Skip to main content
Log in

Human tau protein forms complex with PrP and some GSS- and fCJD-related PrP mutants possess stronger binding activities with tau in vitro

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Microtubule associated protein tau is considered to play roles in some types of human transmissible spongiform encephalopathies (TSE). In this study, the full-length and several truncated human tau proteins were expressed from E. coli and purified. Using GST pull down, co-immunoprecipitation assay and tau-coated ELISA, the molecular interaction between tau protein and PrP was confirmed in the context of the full-length human tau. The N terminus (amino acids 1–91) and tandem repeats region (amino acids 186–283) of tau protein were responsible for the interaction with PrP. The octapeptide repeats within PrP directly affected the binding activity of PrP with tau. GSS-related mutant PrP102L and fCJD- related mutants with two and seven extra octarepeats showed more active binding capacity with tau than wild-type PrP. The molecular interactions between PrP and tau protein highlight a potential role of tau in the biological function of PrP and the pathogenesis of TSE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goedert M, Jakes R (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J 9:4225–4230

    PubMed  CAS  Google Scholar 

  2. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72:1858–1862

    Article  PubMed  CAS  Google Scholar 

  3. Cleveland DW, Hwo SY, Kirschner MW (1997) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116:227–247

    Article  Google Scholar 

  4. Cleveland DW, Hwo SY, Kirschner MW (1997) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116:207–225

    Article  Google Scholar 

  5. Schaffer B, Wiedau-Pazos M, Geschwind DH (2003) Gene structure and alternative splicing of glycogen synthase kinase 3 beta (GSK-3beta) in neural and non-neural tissues. Gene 302:73–81

    Article  PubMed  CAS  Google Scholar 

  6. Wu JY, Kar A, Kuo D (2006) SRp54 (SFRS11), a regulator for tau exon 10 alternative splicing identified by an expression cloning strategy. Mol Cell Biol 26:6739–6747

    Article  PubMed  CAS  Google Scholar 

  7. Yamashita T, Tomiyama T, Li Q, Numata H et al (2005) Regulation of tau exon 10 splicing by a double stem-loop structure in mouse intron 10. FEBS Lett 579:241–244

    Article  PubMed  CAS  Google Scholar 

  8. Hall G.F, Chu B, Lee G. et al (2000) Human tau filaments induce microtubule and synapse loss in an in vivo model of neurofibrillary degenerative disease. J Cell Sci 113(Pt 8):1373–1387

    PubMed  CAS  Google Scholar 

  9. Murayama S, Mori H, Ihara Y et al (1990) Immunocytochemical and ultrastructural studies of Pick’s disease. Ann Neurol 27:394–405

    Article  PubMed  CAS  Google Scholar 

  10. Perry G, Stewart D, Friedman R, Manetto V et al (1987) Filaments of Pick’s bodies contain altered cytoskeletal elements. Am J Pathol 127:559–568

    PubMed  CAS  Google Scholar 

  11. Probst A, Langui D, Lautenschlager C et al (1988) Progressive supranuclear palsy: extensive neuropil threads in addition to neurofibrillary tangles. Very similar antigenicity of subcortical neuronal pathology in progressive supranuclear palsy and Alzheimer’s disease. Acta Neuropathol. (Berl) 77:61–68

    Article  CAS  Google Scholar 

  12. Kunzi V, Glatzel M, Nakano MY et al (2002) Unhampered prion neuroinvasion despite impaired fast axonal transport in transgenic mice overexpressing four-repeat tau. J Neurosci 22:7471–7477

    PubMed  CAS  Google Scholar 

  13. Otto M, Wiltfang J, Cepek L et al (2002) Tau protein and 14-3-3 protein in the differential diagnosis of Creutzfeldt-Jakob disease. Neurology 58:192–197

    PubMed  CAS  Google Scholar 

  14. Ishizawa K, Komori T, Shimazu T et al (2002) Hyperphosphorylated tau deposition parallels prion protein burden in a case of Gerstmann–Straussler–Scheinker syndrome P102L mutation complicated with dementia. Acta Neuropathol 104:342–350

    PubMed  Google Scholar 

  15. Kovacs GG., Budka H (2002) Aging, the brain and human prion disease. Exp Gerontol 37:603–605

    Article  PubMed  CAS  Google Scholar 

  16. Borchelt DR, Koliatsos VE, Guarnieri M et al (1994) Rapid anterograde axonal transport of the cellular prion glycoprotein in the peripheral and central nervous systems. J Biol Chem 269:14711–14714

    PubMed  CAS  Google Scholar 

  17. Spittaels K, Van den Haute C, Van Dorpe J et al (1999) Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 155:2153–2165

    PubMed  CAS  Google Scholar 

  18. Han J, Zhang J, Yao HL et al (2006) Study on interaction between microtubule associated protein tau and prion protein. Sci China 26:201–204

    Google Scholar 

  19. Han J, Wang XF, Yao HL et al (2005) Prion protein inhibited tau-mediated microtubule formation. Neurosci Bull 21:398–403

    CAS  Google Scholar 

  20. Gao JM, Wan YZ, Han J et al (2005) Influence of the numbers of octapeptide repeats within N-terminus of recombinant human PrP proteins on the protease resistance after interacting with metal ions and the binding ability with tau protein. Chinese J Virol 21(5): 376–383

    CAS  Google Scholar 

  21. Brown DR (2000) Altered toxicity of the prion protein peptide PrP106–126 carrying the Ala(117)−>Val mutation. Biochem J 346(Pt 3):785–791

    Article  PubMed  CAS  Google Scholar 

  22. Berr C, Helbecque N, Sazdovitch V et al (2003) Polymorphism of the codon 129 of the prion protein (PrP) gene and neuropathology of cerebral ageing. Acta Neuropathol (Berl) 106:71–74

    CAS  Google Scholar 

  23. Mukrasch MD, Biernat J, von Bergen M et al (2005) Sites of tau important for aggregation populate {beta}-structure and bind to microtubules and polyanions. J Biol Chem 280:24978–24986

    Article  PubMed  CAS  Google Scholar 

  24. Gustke N, Trinczek B, Biernat J et al (1994) Domains of tau protein and interactions with microtubules. Biochemistry 33:9511–9522

    Article  PubMed  CAS  Google Scholar 

  25. Biernat J, Gustke N, Drewes G et al (1993) Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron 11:153–163

    Article  PubMed  CAS  Google Scholar 

  26. Perez M, Lim F, Arrasate M et al (2000) The FTDP-17-linked mutation R406W abolishes the interaction of phosphorylated tau with microtubules. J Neurochem 74:2583–2589

    Article  PubMed  CAS  Google Scholar 

  27. Dustin P, Brion JP (1988) Pathology of the cytoskeleton. Ann Pathol 8:3–19

    PubMed  CAS  Google Scholar 

  28. Dustin P, Brion JP, Flament-Durand J (1988) The cytoskeleton and its pathology. Bull Mem Acad R Med Belg 143:308–316

    PubMed  CAS  Google Scholar 

  29. D’Andrea MR, Ilyin S, Plata-Salaman CR (2001) Abnormal patterns of microtubule-associated protein-2 (MAP-2) immunolabeling in neuronal nuclei and Lewy bodies in Parkinson’s disease substantia nigra brain tissues. Neurosci Lett 306:137–140

    Article  PubMed  CAS  Google Scholar 

  30. Jellinger KA (2001) Cell death mechanisms in neurodegeneration. J Cell Mol Med 5:1–17

    Article  PubMed  CAS  Google Scholar 

  31. Jellinger KA (2000) Cell death mechanisms in Parkinson’s disease. J Neural Transm 107:1–29

    Article  PubMed  CAS  Google Scholar 

  32. Saha AR, Hill J, Utton MA et al (2004) Parkinson’s disease alpha-synuclein mutations exhibit defective axonal transport in cultured neurons. J Cell Sci 117:1017–1024

    Article  PubMed  CAS  Google Scholar 

  33. Guiroy DC, Shankar SK, Gibbs CJ et al (1989) Neuronal degeneration and neurofilament accumulation in the trigeminal ganglia in Creutzfeldt-Jakob disease. Ann Neurol 25:102–106

    Article  PubMed  CAS  Google Scholar 

  34. Ferrer I (2002) Synaptic pathology and cell death in the cerebellum in Creutzfeldt-Jakob disease. Cerebellum 1:213–222

    Article  PubMed  CAS  Google Scholar 

  35. Duchen LW, Poulter M, Harding AE (1993) Dementia associated with a 216 base pair insertion in the prion protein gene. Clinical and neuropathological features. Brain 116(Pt 3):555–567

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese National Natural Science Foundation Grants 30571672 and 30500018, National Science and Technology Task Force Project (2006BAD06A13-2) and National Basic Research Program of China (973 Program) (2007CB310505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ping Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XF., Dong, CF., Zhang, J. et al. Human tau protein forms complex with PrP and some GSS- and fCJD-related PrP mutants possess stronger binding activities with tau in vitro. Mol Cell Biochem 310, 49–55 (2008). https://doi.org/10.1007/s11010-007-9664-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9664-6

Keywords

Navigation