Skip to main content
Log in

Matrix modeling of inverse dynamics of spatial and planar parallel robots

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Recursive matrix relations for kinematics and dynamics analysis of two known parallel mechanisms: the spatial 3-PRS and the planar 3-RRR are established in this paper. Knowing the motion of the platform, we develop first the inverse kinematical problem and determine the positions, velocities, and accelerations of the robot’s elements. Further, the inverse dynamic problem is solved using an approach based on the principle of virtual work, and the results can be verified in the framework of the Lagrange equations with their multipliers. Finally, compact matrix equations and graphs of simulation for power requirement comparison of each of three actuators in two different actuation schemes are obtained. For the same evolution of the moving platform, the power distribution upon the three actuators depends on the actuating configuration, but the total power absorbed by the set of three actuators is the same, at any instant, for both driving systems. The study of the dynamics of the parallel mechanisms is done mainly to solve successfully the control of the motion of such robotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a k,k−1,b k,k−1,c k,k−1 :

orthogonal rotation matrices

R :

general rotation matrix of moving platform

θ 1,θ 2,θ 3 :

three constant orthogonal matrices

\(\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\) :

three right-handed orthogonal unit vectors

l 1,l 2 :

length of two links of each leg

θ :

angle of inclination of three sliders

φ k,k−1 :

relative rotation angle of T k rigid body

\(\vec{\omega}_{k, k - 1}\) :

relative angular velocity of T k

\(\vec{\omega}_{k0}\) :

absolute angular velocity of T k

\(\tilde{\omega}_{k, k - 1}\) :

skew-symmetric matrix associated to the angular velocity \(\vec{\omega }_{k, k - 1}\)

\(\vec{\varepsilon}_{k, k - 1}\) :

relative angular acceleration of T k

\(\vec{\varepsilon}_{k0}\) :

absolute angular acceleration of T k

\(\tilde{\varepsilon}_{k, k - 1}\) :

skew-symmetric matrix associated to the angular acceleration \(\vec {\varepsilon}_{k, k - 1}\)

\(\vec{r}_{k, k - 1}^{A}\) :

relative position vector of the center A k of joint

\(\vec{v}_{k, k - 1}^{A}\) :

relative velocity of the center A k

\(\vec{\gamma}_{k, k - 1}^{A}\) :

relative acceleration of the center A k

\(\vec{r}_{k}^{C}\) :

position vector of the mass center of T k rigid body

\(m_{k}, \hat{J}_{k}\) :

mass and symmetric matrix of tensor of inertia of T k about the link-frame x k y k z k

\(m_{p}, \hat{J}_{p}\) :

mass and central tensor of inertia of moving platform

\(f_{10}^{A}, f_{10}^{B}, f_{10}^{C}, m_{10}^{A}, m_{10}^{B},m_{10}^{C}\) :

forces and torques of fixed actuators

\(m_{21}^{A}, m_{21}^{B}, m_{21}^{C}, m_{32}^{A}, m_{32}^{B},m_{32}^{C}\) :

torques of mobile actuators

References

  1. Tsai, L.-W.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley, New York (1999)

    Google Scholar 

  2. Stewart, D.: A platform with six degrees of freedom. Proc. Inst. Mech. Eng., Part 1 180(15), 371–386 (1965)

    Article  Google Scholar 

  3. Merlet, J.-P.: Parallel Robots. Kluwer Academic, Dordrecht (2000)

    MATH  Google Scholar 

  4. Parenti Castelli, V., Di Gregorio, R.: A new algorithm based on two extra-sensors for real-time computation of the actual configuration of generalized Stewart–Gough manipulator. J. Mech. Des. 122, 17–24 (2000)

    Article  Google Scholar 

  5. Clavel, R.: Delta: a fast robot with parallel geometry. In: Proceedings of 18th International Symposium on Industrial Robots, Lausanne, pp. 91–100 (1988)

    Google Scholar 

  6. Staicu, S.: Recursive modelling in dynamics of Delta parallel robot. Robotica 27(2), 199–207 (2009)

    Article  Google Scholar 

  7. Tsai, L.-W., Stamper, R.: A parallel manipulator with only translational degrees of freedom. In: ASME Design Engineering Technical Conferences, Irvine, CA (1996)

    Google Scholar 

  8. Hervé, J.-M., Sparacino, F.: Star: a new concept in robotics. In: Proceedings of the Third International Workshop on Advances in Robot Kinematics, Ferrara, pp. 176–183 (1992)

    Google Scholar 

  9. Angeles, J.: Fundamentals of Robotic Mechanical Systems: Theory, Methods and Algorithms. Springer, New York (2002)

    Google Scholar 

  10. Wang, J., Gosselin, C.: A new approach for the dynamic analysis of parallel manipulators. Multibody Syst. Dyn. 2(3), 317–334 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Staicu, S.: Recursive modelling in dynamics of Agile Wrist spherical parallel robot. Robot. Comput.-Integr. Manuf. 25(2), 409–416 (2009)

    Article  MathSciNet  Google Scholar 

  12. Bi, Z.M., Lang, S.Y.T.: Joint workspace of parallel kinematic machines. Robot. Comput.-Integr. Manuf. 25(1), 57–63 (2009)

    Article  Google Scholar 

  13. Li, Y., Xu, Q.: Kinematic analysis of a 3-PRS parallel manipulator. Robot. Comput.-Integr. Manuf. 23(4), 395–408 (2007)

    Article  Google Scholar 

  14. Pond, G., Carretero, J.: Architecture optimization of three 3-PRS variants for parallel kinematic machining. Robot. Comput.-Integr. Manuf. 25(1), 64–72 (2009)

    Article  Google Scholar 

  15. Carretero, J., Podhorodeski, R., Nahon, M., Gosselin, C.: Kinematic analysis and optimisation of a new three degree-of-freedom spatial parallel manipulator. J. Mech. Des. 121(1), 17–24 (2000)

    Article  Google Scholar 

  16. Tsai, M.-S., Shiau, T.-N., Tsai, Y.-J., Chang, T.-H.: Direct kinematics analysis of a 3-PRS parallel manipulator. Mech. Mach. Theory 38(1), 71–83 (2002)

    Article  Google Scholar 

  17. Merlet, J.-P.: Micro parallel robot MIPS for medical applications. In: Proceedings of the Ligth International Conference on Emerging Technologies and Factory Automation ETFA 2001, Antibes-Juan les Pins, France, October 15–18 (2001)

    Google Scholar 

  18. Li, Y., Xu, Q.: Kinematics and inverse dynamics analysis for a general 3-PRS spatial parallel mechanism. Robotica 23(2), 219–229 (2005)

    Article  Google Scholar 

  19. Staicu, S., Zhang, D.: A novel dynamic modelling approach for parallel mechanisms analysis. Robot. Comput.-Integr. Manuf. 24(1), 167–172 (2008)

    Article  Google Scholar 

  20. Bonev, I., Zlatanov, D., Gosselin, C.: Singularity analysis of 3-DOF planar parallel mechanisms via screw theory. J. Mech. 25(3), 573–581 (2003)

    Google Scholar 

  21. Staicu, S., Liu, X.-J., Wang, J.: Inverse dynamics of the HALF parallel manipulator with revolute actuators. Nonlinear Dyn. 50(1–2), 1–12 (2007)

    Article  MATH  Google Scholar 

  22. Li, Y.-W., Wang, J., Wang, L.-P., Liu, X.-J.: Inverse dynamics and simulation of a 3-DOF spatial parallel manipulator. In: Proceedings of the IEEE International Conference on Robotics & Automation, Taipei, Taiwan, pp. 4092–4097 (2003)

    Google Scholar 

  23. Dasgupta, B., Mruthyunjaya, T.S.: A Newton–Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mech. Mach. Theory 34, 1135–1152 (1998)

    Article  MathSciNet  Google Scholar 

  24. Khalil, W., Ibrahim, O.: General solution for the dynamic modeling of parallel robots. In: Proceedings of the IEEE International Conference on Robotics & Automation ICRA’2004, New Orleans, pp. 3665–3670 (2004)

    Google Scholar 

  25. Geng, Z., Haynes, L.S., Lee, J.D., Carroll, R.L.: On the dynamic model and kinematic analysis of a class of Stewart platforms. Robot. Auton. Syst. 9 (1992)

  26. Miller, K., Clavel, R.: The Lagrange-based model of Delta-4 robot dynamics. Robotersysteme, 8, 49–54 (1992)

    Google Scholar 

  27. Zhang, C.-D., Song, S.-M.: An efficient method for inverse dynamics of manipulators based on virtual work principle. J. Robot. Syst. 10(5), 605–627 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Song, Y., Li, Y., Huang, T.: Inverse dynamics of a 3-RPS parallel mechanism based on virtual work principle. In: Proceedings of the 12th IFToMM World Congress, Besançon, France (2007)

    Google Scholar 

  29. Sokolov, A., Xirouchakis, P.: Dynamics of a 3-DOF parallel manipulator with R-P-S joint structure. Mech. Mach. Theory 42, 541–557 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications. McGraw-Hill, New York (1985)

    Google Scholar 

  31. Staicu, S.: Relations matricielles de récurrence en dynamique des mécanismes. Rev. Roum. Sci. Tech., Sér. Méc. Appl. 50(1–3), 15–28 (2005)

    MathSciNet  Google Scholar 

  32. Staicu, S., Liu, X.-J., Li, J.: Explicit dynamics equations of the constrained robotic systems. Nonlinear Dyn. 58(1–2), 217–235 (2009)

    Article  MATH  Google Scholar 

  33. Gosselin, C., Gagné, M.: Dynamic models for spherical parallel manipulators. In: Proceedings of the IEEE International Conference on Robotics & Automation, Milan (1995)

    Google Scholar 

  34. Guegan, S., Khalil, W., Chablat, D., Wenger, P.: Modélisation dynamique d’un robot parallèle à 3-DDL: l’Orthoglide. In: Conférence Internationale Francophone D’Automatique, Nantes, France, 8–10 Juillet (2002)

    Google Scholar 

  35. Khalil, W., Guegan, S.: A novel solution for the dynamic modeling of Gough–Stewart manipulators. In: Proceedings of the IEEE International Conference on Robotics & Automation ICRA’02, Washington (2002)

    Google Scholar 

  36. Tsai, L.-W.: Solving the inverse dynamics of Stewart-Gough manipulator by the principle of virtual work. ASME J. Mech. Des. 122 (2000)

  37. Aradyfio, D.D., Qiao, D.: Kinematic simulation of novel robotic mechanisms having closed chains. In: ASME Mechanisms Conference, Paper 85-DET-81 (1985)

    Google Scholar 

  38. Gosselin, C., Angeles, J.: The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator. ASME J. Mech. Transm. Autom. Des. 110(1), 35–41 (1988)

    Article  Google Scholar 

  39. Pennock, G.R., Kassner, D.J.: Kinematic analysis of a planar eight-bar linkage: application to a platform-type robot. In: ASME Mechanisms Conference, Paper DE-25, pp. 37–43 (1990)

    Google Scholar 

  40. Sefrioui, J., Gosselin, C.: On the quadratic nature of the singularity curves of planar three-degree-of-freedom parallel manipulators. Mech. Mach. Theory 30(4), 533–551 (1995)

    Article  Google Scholar 

  41. Mohammadi-Daniali, H., Zsombor-Murray, P., Angeles, J.: Singularity analysis of planar parallel manipulators. Mech. Mach. Theory 30(5), 665–678 (1995)

    Article  Google Scholar 

  42. Merlet, J.-P.: Direct kinematics of planar parallel manipulators. In: Proceedings of the IEEE International Conference on Robotics & Automation, Minneapolis, Minnesota, pp. 3744–3749 (1996)

    Google Scholar 

  43. Williams, R.L. II, Reinholtz, C.F.: Closed-form workspace determination and optimization for parallel mechanisms. In: The 20th Biennal ASME Mechanisms Conference, Kissimmee, Florida, DE, vol. 5, pp. 341–351 (1988)

    Google Scholar 

  44. Yang, G., Chen, W., Chen, I.-M.: A geometrical method for the singularity analysis of 3-RRR planar parallel robots with different actuation schemes. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, pp. 2055–2060 (2002)

    Chapter  Google Scholar 

  45. Khan, W.A., Krovi, V.N., Saha, S.K., Angeles, J.: Modular and recursive kinematics and dynamics for planar manipulators. Multibody Syst. Dyn., 14(3–4), 419–455 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Khan, W.A., Krovi, V.N., Saha, S.K., Angeles, J.: Recursive kinematics and inverse dynamics for a planar 3R parallel manipulator. ASME J. Dyn. Syst. Meas. Control, 127(4), 529–536 (2005)

    Article  Google Scholar 

  47. Staicu, S.: Inverse dynamics of the 3-PRR planar parallel robot. Robot. Auton. Syst. 57(5), 556–563 (2009)

    Article  Google Scholar 

  48. Staicu, S.: Power requirement comparison in the 3-RPR planar parallel robot dynamics. Mech. Mach. Theory 44(5), 1045–1057 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Staicu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staicu, S. Matrix modeling of inverse dynamics of spatial and planar parallel robots. Multibody Syst Dyn 27, 239–265 (2012). https://doi.org/10.1007/s11044-011-9281-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9281-8

Keywords

Navigation