Skip to main content
Log in

Geological and radiological studies of the Mount Arafat, Mekkah, Saudi Arabia

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Mount Arafat is a sacred place for Muslims. It has been classified as a granodiorite rock which mainly consists of feldspar and quartz, muscovite, etc. During the Hajj and Umra, Muslims visit this holly place and stay there for some time. In order to study the geology and thermal history as well as to assess the radiological hazards due to the presence of primordial radionuclides, systematic studies using petrographic, fission track dating and γ-spectrometric (HPGe) techniques were carried out. Our study yielded fission track age of 9.13 ± 1.05 Ma of the Mount Arafat granodiorite. Rifting, magmatism, volcanism and sea floor spreading that resulted in the formation of Red Sea seems may have altered the original age of the Arafat granodiorite under study to 9.13 ± 1.05 Ma. Measured radioactivity concentrations due to 226Ra, 232Th and 40K were found to be 10.75 ± 3.92, 29.21 ± 4.34 and 664.49 ± 7.45 Bq kg−1, respectively. From the measured radioactivity, gamma index (Iγ) and radium equivalent (Raeq) were calculated as 0.402 and 103.23 Bq kg−1 whereas outdoor external dose (Dout) and annual effective dose (Eout) were estimated to be 40.30 nGyh−1 and 0.045 mSvy−1 respectively. All the above mentioned values are well below the recommended limits. The Mount Arafat thus does not pose any radiological health hazard to the general public.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. UNSCEAR (2000) Effects from natural radiation sources. United Nations Scientific Committee on Effects of Atomic Radiation, New York

    Google Scholar 

  2. Le Maitre RW (1989) Blackwell, Oxford, p 193

  3. Abbady A (2005) Indian J Pure Appl Phys 43:589–593

    Google Scholar 

  4. Johnson PR (2006) Technical report SGS-TR-2006-4

  5. Abdelsalam MG, Stern RJ (1996) J Afr Earth Sci 23:289–310

    Article  Google Scholar 

  6. Camp VE (1984) Geol Soc Am Bull 95:913–921

    Article  Google Scholar 

  7. Stoeser DB, Camp VE (1985) Geol Soc Am Bull 96:817–826

    Article  CAS  Google Scholar 

  8. Qari MHT, Madani AA, Matsah MIM, Hamimi Z (2008) Arabian J Sci Eng 33(1C):99–116

    Google Scholar 

  9. Spadavecchia A, Hahn B (1967) Helv Phys Acta 40:1063–1079

    Google Scholar 

  10. Durrani SA, Bull RK (1987) Solid state nuclear track detection: principles, methods and applications. Pergammon Press, Oxford

    Google Scholar 

  11. Yang YX, Wu XM (2005) Appl Radiat Isot 63:255–259

    Article  CAS  Google Scholar 

  12. Benke R, Kearfott J (1999) Nucl Instrum Methods 422:817–819

    Article  CAS  Google Scholar 

  13. Akhtar N, Tufail M, Ashraf M, Iqbal MM (2005) Radiat Meas 39:11–14

    Article  CAS  Google Scholar 

  14. Le SC, Ken CK, Lee DM, Kang HD (2001) Radiat Prot Dosim 94:269–274

    Article  Google Scholar 

  15. ASTM (1986) Recommended practice for investigation and sampling soil and rocks for engineering purpose. Annual Book of ASTM Standards, Philadelphia, PA

  16. Tufail M, Akhtar N, Javied S, Hamid T (2007) J Radiol Prot 27:481–492

    Article  CAS  Google Scholar 

  17. Tufail M, Akhtar N, Waqas M (2006) Health Phys 90:361–370

    Article  CAS  Google Scholar 

  18. Matiuullah A, Rehman SU, Faheem M (2004) Radiat Prot Dosim 112:443–447

    Article  Google Scholar 

  19. Malik F, Matiullah, Akram M, Rajput U (2011) Radiat Prot Dosim 143:97–105

    Article  CAS  Google Scholar 

  20. Pallister JS (1986) US Geological Survey I/USGS, Denver

  21. Karadeniz O, Cıyrak N, Yaprak G, Akal C (2011) J Radioanal Nucl Chem 288:919–926

    Article  CAS  Google Scholar 

  22. Rusko M, Andras P (2010) Faculty of material sciences & technology in Travara, Slovak University of Technology in Bratislava, no. 29

  23. Beretka J, Marthew PJ (1985) Health Phys 48:87–95

    Article  CAS  Google Scholar 

  24. Ibrahim N (1999) J Environ Radioact 43:255–258

    Article  CAS  Google Scholar 

  25. Rehman S, Matiullah, Mujahid SA, Hussain S (2008) J Radiol Prot 28:205–212

    Article  Google Scholar 

  26. ICRP (1999) Recommendations of the International Commission on radiological protection. Pergammon Press, Oxford

  27. Sannappa J, Ningappa C, Narasimha KNP (2010) Indian J Pure Appl Phys 48:817–819

    CAS  Google Scholar 

  28. Gbadebo AM, Ayedun H, Okedeyi AS (2011) Environ Res J 5(2):25–30

    Article  Google Scholar 

  29. Ahmed NK, Abbady A, El Arabi AM, Michel R, El Kamel AH, Abbady AG (2006) Radiat Meas 44:209–215

    CAS  Google Scholar 

  30. EC (1999). Radiological protection principles concerning the natural radioactivity of building materials. Radiation protection 112, Directorate General Environment, Nuclear Safety and Civil Protection, European Commission, Luxembourg

  31. ICRP (1991) Recommendations of the International Commission on radiological protection. ICRP Publication 60, Ann. ICRP 21, nos. 1–3

  32. Ibrahim N (1999) J Environ Radioact 43:255–258

    Article  CAS  Google Scholar 

  33. Ali M, Qureshi AA, Waheed A, Baloch MA, Qayyum H, Tufail M, Khan HA (2011) Environ Monit Assess. doi:10.1007/s10661-011-2290-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Qureshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qureshi, A.A., Sultan, A., Rashid, A. et al. Geological and radiological studies of the Mount Arafat, Mekkah, Saudi Arabia. J Radioanal Nucl Chem 293, 955–963 (2012). https://doi.org/10.1007/s10967-012-1776-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1776-0

Keywords

Navigation