (M

FI
)

21
.2

7–
25

.6
1

Ve
ry

 lo
w

1
1.

5
1.

5
39

9.
68

25
.6

1–
28

.4
7

Lo
w

   
2

1.
5

3
28

.4
7–

32
.9

1
M

od
er

at
e

5
1.

5
7.

5
32

.9
1–

38
.8

3
H

ig
h

8
1.

5
12

38
.8

3–
48

.3
6

Ve
ry

 h
ig

h
10

1.
5

15
G

eo
lo

gy
Sa

nd
sto

ne
, L

im
es

to
ne

Ve
ry

 lo
w

1
3

3
78

19
.3

5
C

on
gl

om
er

at
e,

 S
ha

le
 a

nd
 m

ar
l, 

Pi
ed

m
on

t f
an

 a
nd

 
va

lle
y 

te
rr

ac
e,

 G
yp

si
fe

ro
us

 m
ar

l, 
Sw

am
p 

an
d 

m
ar

sh
, S

ha
le

, t
uff

, S
an

ds
to

ne
, S

an
dy

 li
m

es
to

ne
, 

B
as

al
tic

 v
ol

ca
ni

c

Lo
w

2
3

6
M

od
er

at
e

5
3

15
H

ig
h

8
3

24
Ve

ry
 h

ig
h

10
3

30



2015Natural Hazards (2021) 105:2007–2025 

1 3

Ta
bl

e 
3 

 (c
on

tin
ue

d)

Fa
ct

or
s

D
om

ai
n 

of
 e

ffe
ct

Fl
oo

d 
ris

k 
zo

ne
Pr

op
os

ed
 

w
ei

gh
t o

f e
ffe

ct
 

(R
L)

R
at

e 
(F

R
)

W
ei

gh
te

d 
ra

tin
g 

(F
R

*R
L)

To
ta

l w
ei

gh
t

Pe
rc

en
ta

ge
 (%

)

El
ev

at
io

n 
(m

)
21

3–
10

36
Ve

ry
 lo

w
1

4.
5

4.
5

11
7

29
.0

3

10
36

–1
61

9
Lo

w
2

4.
5

9

16
19

–2
14

1
M

od
er

at
e

5
4.

5
22

.5

21
41

–2
64

6
H

ig
h

8
4.

5
36

26
46

–4
00

3
Ve

ry
 h

ig
h

10
4.

5
45

Su
m

40
3

10
0.

00



2016 Natural Hazards (2021) 105:2007–2025

1 3

role in flooding in highlands and reflect a constant threat in lowlands due to gentle slopes. 
The slope map was created in ArcGIS 10.5 to quantify topographic controls on flood 
conditions.

Land use Influences flooding and inundation level through altering infiltration, changing 
the relationship between groundwater and surface water, and debris flow (Kazakis et  al. 
2015; Areu-Rangel et al. 2019). Runoff and consequently flood conditions vary consider-
ably under different LULC patterns. In the Talar watershed area, the main land uses were 
found to be rangeland and forest (Fig. 1).

Rainfall intensity Expressed using MFI, it ranged from 21.27 to 48.36, with higher val-
ues in the north of the watershed and lower values in central and southern areas (Fig. 2).

Geology Can amplify and extenuate the frequency and magnitude of floods (Kazakis 
et  al. 2015). Some formations, such as Karst, significantly affect flood generation, so a 
lower rating is associated with higher infiltration capacity and fewer flood events.

Elevation Plays a vital role in controlling surface flow movement and flood depth (Rah-
mati et al. 2019). In the Talar watershed, elevation varies between 213 to 4003 m asl, with 
the highest values in the south and the lowest in the north. Elevation was identified as the 
most important factor in flood risk in the study area (Table 3), as in other study areas (Teh-
rany et al. 2015; Ozkan and Tarhan 2016; Wang et al. 2017). The weighting for elevation 
was higher than for rainfall intensity and inferred intensification of rainfall with increasing 
elevation, confirming findings in previous studies (Kourgialas and Karatzas 2011).

In order to identify areas at risk of flooding in the Talar watershed, conditioning maps 
(Fig. 2) were combined in a single map (Fig. 3). This revealed areas with very high flood 
risk (VHFR) and high flood risk (HFR) in northern sub-watersheds. Overall, flood risk 
appeared to be more intense in the north, and around the river network in the south of the 
watershed. This part of the watershed mostly consists of forest, agriculture, and residential 
areas. Green areas and forests are reported to reduce flood risk, because of their infiltration 

Fig. 3  Flood risk map for the Talar watershed at sub-watershed scale
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capacity and evapotranspiration potential (Gaston et al. 2005; Smith et al. 2011; Warhurst 
et al. 2014). However, the actual effect can differ, as the results of this study showed. First, 
the design of vegetation cover might be inappropriate from the flood mitigation viewpoint, 
so that green lands are convex and higher than adjacent roads, increasing the flood risk, as 
reported for Shanghai, China (Wang et al. 2017). Second, the elevation factor, which was 
identified as the most influential conditioning factor in the Talar watershed, is low in for-
ested and northern parts of the watershed. Some eastern, western, and southern parts of the 
watershed, which were found to have low and very low flood risk (LFR–VLFR) (Fig. 3), 
are mostly covered by rangeland and have high elevation.

3.1  Validation

In order to verify the final flood risk map, 134 historical flood points were used (Fig. 3). 
The positions of observed flooding points were determined through document obtained 
from regional water company of Mazandaran and field observation, interviews with local 
people, and water tail evaluation, and recorded by global positioning system (GPS) con-
ducted in 2017. The overall accuracy of the flood risk map was assessed for two classes, 
HFR and VHFR. The location of historical floodplains in different flood level risk classes 
was determined by overlaying historical flood risk points on the flood risk map and using 
the spatial analyst tool (to extract values to points). A total of 111 out of 134 flooded points 
was found to be located in the high and very high flood risk classes in the final flood risk 
map, which means that the overall accuracy of the flood risk map was 83%.

3.2  Flood risk and damage

The area of agricultural land in flood risk zones was calculated for each sub-watershed. In 
order to compute the potential water loss, the area and yield of the rice and wheat crops had 
to be determined. Based on the land use map, an area of 2516.44 ha of the Talar watershed 
was occupied by rice and 31,260.71 ha by wheat (corresponding to 17% of watershed area). 
As the basin-based information on yield was not available in the study area, so we consid-
ered the average of province for our study. The average yield of wheat (1.73 ton ha−1) and 
rice (4.79 ton ha−1) in Mazandaran province (Ahmadi et al. 2018a) was assumed.

The area of rice and wheat farmland in high and very high flood risk areas (HFR-
VHFR) in each sub-watershed is mapped in Fig. 4, and corresponding data are summarized 
in Table 4. For rice farmland, the highest flood risk level was observed for sub-watersheds 
1 and 2, with area 369.79 ha and 310.69 ha, respectively. For wheat, the highest flood risk 
level was observed for sub-watersheds near the outlet. In general, a large proportion of land 
under rice (613.67 ha) and wheat (12,750.45 ha) was found to be exposed to VHFR flood 
risk damage and inundation in the 500 m buffer zone of the Talar river.

Assuming the flooded agricultural areas lost all cultivated crops and that all agricultural 
areas were productive, the potential losses of rice and wheat, derived by the intersection of 
land use and flood risk areas were calculated to be 7972.05 tons and 18,860.65 ton, respec-
tively. The associated irrigation water loss through rice and wheat crops, calculated as WF, 
was 12.10 and 34.04 million m3 (MCM), respectively, or over 46 MCM in total (Table 5 
and Fig. 5).
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3.3  Spatial relationship between areas of flood risk zones and crops

Spatial statistics can play a key role in environmental studies. Our GWR model results 
indicated that the value of local R2 varied from 0.11 to 0.82 in the study area (Fig. 6). In 
the case of rice-HFR, the classes with high values of local R2 were shown to be located in 
northern and central areas of the watershed, where the agricultural land use and residential 
areas are mostly located. For rice-VHFR, classes with medium and low values were shown 
to be located in the south of the watershed. In addition, the spatial distribution of local R2 
revealed a gradual decrease from north to south. In the case of wheat-HFR, the classes with 
high values of local R2 were located in eastern and south-western parts of the watershed, 
while other parts of the watershed had low value of local R2 (Fig. 6). Classes with high and 
medium values were located in the south of the watershed. These findings indicate that 
the flood potential map is sensitive to location, which is consistent with other studies (Sim 
et al. 2014; Wang et al. 2017; Purwaningsih et al. 2018). Flood risk zoning in agricultural 
watershed with intensive rainfall and floods has received attention from agricultural policy-
makers and planners because understanding of flooding conditions enhance their responses 

Fig. 4  Area of rice and wheat zones over the high and very high flood risk at sub-watershed scale
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to flood risk. In current study, the efficiency of the water footprint analysis for spatial flood 
risk mapping and crop-water loss modeling was investigated and the resulting map was 
interpreted with the rice and wheat farms agricultural productions. Results demonstrated 
that the employed model had excellent performance in agricultural watershed.

4  Conclusions

Due to the special topographic and climatic conditions of Mazandaran province, agri-
cultural lands are always in danger of annual flood damages. Rice farms are located near 
the river to provide cost-effective water supply, so these lands are faced with flood risk 
in comparison to other areas. As a result, assessment of spatial flood risk to cropland is 
important for better flood risk management and damage reduction in agricultural water-
sheds. In the present study, a flood risk map was prepared for the Talar watershed based on 
MCA method, one of the most important irrigated and rain-fed agricultural areas in Iran, 
where flooding occurs periodically. The map was created using six conditioning factors 
(flow accumulation, slope, land use, rainfall intensity, geology, and elevation). Of these, 

Table 4  Area (ha) of rice and wheat crops in the Talar watershed found to be under high and very high 
flood risk level

Flood risk Area croplands

High Very high

Sub-watershed Rice Wheat Rice Wheat Rice Wheat Rice and wheat

SW-1 92.98 34.80 4.93 0.82 97.91 35.62 133.52
SW-2 54.26 80.57 4.01 3.25 58.28 83.82 142.09
SW-3 369.79 568.37 307.19 102.65 676.98 671.03 1348.01
SW-4 11.97 586.62 65.09 209.77 77.06 796.39 873.45
SW-5 21.05 472.63 78.82 290.51 99.87 763.15 863.01
SW-6 310.69 863.38 150.91 1816.75 461.59 2680.13 3141.72
SW-7 3.12 105.34 16.28 487.73 19.40 593.08 612.47
SW-8 22.57 420.27 57.33 742.56 79.90 1162.83 1242.74
SW-9 7.63 124.65 36.79 965.49 44.42 1090.14 1134.57
SW-10 18.53 241.11 63.07 1601.03 81.60 1842.13 1923.74
SW-11 9.68 36.15 14.90 309.19 24.59 345.34 369.93
SW-12 0.09 1.06 4.52 60.68 4.61 61.75 66.35
SW-13 29.04 138.27 9.01 544.86 38.05 683.12 721.17
SW-14 0.03 0.63 0.78 27.38 0.81 28.00 28.81
SW-15 1.26 1.62 0.78 22.95 2.04 24.57 26.61
SW-16 0.00 0.00 8.41 0.27 8.41 0.27 8.68
SW-17 0.00 7.64 0.00 31.04 0.00 38.67 38.67
SW-18 0.00 0.08 0.00 1.56 0.00 1.64 1.64
SW-19 0.00 0.00 0.00 0.34 0.00 0.34 0.34
SW-20 0.00 0.00 0.00 0.09 0.00 0.09 0.09
SW-21 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 952.68 3683.20 822.83 7218.91 1775.51 10,902.11 12,677.62
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Table 5  Potential production of rice and wheat and water footprint (WF) loss at sub-watershed scale in the 
Talar watershed

Sub-watersheds Potential production (ton) WF loss (MCM)

Rice Wheat Rice Wheat Total WF loss

SW-1 439.60 61.62 0.67 0.11 0.78
SW-2 261.66 145.00 0.40 0.26 0.66
SW-3 3039.64 1160.87 4.62 2.10 6.71
SW-4 346.00 1377.76 0.53 2.49 3.01
SW-5 448.40 1320.24 0.68 2.38 3.06
SW-6 2072.56 4636.62 3.15 8.37 11.52
SW-7 87.09 1026.02 0.13 1.85 1.98
SW-8 358.76 2011.70 0.54 3.63 4.18
SW-9 199.47 1885.94 0.30 3.40 3.71
SW-10 366.41 3186.89 0.56 5.75 6.31
SW-11 110.40 597.44 0.17 1.08 1.25
SW-12 20.68 106.82 0.03 0.19 0.22
SW-13 170.83 1181.80 0.26 2.13 2.39
SW-14 3.63 48.45 0.01 0.09 0.09
SW-15 9.18 42.50 0.01 0.08 0.09
SW-16 37.76 0.47 0.06 0.00 0.06
SW-17 0.00 66.90 0.00 0.12 0.12
SW-18 0.00 2.85 0.00 0.01 0.01
SW-19 0.00 0.58 0.00 0.00 0.00
SW-20 0.00 0.16 0.00 0.00 0.00
SW-21 0.00 0.00 0.00 0.00 0.00
Total 7972.05 18,860.65 12.11 34.04 46.15

Fig. 5  Potential production and water footprint loss at sub-watershed scale
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elevation best explained frequent flood occurrence. Verification of the flood risk map using 
historical data on flood events revealed 83% accuracy for the map. The results showed that 
31% of the total area of Talar watershed is under very high and high flood risk, and that 
38% of its cropland (rice, wheat) is under high-very high flood risk. The irrigation water 
loss associated with crop losses to flooding was estimated to be 46.15 MCM, based on WF 
analysis. In this paper, in order to prepare flood risk map and to estimate agricultural water-
crop losses, we integrated MCA modeling with water footprint method and agricultural 
statistics. Since the flood as a natural-human destructive phenomenon depends on various 
environmental factors, the use of multi-criteria analysis modeling reduces this complexity. 
Also, using the water footprint method, water loss can be calculated for agricultural crop 
losses caused by flood damage. In addition to agricultural products, water is also wasted, 
and this is an important issue in water resources management that has received less atten-
tion in flood damage studies. Also, in order to better understand the relation between flood 

Fig. 6  Spatial correlation coefficient between high flood risk (HFR) and very high flood risk (VHFR) zones 
with production of rice (RP) and wheat (WP) at sub-watershed level, a RP-HFR, b RP-VHFR, c WP-HFR, 
and d WP-VHFR
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risk area and agricultural lands at sub-watershed scale, using geographically weighted 
regression (GWR) was used. These results are valuable information for flood damage 
reduction and sustainable agriculture management planning in the Talar watershed and in 
similar cultivated watersheds under flood risk.
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