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Abstract
Pain is a complex phenomenon, the experience of which varies widely across individu-
als. At worst, chronic pain can lead to anxiety and depression. Cost-effective strategies 
are urgently needed to improve the treatment of pain, and thus we propose a novel home-
based pain measurement system for the longitudinal monitoring of pain experience and 
variation in different patients with chronic low back pain. The autonomous nervous system 
and audio-visual features are analyzed from heart rate signals, voice characteristics and 
facial expressions using a unique measurement protocol. Self-reporting is utilized for the 
follow-up of changes in pain intensity, induced by well-designed physical maneuvers, and 
for studying the consecutive trends in pain. We describe the study protocol, including hos-
pital measurements and questionnaires and the implementation of the home measurement 
devices. We also present different methods for analyzing the multimodal data: electroen-
cephalography, audio, video and heart rate. Our intention is to provide new insights using 
technical methodologies that will be beneficial in the future not only for patients with low 
back pain but also patients suffering from any chronic pain.

Keywords  Low back pain · Machine learning · Facial expression · Audio analysis · Heart 
rate · Electroencephalography

1  Introduction

In recent years, the understanding of the role of the brain in pain processing has increased 
due to non-invasive brain imaging methodologies. Thus, tremendous efforts have been 
made to understand the cellular and molecular basis of chronic pain [4, 9, 14]. Current evi-
dence shows no clear relationship between the amount of tissue damage and the degree of 
discomfort or functional disability [4]. Furthermore, for any individual, the pain experience 
varies across different experiments, and even within a single experiment depending upon 
the environment, experimenter, instructions, stimulus, and procedural design [1], which 
makes the problem even more challenging. However, pain intensity, pain-related disability, 
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pain duration and pain effects are the aspects that define pain and its influence on quality 
of life [12]. Meanwhile, pain monitoring of patients in intensive care (ICU), or home care 
is mainly a manual check by a clinician to make any required adjustments to medication or 
treatment [10]. This is a huge workload for clinicians and the consistency and reliability 
are cannot be guaranteed. Therefore, determining the mechanism of pain and designing a 
system that could automatically monitor pain to reduce the heavy workload of clinicians is 
paramount, to provide them with a point of reference for accurate treatment, and to further 
improve people’s quality of life. Although it is possible to identify neural activity that ordi-
narily causes pain, there is no direct or objective way to measure pain. Awareness of pain is 
a perception and, therefore, subjective [9, 22]. Well-defined instruments for assessing pain 
and pain-related variables are ultimately based on self-reports, observations, or both [4, 12, 
22]. One of the golden standards for assessing or monitoring pain is through self-reporting, 
when a patient is asked the intensity of pain using a 10-cm visual analog scale (VAS).

According to a review on emotion recognition from physiological signals, emotion 
arises spontaneously rather than through conscious effort and is often accompanied by 
physical and physiological changes that are relevant to the human organs and tissues such 
as the brain, heart, skin, blood flow, muscles, facial expressions and voice [24]. Thus, pain 
is a complex sensory and emotional experience and has a potential relationship with these 
physiological changes.

In [31], multimodal data, with bio-potentials and video recordings, were collected from 
pain patients. Heat stimulation was utilized to induce pain using a thermode attached to the 
arm. The stimulation temperatures were adjusted on the basis of the participant-specific 
pain threshold and pain tolerance was divided into four levels. Data were collected from 
90 healthy adults. The database is available for non-commercial research use. Lucey et al. 
[18] describe methods for collecting data and extracting facial features using two cameras. 
The participants with shoulder pain were self-identified and recruited from physiotherapy 
clinics and through advertisements. The participants underwent a series of range-of-motion 
tests. In all, 200 videos with facial expressions of 129 (63 males, 66 females) participants 
were collected. A subset of 25 participants has been made publicly available from the orig-
inal data. The dataset features annotation with self-reported and observed measures of pain 
intensity at video level and facial action coding at frame level.

In [34] a data acquisition recording system setup is described for collecting color 
video of the face, 3D and thermal video, and physiological signals. The designed proto-
col includes social interviews, film watching, physical experience, and controlled activities. 
Pain was stimulated once per person by a cold pressor task. The study included 140 healthy 
volunteers. In addition to the data acquisition system and protocol, some initial analyses to 
validate the data are also presented.

Velana et al. [30] describe a method for collecting biopotentials, camera images of the 
facial region, and audio signals. The data were recorded among healthy adults, when heat 
stimulation was applied to elicit pain. Emotional states were elicited using image and sound 
stimuli. For each participant, 30 min of multimodal sensory data were recorded. In addition 
to data collection, the aim of the study was to detect patterns of heat pain intensities under 
the influence of emotional stimuli. However, the work concentrated on the design of the 
experiment and procedure of the experiments. Aung et al. [2] explain in detail the patient 
recruitment process and the actual trial for collecting an emotion-related database. Record-
ing devices are explained in detail, with a configuration of eight high resolution cameras, 
and electromyographic sensors for motion tracking attachments. The recorded data was ini-
tially analyzed, but the main focus was on the possibility of automatically recognizing the 
facial expression of pain.
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In [13] the procedure of data collection, experimental protocol and the database struc-
ture for collecting electromyographic, RGB, depth and thermal (RGBDT) imagery is 
described. Twenty healthy participants were used in the experiments, with pain elicited by 
electrical stimulation to the participants’ muscles. Visual modalities, RGB, depth and ther-
mal (RGBDT) imagery, and their fusion were considered in the evaluation. Furthermore, 
Gruss et al. [11] describe a protocol to elicit pain and simultaneously record physiological 
responses (electrocardiogram, electromyography, skin conductance level) as well as video 
and audio data. A total of 134 healthy adults underwent experimental pain stimulation with 
heat and electrical stimuli. Participant recruitment and selection, preparations for the pain 
elicitation experiment, and details of the actual data acquisition system are described in 
detail. In [7], data were collected for a 30-min period each day from six healthy partici-
pants who came for measurements every day for one week. Electrical stimulation was used 
to induce pain and three-channel biosensors were used to obtain blood volume pulse, elec-
trocardiogram and skin conductance from the study participants.

Considering the different modalities, relations between facial expressions and pain have 
attracted considerable interest in the research community. In [15], a review evaluated the 
most pain-related action units across clinical and experimental settings and demonstrated a 
consistent subset of action units (AU) that emerged during pain, which consisted of lower-
ing brows (AU4), cheek raising/lid tightening (AU6_7), nose wrinkling/raising the upper 
lip (AUs9_10), and opening the mouth (AUs25_26_27). In [16], individualized maneu-
vers were used to exacerbate clinical pain in patients with chronic low back pain, thereby 
experimentally producing different levels of pain. Machine-learning models were built 
from central and autonomic parameters (heart rate variability) collected before and after 
pain exacerbation. As a result, within-patient (participant-specific) relatively lower and 
higher clinical pain intensity states were classified. The UNBC-McMaster database [18], 
with facial images with rich annotation, has provided the premises for many of the related 
research [32].

Since the release of the BioVid database [31], contact-based sensor approaches have 
gained more attention in pain-related research [32] Voice has also been deployed as a cue 
for pain analysis, but has so far received less attention. In [21], voice recordings of patients, 
made during an interview in a medical center, were used to separate significant pain from 
non-significant pain using machine learning methods. Tsai et al. [29] and Li et al. [17] ana-
lyzed audio signals recorded during clinical interviews in an emergency triage situation. A 
Triage Pain-Level Multimodal database was collected and used in the study. In [27], the 
authors suggest a combination of three distinctive modalities (audio, video, physiology) for 
the recognition of artificially induced pain intensities.

A literature review revealed that experimental data utilized in pain-related research are 
mostly collected in a laboratory setting and generally long-term data are not available or 
utilized. Recording data in real environment is challenging, as is the lack of long-term 
monitoring data. Several recent studies have raised this issue [19, 27, 32].

In this study, we developed new technology by combining existing technology in a pilot 
study in Finland. The developed technology enables pain monitoring (smartphone/laptop/
tablet applications) in both clinical and home settings, which is novel in the sense that most 
previous studies have been conducted in controlled laboratory environments. We describe 
the experimental setup and protocol, including hospital/home measurements, in which 
changes in pain intensity are induced by well-designed physical maneuvers for monitoring 
pain experience and variation among patients with chronic low back pain. The proposed 
technology will help collect genuine, spontaneous pain-related emotion and further be ben-
eficial for affective data collection and related research. The developed software will make 
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it possible to label the emotions of the participants at the time of recording, also enabling 
long-term data collection.

There is a need to better understand the problem of pain recognition. Furthermore, to 
build a recognition model, it is important to extract the most suitable features. Tools and 
methods are developed and utilized for the collected pilot data, to preprocess, discrimi-
nate features and analyze the data. We have taken advantage of an extensive audio soft-
ware package, developed in our team to analyze prosodic features from audio data, and also 
implemented tools for electroencephalography (EEG) and heart rate analyses. For videos, 
a machine learning system for facial expression analysis has been implemented to estimate 
pain. Furthermore, correlation analysis, for EEG data, audio, video and Autonomic Nerv-
ous System (ANS) parameters against reported pain intensities have revealed important 
relations, which will be discussed.

A cost-effective home-based pain-monitoring device would be effective in daily clinical 
practice not only among low back pain patients but also among patients suffering from any 
chronic pain. We present the results of our preliminary studies and discuss the potentials of 
the developed methods and techniques, as well as points for future development.

2 � Pilot study

2.1 � Materials

This study is part of the large “Pain Fingerprint using Multimodal Sensing” (PASE) study, 
conducted in the Center for Life Course Health Research and the Center for Machine 
Vision and Signal Analysis at the University of Oulu, Finland. The Ethical Committee 
of the Northern Ostrobothnia Hospital District, Oulu, Finland approved the PASE study 
protocol, and all voluntary patients and healthy participants gave their informed consent. 
Confidentiality, data management and storage is governed by the terms of the informed 
consent. The study population consisted of 14 participants (aged 32 to 53 years, 7 men and 
7 women). Measurements consisted of measurements carried out in the Oulu University 
Hospital and at participants’ homes.

2.2 � Study design overview

The overall procedure of 1–2-month follow-up of participants’ measurements, illustrated in 
Fig. 1, was constructed of three phases. In Phase 1, the participants were instructed to fill 
in a questionnaire before their first visit to the hospital. The questionnaires covered health-
related questions on background, exercise and sleeping habits, intensities of low back pain 
and possible radiating leg pain, pain drawing, and the short version of the Örebro Muscu-
loskeletal Pain Screening Questionnaire, questionnaire for physical activity, STarT Back 
Tool and the Oswestry Disability Index (ODI) [8]. At the hospital, EEG signals were meas-
ured and each participant was instructed in how to use the developed home measurement 
device. For each participant, the first measurement using the software was made with the 
nurse’s guidance at the hospital.

In home measurements, we applied new technologies to report pain experience with the 
use of a tablet application. During home measurements (Phase 2), the participants used the 
application to report weekly subjective pain intensity and audio-visual and heart rate data. 
The intensity of pain was measured using 10-cm VAS [3], where ‘0’ represents no pain and 
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‘10’ stands for the worst imaginable pain. In Phase 3, after the 1–2-month follow-up, EEG 
was recorded again along with pain intensity and disability (ODI) assessments. The home 
measurement protocol and devices were defined as illustrated in Fig. 2.

Fig. 1   Overview of participant study and measurements. VAS = Visual Analog Scale for pain intensity 
assessment

Fig. 2   Home measurement protocol
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2.3 � Home measurements

Pain experience was monitored using an Android application. The application runs on 7’ 
Lenovo Tab3 7 tablets (Android 6.0, Mediatek MT8161 chipset, 1 GB RAM, 7’’ display, 5 
MP / 2 MP, frontal / rear cameras). The criteria for choosing the devices were the follow-
ing: a relatively compact device that can be easily distributed to the users; and a frontal 
camera of 2 MP for fair resolution video-recording for the home measurement protocol. 
Android was selected as the operating system since it is highly compatible with different 
devices. Bluetooth connectivity also enables future development and the possibility of 
testing other external measuring devices. The application collected data from pain-related 
questions requiring user input combined with audio-visual recording. The PASE home 
measurement Graphical User Interface (GUI) is illustrated in Fig. 3b ).

The answers to the questions were recorded in the database files together with the times-
tamps indicating when each answer was given or when the videos were recorded. The vid-
eos were recorded in MPEG-4 format.

Patients were given general instructions for the use of devices. These included general 
instructions for using the devices and instructions for charging. The home measurement 
devices are illustrated in Fig. 3a). Weekly measurement started by attaching the Bittium 
Faros device (Bittium Corporation, Oulu, Finland) to the breast area and pressing the start 
button before starting the home measurement software on the tablet. Heart rate was meas-
ured using the Faros device for 24  h once a week. The tablet was placed in an upright 

Fig. 3   a) PASE home measurement devices b) PASE measurement GUI. Question 1: Rate your current 
back pain level (VAS scale 0–10). Questions 2–9: pain-related questions. Sitting two minutes. Sitting one 
minute. Question 10: Rate your current back pain level (VAS scale 0–10)
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position to keep it stable during measurements, about 50–100 cm from the face, and with 
back lightning. Each home measurement followed a procedure and was guided by the 
software:

1	 The participant is asked to indicate their current pain intensity level (Question 1), by 
selecting the discrete value using the touch screen (VAS 0–10)

2	 To gather a more comprehensive picture of the participant’s recent condition, the fol-
lowing questions are asked:

•	 Have you had low back pain during the last week?
•	 What was the intensity of your low back pain during last week?
•	 What was your general level of discomfort at work?
•	 What was your general level of discomfort in your social life?
•	 What was your general level of discomfort when doing housework?
•	 Do you have pain radiating from your back to your leg?
•	 What is the intensity of your leg pain?

3	 The participant is instructed to sit for one minute and stand for two minutes in order to 
stabilize the measurement situation.

4	 Video 1 is recorded. The participant performs a reading task – the text is shown on the 
tablet screen. This promotes the collection of a facial expressions database, with audio 
data recorded simultaneously. The text selected was emotionally neutral (see, 3.1).

5	 In order to induce pain, the participant is asked to do a series of bending exercises.
6	 After the body movements, video 2 is recorded, and the participant reads the same text 

again from the screen.
7	 To assess the participant’s pain intensity, Question 10 (identical to Question 1) is asked.

The above seven-step process was repeated with each participant weekly, for 1–2 months 
in total.

The questionnaire responses were stored in an SQL database. Figure 4 illustrates a sam-
ple table from the database, which shows the responses under the “value” field. The times-
tamps were recorded upon entering each one of the measurement sections. The format of 
timestamps that we used was Unix Time, in milliseconds. Timestamps make it easier to 

Fig. 4   Database structure
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associate the heart rate recording with the respective section of the session during which 
they were recorded.

3 � Analysis methods

Audio-visual reporting protocols with advanced affective computing methods were used 
in the analyses. The various affective parameters were computed from the expressions of 
the face and from speech by using a large software package developed in earlier projects 
by the team. Data-processing methods were also developed for analyzing facial expres-
sions, voice, heart rate and EEG. Each modality was characterized by specific properties, 
which are assumed to provide valuable and distinctive insights into the level of pain. The 
input data were processed in order to find and extract multiple types of features. Prior to 
the extraction of descriptors from each of the recorded modalities, an individual pre-pro-
cessing step was undertaken. In the audio analysis, we extracted features based on ideas 
that have proved successful in emotion domains but are not specifically adapted for pain 
recognition. Camera-based facial pain expression recognition includes localizing facial 
landmarks (points along mouth, eyes, and eyebrows, etc.) and registering landmarks and/
or facial texture to gain invariance to translation, scale, and rotation. We extracted Local 
Binary Pattern (LBP) and facial distance features. In the heart rate analysis, we studied 
heart rate variability as an indicator of pain. Moreover, in the EEG analysis, the feature in 
the brain signal alpha channel was discriminated from the data, and the eyes open/closed 
ratio was extracted, based on an evolving idea from emotion studies. The labels (pain inten-
sity level) were extracted from the answers to the in Phase 1 and Phase 3 VAS question-
naire (Fig. 1) and from the collected home measurement data, Question 1 and Question 10 
(Fig.  3b). Video key landmarks’ distance, VAS value and texture based spatio-temporal 
methods (LBP-TOP) were used to estimate low back pain. In order to find discrimina-
tive features in the audio analysis, prosodic features and their correlation to pain intensity 
level were considered. Heart rate analysis concentrated on long-term pain, which is has 
not been studied so often by analyzing differences between the high pain level group and 
low pain level group. The EEG analysis examined the correlation of pain intensity level 
with the Eyes Open/Eyes Closed ratio of alpha power in the defined region of interest. The 
details of the pre-processing, feature extraction and methods are explained in the following 
subchapters.

3.1 � Audio analysis

The audio analysis was performed using prosodic data and mainly by observing the F0 fun-
damental frequency. F0 frequency is defined as the lowest frequency of a periodic wave-
form. Being the lowest frequency, it is perceived as the pitch of the spoken voice. Studies 
have shown that the pitch is the most important acoustic parameter in terms of the iden-
tification of emotion or attitude. Other relevant parameters are the duration of changes in 
pitch, energy and the ratios between speech and silence [20].

The audio recordings of the text that the users read during the measurements were 
extracted from the videos. The selected text was identical for all the users and was emo-
tionally neutral, representing matter-of-fact newspaper prose. It has been originally used 
for discriminating emotion in spoken Finnish [28].

5724 Multimedia Tools and Applications (2022) 81:5717–5742



1 3

Pre‑processing  After the audio tracks were extracted from each video, they were con-
verted into wav format. After this, in the preprocessing procedure, all the tracks shared the 
same characteristics in the analyses. Specifically, the sampling frequency of the audio was 
converted to 11,025 Hz, then the audio channels were merged into one and the mean for 
each recording was multiplied by 10.

Methods  Specifically, the prosodic features included modeling the logarithmic funda-
mental F0 frequency, energy and duration of the voiced and unvoiced segments, which 
are the most important parameters in speech. Several types of correlates were calculated, 
constructing a set of 41 prosodic features, including features describing F0 frequency (the 
short-term energy maximum, mean of short-term energy, F0 maximum, F0 minimum, F0 
mean, and F0 standard deviation), spectral, temporal and intensity properties of the speech 
samples. The feature extraction process is illustrated in Fig. 5. The following features were 
found to be the most relevant: the average decrease in F0 frequency during the continuous 
voiced segments (GDnegav), the maximum increase in F0 during the continuous voiced 
segments (GDrisemax), the maximum decrease in F0 during the continuous voiced seg-
ment (GDfallmin), the ratio of speech (voiced + unvoiced < 300  ms) to pauses (Spratio), 
and the ratio of silence to speech (Sratio).

3.2 � Video analysis

Video analysis was performed by first evaluating the correlation between the geometric 
changes in the face and pain, together with the spatio-temporal facial descriptors to distin-
guish between no pain and pain. Geometric changes in faces are mainly measured by the 
changes in the distance between key landmarks (e.g. the distance between the center of 
the eye center and the tip of the nose). Spatio-temporal features are extracted from video 
sequences to encode the dynamic changes throughout the spatial and temporal dimensions 
by using LBP-TOP [35].

Pre‑processing  During this step, the video data and corresponding labels were processed 
respectively, as shown in Fig. 6. For video data, the raw videos were first registered, and 
then the key facial landmarks were determined according to the template shown in Fig. 7. 
According to the labeled key landmarks, the face regions were cropped and warped. At 
the same time, the VAS values collected from the tablets were extracted and matched with 
the corresponding video data. In addition, an average image of all labeled frames was 

Fig. 5   Prosodic Feature Extraction Process
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computed, to check the quality of the labeled landmarks. The average image of the pilot 
data is depicted in Fig. 7.

Methods  In order to reveal the relationship between low back pain and facial expression, 
geometric distance changes in the key landmarks on the face were measured first. Specifi-
cally, the distances between the center of the eye and tip of the nose, as shown in Fig. 8 
were measured during pain. Changes in such distances directly reflect the appearance of 
the expression induced by pain.

To capture the facial dynamics that describe the evolution of pain expressions, Local 
Binary Pattern on Three Orthogonal Planes (LBP-TOP) [35] was adopted to extract the 
spatio-temporal features. For a video sequence, the spatio-temporal information can be 
viewed as a set of volumes in (X, Y, T) space, where X and Y represent spatial coordi-
nates and T is the temporal axis. LBP-TOP decomposes the three-dimensional volume into 
three orthogonal planes: XY, XT, and YT. Then local binary patterns are computed for 
every pixel on each orthogonal plane by comparing a center pixel with its neighborhoods, 
denoted as XY-LBP, XT-LBP, YT-LBP. Encoding and concatenating the co-occurrence 
statistics on the three planes generated the representation for a video sequence.

For the classification, Support Vector Machine [5] was utilized, which separated the 
samples from two classes (no pain vs. pain) by an optimal hyperplane/decision boundary 
that had the largest margin to the nearest samples of any class.

Fig. 6   Data pre-processing procedure

Fig. 7   Key landmarks template and average image of pilot data
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3.3 � Heart rate analysis

Previous cross-sectional studies have associated chronic pain with altered ANS regula-
tion. However, less data are available for long-term follow-up of pain and ANS. There-
fore, we evaluated whether the autonomic regulation, analyzed using the heart rate vari-
ability (HRV) method, of the low back pain patients with severe pain differed from that of 
those with mild pain during the 1–2-month follow-up, according to the home-based HRV 
measurements.

Pre‑processing  Kubios HRV software (University of Kuopio, Kuopio, Finland) [26] was 
utilized for pre-processing and HRV analysis. An example of the heart rate data record-
ing over 24 h is shown in Fig. 9. Kubios HRV includes two methods for correcting any 
artifact and ectopic beats in the RR interval data. In our analysis, we used the first method, 
the threshold-based correction method, in which the artifacts and ectopic beats are simply 
corrected by comparing every RR interval value against a local average interval. We speci-
fied the extreme threshold (extreme: 0.05 s). This indicates that the “extreme” correction 
level identifies all RR intervals that are 0.05 s longer/shorter than the local average. The 
correction was made by replacing the identified artifacts with interpolated values using a 
cubic spline interpolation. In addition, we used smoothness priors based on the detrending 
approach for removing baseline wandering, using a cut-off frequency of 0.035 Hz and a 
regularization parameter of 500.

Methods  The heart rate data of 10 volunteers (aged 45 ± 10 years, 4 men and 6 women) 
who had suffered from low back pain at average of 37 ± 21 months were available. Meas-
urements were carried out in the home of every patient. The Bittium Faros 360 device (Bit-
tium Corporation, Oulu, Finland) was used to extract the RR interval and accelerometer 
data for each low back pain patient for 24 h once a week. After waking in the morning, the 
patients’ pain experience on the VAS scale was assessed using question 10: How severe is 
your back pain at the moment? The pain recordings were saved on the tablet and RR inter-
val recordings on a computer for further analysis of HRV. From the collected RR interval 
data we analyzed one-hour data during sleeping hours confirmed by the accelerometer data 
(the average of four measurement points). Finally, the pre-processed time-series data were 
analyzed using the Kubios HRV software.

Fig. 8   Geometric changes in face
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3.4 � EEG analysis

Pre‑processing  The EEG signals were pre-processed using standard methods by segment-
ing the EEG recordings (the first and the last minute were excluded from the 5-min EEG 
recording). From the middle period of 3 min, 10 subsets of EEG signals, each lasting one 
second, were selected, and down-sampled to 1000 Hz. Baseline correction, filtering (a low-
pass filter with a 50-Hz cut-off frequency was used to remove powerline noise) and artifact 
rejection was realized by Independent Component Analysis (to remove the eye movement 
component). A spectral analysis by Fast Fourier Transform (FFT) was applied to signals, 
focusing on the alpha band (8–13 Hz).

Methods  Previous studies [6, 23] have applied a feature of alpha symmetry to study the 
effect of music on emotion. The alpha asymmetries in the electrode pairs of F3/F4, F5/F6, 
C3/C4, C5/C6, and T8/T7 were studied. The alpha asymmetry index (AI) is calculated by 
the Eq. (1):

where baseline is the average of alpha waves from all electrode sites in both the left and 
right hemispheres [23]. In both studies, the emotions were music induced. In [6], the effect 
of eye states on the modulation of the association between music and EEG markers was 
also studied.

(1)AI =
(

Pright − Pleft

)

∕Pbaseline,

Fig. 9   Representative example of raw heart rate data in Kubios HRV software
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In our analysis, in which the pain intensity was static throughout the EEG trial, and not 
externally induced, we evaluated the relationship between pain intensity and the examined 
properties in the alpha channel. We calculated the alpha modulation in Eyes-Open (EO) to 
Eyes-Closed (EC) with a power ratio of the alpha band (8-13 Hz) between EO to EC in a 
selection ROI (See Fig. 10), as defined by Eq. (2):

4 � Experimental results

We evaluated the subjective ratings of the pain level during the study period, in which 
around 10–24 measurements were taken by every patient at home. In Phase 1, the intensity 
of low back pain was reported by the patient (Baseline VAS, Table 1). The baseline VAS 
values ranged from 0 to 10 with an average of 4.9 (average VAS values that are higher than 
4 are highlighted in yellow). In Table 1 below we report the minimum and maximum val-
ues along with the averages of the patient data for both before (Q1) and after the bending 
task (Q10). For comparison, the 1–2-month follow-up VAS values evaluated in Phase 3 are 
also reported in the table.

In total, all 14 participants’ data (273 audio/video recordings) are used in this study. The 
histogram of pain level of all the data is indicated in Fig. 11. In the EEG analysis we used 
altogether 28 recordings from 14 patients. The portion of the heart rate data was excluded 
due to artifacts, and data from 10 patients are used.

(2)Modulation ratio =
Powerα(EO)

Powerα(EC)
,

Fig. 10   ROI Selection
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4.1 � Audio analysis results

The pre-processed audio files underwent a final processing round using the F0 frequency 
tools, which extracted the prosodic features of the audio data. Figures 12–14 demonstrate 
how the difference between the selected prosodic features correlated with the difference in 
the VAS values. Specifically, this was dVAS = VAS

2

− VAS
1

 where VAS
1

 is the value before 
and VAS

2

 the value after the bending exercise. Since the patient with ID 12 reported the 
largest increase in pain between the responses, he was selected as the following example. 
The patient repeated the test 10 times and the results are shown in Figs. 12–14 in the form 
of scatter graphs with 10 points and a line that depicts the linear fit.

Table 1   Statistics of reported pain intensities during experiments

Patient Base-
line 
VAS

min 
Q1

max 
Q1

min 
Q10

max 
Q10

AVG 
Q1

AVG 
Q10

Follow-
up
VAS

Data_1 4 1 5 2 4 2.4 3 6

Data_2 7 6 8 6 8 7.2 8 4

Data_3 0 0 3 0 4 1.5 2 0

Data_4 3 0 3 0 2 1.5 1 2

Data_5 5 0 2 0 3 1 1 2

Data_6 4 3 6 2 6 4 4 4

Data_7 5 0 3 0 4 1.3 2 2

Data_8 10 1 4 1 3 2.7 2 6

Data_9 8 4 7 3 8 5.4 6 4

Data_10 8 2 8 4 8 4 5 7

Data_11 6 0 5 0 5 2.7 3 5

Data_12 5 3 8 3 9 5.8 7 6

Data_13 2 0 3 0 4 1.5 2 2

Data_14 2 0 1 0 2 0.6 1 1

Fig. 11   Histogram of pain intensities
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Figure  12 depicts the difference in GDNegav which is equal to 
dGDNEgav = GDNegav

2

− GDNegav
1

, where GDNegav
1

 is the value before the bending 
exercise and GDNegav

2

 after the bending exercise. GDNegav is the average decrease in the 
F0 frequency during continuous segments and is measured in Hz. The figure demonstrates 
how this difference decreases and eventually becomes negative when the pain intensities 
are higher after the bending exercise.

Similarly, Fig. 13 shows the difference in GDfallmin, which is the maximum decrease in 
the F0 frequency.

The reason for the observation is explained as the pitch of the voice tending to increase 
when a person experiences pain. As a result, the fundamental or F0 frequency tends to 
decline less when the pain level is high.

Figure 14 depicts the difference in Spratio, which is the ratio of speech to pauses. The 
ratio decreases as the pain increases. Unfortunately, the specific example did not contain 
many samples with pain increasing by two units, so this is not perfectly perceived from this 
example, but Fig. 15 makes this clearer by including the average results of all 14 patients.

Specifically, Fig. 15 demonstrates the ratio of speech using the average speech to pauses 
ratios and average VAS responses before and after the bending exercises for all 14 patients.

Here it becomes more obvious that higher VAS values correspond to smaller ratios of 
speech to pauses. This is because people tend to stutter and generally make pauses in their 
speech more often when they suffer from pain.

Fig. 12   Difference in average F0 
decrease from patient ID12

Fig. 13   Difference in maximum 
F0 decrease from patient ID12
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4.2 � Video analysis results

In order to demonstrate how low back pain reflects on facial expression, we first analyzed 
the correlation between key landmarks’ distance and VAS value. The center of the eye was 
computed from the landmarks of the left eye and right eye and mostly located in the nasal 
area. Then the distances from the center of the eye to the nose, the center of the left eye to 
the nose, the center of the right eye to the nose were calculated and normalized. Finally, the 
correlations between the distance from the center of the eye to the nose and the VAS values 
were analyzed, as changes in the nasal area are vital signs of expressing pain. The stronger 
the pain, the smaller the distance between the center of the eye and the nose. Figure 16 
shows that the distances from the center of the eye to the nose decreased when the patient 
had a higher level of pain, which validates the assumption.

Texture based spatio-temporal methods (LBP-TOP) were also used to estimate low back 
pain. Since the distribution of pain intensities (Fig. 11) was highly imbalanced, we divided 
the pain and no pain classes according to whether the VAS value was greater than 2 or less 
than/equal to 2. Hence it became a binary classification problem to distinguish pain and 
no pain. The evaluation metrics, training strategies and corresponding results are demon-
strated as follows.

Fig. 15   Ratio of speech to 
pauses, average values from all 
14 patients

Fig. 14   Difference in ratio of 
speech to pauses from patient 
ID12
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Evaluation metrics  Accuracy and F1 score were used as the evaluation methods in video 
analysis. Based on the confusion matrix listed in Table 2, accuracy and F1 score were cal-
culated according to Eq. (3) and Eq. (6).

Training details  Two training strategies were used in the video analysis: leave-one-partic-
ipant-out cross validation and tenfold cross validation. During the training time, data from 
one participant (fold) were left as testing data, whereas the data on the rest of the partici-
pants (folds) were used as training data.

Results analysis  Tables 3 and 4 show the results of different LBP-TOP parameters, where 
p is the number of neighboring points sampled on XY plane, XT plane, and YT plane, 
respectively, r represents the radius on local neighboring pixels that form a circularly sym-
metry neighbor set, and bloc is the volume size of each spatio-temporal block. For instance, 
parameters with bloc = 6*6*5 represented the number of divisions in X, Y and T directions 
were 6, 6, 5 respectively.

(3)ACC =
TP + TN

P + N

(4)precision =
TP

TP + FP

(5)recall =
TP

TP + FN

(6)F
1

= 2 ⋅

precision ⋅ recall

precision + recall

Fig. 16   Correlation between 
distance from the center of the 
eye to the nose and VAS values 
for patient ID14

Table 2   Confusion matrix

Ground truth positive Ground truth negative

Predicted condition positive True positive (TP) False positive (FP)
I Error

Predicted condition negative False negative (FN)
II Error

True negative (TN)
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For the leave-one-participant-out strategy, parameters with p = 8, r = 1, the block divi-
sion of 6*6*5 achieved the best accuracy of 0.5055, whereas for the tenfold cross valida-
tion, parameters with p = 8, r = 2, the block division of 10*7*5 received the best performance 
with an accuracy of 0.8493 and an F1 score of 0.8581. The huge difference between the two 
protocols reveals that it is rather challenging to distinguish no pain and pain for an unseen 
participant with small scale data size, as in the case of the leave-one-participant-out protocol.

4.3 � Heart rate analysis

The patients with low back pain were divided into two groups according to their average 
level of pain during Phase 2: high pain level group (HPG n = 4, VAS > 4) and low pain 
level group (LPG n = 6, VAS < 4).

The average pain level during follow-up was 6.5 ± 1.6 for the HPG and 1.4 ± 0.6 for the 
LPG (p < 0.0001). Heart rate during night hours showed a tendency be lower (p = 0.062) 
for the LPG (70 ± 8 bpm) than for the HPG (80 ± 6 bpm). The average of vagally mediated 
high frequency power was significantly lower in the HPG than in the LPG (1.8 ± 0.3 ms2 
vs. 2.2 ± 0.2 ms2, p = 0.028, respectively) and indicator of sympathovagal balance (low 
to high frequency ratio) was higher in the HPG than in the LPG (4.7 ± 2.0 vs. 2.2 ± 0.8, 
p = 0.039, respectively). There was also a clear trend toward lower values of high frequency 
power for the HPG compared to the LPG when analyzed week by week (Fig.  17) The 
groups did not differ from each other in terms of gender, smoking or pain duration (p = ns 
for all). Interestingly, three of the four patients with low back pain in the HPG had some 
diagnosis of cardiometabolic disease as a comorbidity, whereas none were found in the 
LPG (p = 0.033).

The results of this study show that a higher level of long-term pain is associated with 
decreased vagal activity and increased sympathetic activity towards the heart. As altered 
ANS regulation has been associated with several diseases and prognosis, the results of this 
preliminary follow-up study of low back pain patients highlight the importance of effective 
treatment of pain.

Table 3   Performance in video 
data using Leave-one-participant-
out strategy

Method Parameters ACC​ F1 score

LBP-TOP p = 8,r = 1,bloc = 6*6*5 0.5055 0.5055
p = 8,r = 1,bloc = 8*6*6 0.5018 0.5108
p = 8,r = 1,bloc = 10*7*5 0.5018 0.4769
p = 8,r = 2,bloc = 6*6*5 0.4945 0.4773
p = 8,r = 2,bloc = 8*6*6 0.4359 0.4420
p = 8,r = 2,bloc = 10*7*5 0.4615 0.4411

Table 4   Performance in 
video data using tenfold cross 
validation strategy

Method Parameters ACC​ F1 score

LBP-TOP p = 8,r = 1,bloc = 6*6*5 0.8422 0.8512
p = 8,r = 1,bloc = 8*6*6 0.8235 0.8298
p = 8,r = 1,bloc = 10*7*5 0.8280 0.8385
p = 8,r = 2,bloc = 6*6*5 0.8459 0.8542
p = 8,r = 2,bloc = 8*6*6 0.8317 0.8425
p = 8,r = 2,bloc = 10*7*5 0.8493 0.8581
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4.4 � EEG analysis results

Evaluation metrics  The correlation coefficient between the alpha modulation ratio and the 
VAS value of low back pain intensity was calculated at Phase 1 (Baseline VAS) and Phase 
3 (Follow-up VAS).

Results analysis  The correlation coefficient showed -0.575 in the baseline experiment and 
-0.622 in the follow-up experiment (Fig. 18). The alpha oscillatory in resting state intrin-
sic EEG showed high power in the eyes-closed with increasing pain intensity, whereas the 
eyes-open alpha rhythm had low power in pain. That is, the higher the intensity of pain the 
lower the EO/EC ratio of the alpha power.

Fig. 17   A trend towards lower 
values of vagally mediated high 
frequency power (HFln2) for the 
HPG (VAS > 4) compared to the 
LPG (VAS < 4) was observed 
(general linear model for main 
effect p = 0.110) during Phase 2 
(1–2 months follow-up)

Fig.18   Correlation analysis; 
baseline (trial 1) and follow-up 
(trial 2)
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5 � Discussion

Automatic pain recognition and assessment has been a research area of growing interest in the 
last decade, containing activity on developing methods for the data acquisition and computa-
tion. Data acquisition includes many issues that are related to the devices and sensors used, setup 
of the experiments and the processing of the signals. Moreover, defining the protocol for data 
collection is crucial, including participant recruitment and selection and preparation of the pain 
provocation experiments and context, requiring expertise and collaboration of various branches 
of science. The main research in the area has been on exploiting the available databases [2, 11, 
13, 18, 30, 31, 34]. Appendix Table 5 contains the basic properties and the scale of the experi-
ments described in the state-of-the-art literature, illustrating the current status of existing data-
bases and studies. It also shows the challenges in pain-related research: the selection of appropri-
ate data, devices, pain stimuli, protocol design, and data labelling. Additional challenges are the 
experimental environment, the guidance required, patient recruitment, and ethical issues. All the 
studies (Appendix Table 5) were conducted in a laboratory environment. In [11, 13, 30, 31, 34] 
and [7] heat or electrical stimulation was used to induce pain. In these cases, it was possible to 
calibrate the stimulus for annotation per person. [18] and [2] use motion (controlled movement) 
as a stimulus. In these self-reports, the VAS scale and both expert and lay observers were used 
to annotate the data. Overall, a typical system design in the related literature had several devices, 
and the position of the cameras and the placement of sensors were configured very precisely. The 
measurements were also guided by experts in a highly controlled environment.

Despite the increasing interest in automatic pain recognition, a major challenge for advanc-
ing this area of research is still the lack of research in real environments [19, 27, 32]. In home 
measurements, pain provocation must be designed so that an application can guide it and it must 
be applicable without continuous supervision. The selection of appropriate data, devices, pain 
stimuli, protocol design, data labelling, and the implementation of the questionnaires require 
additional attention. In this sense, the home environment or any other real environment poses 
even more challenges. In this study, a pilot data set of 14 patients was collected with defined 
protocol, measurement setup and application in order to evaluate the validity of the proposed 
approach especially in the home environment, which differs significantly from the laboratory 
settings in [2, 11, 13, 18, 30, 31, 34]. Each participant was measured weekly for 1–2 months.

In addition to the data acquisition, we present analyses to validate the data. Discriminative 
features were extracted from the collected data, based on ideas that have proven to be success-
ful in other domains but not specifically utilized in pain research. Our preliminary experiments 
showed that some features extracted from the data can indicate the existence of low back pain 
or trends in low back pain. For example, a decrease in the distances between the center of the 
eye and the nose indicates the appearance of pain in facial expressions, which is consistent 
with the studies in [33]. Earlier studies [21] have also demonstrated that one of the symptoms 
of pain is less rapid human responses, which also affects some voice parameters. Similarly, our 
results indicate that F0 frequency tends to decline less when the pain level is high and the ratio 
of speech to pauses decreases as the pain level increases. Interesting findings were also found 
regarding the heart rate and EEG data. For the heart rate analysis, we hypothesize that relief 
of individual pain experience may facilitate more normalized and healthier ANS regulation 
[25]. Moreover, previous studies have indicated that frontal, parietal, and temporal alpha sym-
metries could reflect emotional valence [6, 23]. Our results indicated a correlation between the 
level of pain intensity and EO/EC ratio of alpha power in EEG signal.

In the experiments we were able to discover features that correlated with self-reported VAS 
values, also providing preliminary classification results regarding pain recognition. However, 
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these findings should be confirmed in studies with larger databases. The performance of the 
whole system could be improved by appropriately combining the information provided by 
several modalities using classifier fusion strategies [27]. Fusion strategies are used to combine 
different modalities, features, decision scores, or other information sources to obtain a single 
final prediction. Although feature fusion is common, performance should be compared with the 
results obtained from the individual inputs or other fusion methods. Decision fusion methods 
combine the outputs of multiple models, either by a fixed rule or another trained model. The 
results of the feature fusion or decision fusion strategies depend on the selected classifier and 
data [32]. Thus, to obtain optimal results, several techniques should be compared, especially 
in the case of multimodal data, when various features can be extracted from each modality. 
For this, more data need to be gathered and evaluated and different options tested. We feel that 
the performance of a multimodal system benefits from better input, and accordingly improving 
recognition within each single modality is valuable. In general, one of the biggest challenges is 
overcoming the fact that different individuals react differently to pain. Methods should be devel-
oped to confront this issue by more efficiently performing the analyses, for example, by normal-
izing the data, grouping the data into different categories, or developing person-specific models.

Studies require obtaining informed consent from research participants and the anonymi-
zation of identifiable information. The GDPR contains regulations concerning individu-
als’ data protection (https://​gdpr-​info.​eu/). This requires paying extra attention to the man-
agement of information, such as videos or images, in which individuals can be identified. 
Unfortunately, this may affect the availability of images and video information for research 
in public databases in the future.

6 � Conclusions

This paper presented a novel protocol for low back pain estimation based on the data col-
lected from both hospital and home measurements, casting light on the potential of pain 
monitoring in natural scenarios. All the data, including questionnaires completed by 
patients before the measurements, videos, audio recordings, heart rate information, and 
feedback were collected through a user-friendly application on a tablet, which eased the 
process of home monitoring of pain. The data, consisting of multiple modalities, were ana-
lyzed to determine the correlations between features or trends in the data and the intensity 
or amount of increase/decrease in pain.

The analysis of the pilot data was a useful source of information and feedback to dictate 
how the current setup should evolve to be able to collect larger volumes of data. Com-
bining physiological responses and audio-visual responses with self-reported pain inten-
sity, questionnaires, and developing a regression model can be considered a future step for 
quantitatively assessing pain experience. The characterization of bio-signals from individ-
ual pain patients is crucial for identifying relevant domains of pain experience to achieve 
more targeted treatments and thereby prevent the development of chronic pain. The use of 
modern technology, such as home-based monitoring applications may enable us to assess 
pain experience more granularly at the individual level.

Enabling the monitoring of pain experience (smartphone/laptop/tablet applications) 
during home measurements provides huge potential for improving the treatment of pain 
patients. Our research extends what has been done so far by providing a more efficient 
model for measurements. Specifically, it shows that recordings can also take place at home 
with the use of a mobile device and a user-friendly application designed to collect multi-
modal data without a person supervising the process. This allows long-term follow-up of 
patients for more individualized treatment decisions.

5737Multimedia Tools and Applications (2022) 81:5717–5742

https://gdpr-info.eu/


1 3

Appendix

Table 5   Existing databases and studies in state-of-the-art literature

Selection 
of data

Devices Pain stimulus 
and protocol 
design

Data labelling Environment/ 
guidance

Patient recruitment

[31] -video of 
face

-SCL
-ECG
-sEMG
-EEG

-Kinect 
camera

-three video 
cameras

-Nexus-32 
amplifier

(SCL, ECG, 
sEMG

EEG)

-heat pain
-4 intensi-

ties × 20 
repetitions

-emotion 
elicitation

-stimulus 
calibrated 
per person

-four pain 
levels

-laboratory
-controlled

-90 healthy subjects
-study approved by eth-

ics committee

[18] -video of 
face

-two Sony dig-
ital cameras

-eight motion 
tests

-self-report 
(VAS, 
sensory and 
affective 
verbal 
scales)

-observer 
assessed 
pain inten-
sity (OPI)

-FACS coding

-laboratory 
room

-controlled
-physi-

otherapist 
involved 
for passive 
tests

-129 adult shoulder pain 
patients

-recruited from 3 physi-
otherapy clinics and 
by advertisements

-informed consent

[34] -video of 
face

-EDA
-EGC
-RSP
-BVP

-3D camera
-infrared 

camera
-BioPac 

(EDA, EGC, 
RSP, BVP)

-cold pressor 
test

-stimulus
-FACS coding

-laboratory
-controlled

-141 healthy subjects
-study approved by IRB 

-informed consent

[30] -video of 
face

-audio
-EDA
-ECG
-sEMG
-RSP

-3 video 
cameras

-MOBIlab 
(EMG,ECG)

-GSRsensor 
(SCL)

-RSP sensor
-digital wire-

less headset 
microphone

-directional 
microphone

-heat pain,
-image stimu-

lus
-heat pain (3 

intensi-
ties × 30 
rep-
etitions × 2 
stimulus 
sites)

-emotion 
elicitation

-pain and 
emotion 
stimulus

-pain cali-
brated per 
person

-self-report 
(VAS)

-laboratory
-controlled

-45 healthy subjects
-recruited by advertise-

ments
-informed consent
-study approved by eth-

ics committee

[2] -video
-audio,
-sEMG

-8 video 
cameras

-customized 
motion cap-
ture suit

-wireless 
sEMG 
probes

-physical 
exercises

designed by 
physiothera-
pists with 
expertise 
in treating 
chronic low 
back pain

-self report 
(1–10 scale)

-pain intensity 
assessed 
by naive 
observers

-presence 
of pain 
behaviors 
assessed by 
experts

-laboratory
-controlled
-followed by 

physiothera-
pist or psy-
chologist

-22 chronic lower back 
pain patients

-28 healthy controls
identified by health care 

staff
-informed consent
-study approved by eth-

ics committee

5738 Multimedia Tools and Applications (2022) 81:5717–5742



1 3

Acknowledgements  The National Technology Agency of Finland (Business Finland) is gratefully acknowl-
edged for financial support.

Funding  Open Access funding provided by University of Oulu including Oulu University Hospital. Univer-
sity of Oulu, The National Technology Agency of Finland (Business Finland).

Availability of data and material  Not available.

Code availability  Not available.

Declarations 

Ethics approval  The Ethical Committee of the Northern Ostrobothnia. Hospital District, Oulu, Finland, 
approved the PASE study protocol.

Consent to participate  All voluntary patients and healthy participants gave their informed consent.

Conflicts of interest/Competing interests  The authors declare that they have no known competing financial 
interests or personal relationships that could appear to influence the work reported in this paper.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 

Table 5   (continued)

Selection 
of data

Devices Pain stimulus 
and protocol 
design

Data labelling Environment/ 
guidance

Patient recruitment

[13] -RGB, 
depth 
and 
ther-
mal 
video 
of face

-EMG

-Kinect 
camera

-thermal 
camera

-surface 
electrodes 
(EMG)

-electrical 
pain stimu-
lation

-two trial for 
no pain and 
for four pain 
levels

-stimulus 
calibrated 
per person

-self-report 
(VAS)

-20 healthy subjects

[11] -video of 
face

-audio
-ECG
-SCL
-sEMG

-4 video 
cameras

-BioPac 
(ECG,SCL, 
sEMG)

-heat and 
electrical 
pain

-3 intensities

-pain stimulus 
calibrated 
per person

-laboratory
-camera-

monitored, 
temperature 
controlled, 
low-noise 
calibra-
tion and 
monitoring 
room

-controlled

-134 healthy subjects
-study approved by eth-

ics committee

[7] -BVP
-ECG
-SCL

-three-channel 
biosensors 
(BVP,ECG, 
SCL)

-electrical 
stimulation

-repetition to 
obtain 7 day 
data set

-stimulus 
intensity

-five pain 
states

-laboratory
-controlled

-six healthy subjects

SCL: skin conductance level, ECG: electrocardiogram, sEMG: surface electromyography, EEG: electroen-
cephalography, EDA: electrodermal activity, IRB: Institutional Review Board, FACS: Facial Action Coding 
System, RSP: Respiration, BVP: blood volume pulse.
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