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1 Introduction

The porosity of a set describes the sizes of holes in the set. The concept
dates back to the 1920’s when Denjoy introduced a notion which he called
index (see [7]). In today’s terminology, this index is called the upper porosity
(see Definition 3.1). The term porosity was introduced by Dolženko in [8].
Intuitively, if the upper porosity of a set equals α, then, in the set, there are
holes of relative size α at arbitrarily small distances. On the other hand, the
lower porosity (see Definition 3.1) guarantees the existence of holes of certain
relative size at all sufficiently small distances. The upper porosity turned out
to be useful in order to describe properties of exceptional sets, for example,
for measuring sizes of sets where certain functions are non-differentiable. For
more details about the upper porosity, we refer to an article of Zaj́ıček [37].
Mattila [28] utilised the lower porosity to find upper bounds for Hausdorff
dimensions of set, and Salli [33] verified the corresponding results for packing
and box counting dimensions.

It turns out that upper porosity cannot be used to estimate the dimension
of a set (see [29, Section 4.12]). An observation that there are sets which are
not lower porous but nevertheless contain so many holes that their dimension
is smaller than the dimension of the ambient space, leads to the concept of
mean porosity of a set introduced by Koskela and Rohde [25] in order to study
the boundary behaviour of conformal and quasiconformal mappings. Mean
porosity guarantees that certain percentage of scales, that is, distances which
are integer powers of some fixed number, contain holes of fixed relative size.
Koskela and Rohde showed that, if a subset of the m-dimensional Euclidean
space is mean porous, then its Hausdorff and packing dimensions are smaller
than m. For a modification of their definition, see Definition 3.6.

The lower porosity of a measure was introduced by Eckmann and E. and
M. Järvenpää in [11], the upper one by Mera and Morán in [31] and the mean
porosity by Beliaev and Smirnov in [3]. The relations between porosities and
dimensions of sets and measures have been investigated, for example, in [3,4,
16–19,21,35]. For further information on this subject, we refer to a survey by
Shmerkin [34]. Porosity has also been used for studying the conical densities
of measures (see [22,23]).

Note that sets with same dimension may have different porosities. In [20],
E. and M. Järvenpää and Mauldin and, in [36], Urbański characterised de-
terministic iterated function systems whose attractors have positive porosity.
Porosities of random recursive constructions were studied in [20]. Particularly
interesting random constructions are those in which the copies of the seed
set are glued together in such a way that there are no holes left. Thus, the
corresponding deterministic system would be non-porous and the essential
question is whether the randomness in the construction makes the set or mea-
sure porous. A classical example is the Mandelbrot percolation process (also
known as the fractal percolation) introduced by Mandelbrot in 1974 in [27].

In the Mandelbrot percolation process on Rm, one fixes a natural number
k ≥ 2, starts with a unit cube J = [0, 1]m, divides it into km closed k-adic
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subcubes with side length k−1 and let each one of them ”survive” or ”die”
independently with probabilities p and 1 − p, respectively. The cubes with
side length k−1 are called the first level subcubes. This procedure is repeated
recursively: Each surviving ith level subcube C with side length k−i is divided
into km closed k-adic subcubes with side length k−i−1 and each one of them
survives or dies with probability p and 1 − p, respectively, independently of
all the cubes on the current and on the previous levels that survived. This
defines a random collection of the (i + 1)th level subcubes with side length
k−(i+1). The union of the ith level subcubes that survived, as i approaches
infinity, forms a decreasing sequence of compact sets whose limit is the limit
set of the Mandelbrot percolation process, denoted by Kω, where ω ∈ Ω and Ω
corresponds to all possible options for subcube survival. There exists a natural
probability measure P on Ω describing this process. The limiting set Kω is
empty with positive probability but, according to [30, Theorem 1.1] (see also
[24]), the Hausdorff dimension of Kω is P -almost surely equal to

d =
log(kmp)

log k
= m+

log p

log k
(1.1)

provided that Kω 6= ∅. Using this number d, one may construct a martingale,
whose almost sure limit induces a finite Borel measure νω supported on Kω

with dimension equal to d. In the next section, we describe the main steps in
the construction of the measure νω.

In [20], it was shown that, P -almost surely, the points with minimum poros-
ity as well as those with maximum porosity are dense in the limit set. However,
the question about porosity of typical points and that of the natural measure
remained open. Later, it turned out that, for typical points, the lower porosity
equals 0 and the upper one is equal to 1

2 as conjectured in [20]. Indeed, this is
a corollary of the results of Chen et al. in [6] dealing with estimates on the di-
mensions of sets of exceptional points regarding the porosity. The proofs in [6]
rely on the extinction of random subtrees of a rooted km-ary tree T (similarly
to the Galton-Watson process) that satisfy certain properties and make use of
the geometric structures. The main idea of the present paper is based on the
ergodicity (or, the strong law of large numbers) for the indicator functions of
the holes, with a small role of the construction geometry.

In order to state our main results, we need to describe some steps in the
percolation process more formally. Let T be a rooted km-ary tree. The limit
set Kω can be represented as a projection of the boundary of a subtree of T
into the unit cube. Indeed, the initial cube J = J∅ of the percolation process
corresponds to the root of T , indexed by the empty sequence ∅. The vertices of
T , whose distance to the root is 1, are associated with the first level subcubes
with side length k−1 and are indexed by the alphabet I = {1, . . . , km}, the
vertices with distance 2 to the root are associated with the second level sub-
cubes and indexed by two letter long sequences from I, etc. In this way, the
set of vertices of T is associated with I∗ = ∪∞i=0I

i and the boundary ∂T of T
can be identified with IIN. For all i ∈ IN and σ ∈ Ii, we use the notation Jσ for
the unique closed subcube of J∅ with side length k−i coded by σ. The natural
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projection x : IIN → J∅ maps an infinite code word σ ∈ IIN to the intersection
of the nested sequence of the subcubes corresponding to all finite initial sub-
sequences of σ, and this intersection is a singleton. The probability space Ω is
the set of all functions ω : I∗ → {c, n} with c referring for “choosing” and n
for “neglecting.” The probability measure P on the space Ω is generated by
the Bernoulli measures with choosing probability p.

On IIN, there exists a random measure µω whose pushforward via the
natural projection map x into Kω is νω. The precise definition of µω is adduced
in Section 2. Finally, we define a probability measure Q on IIN×Ω, describing
typical points of the limit set Kω for typical ω, by integrating µω with respect
to P so that, for every Borel set B ⊂ IIN ×Ω, we have

Q(B) =

∫
µω(Bω)dP (ω), (1.2)

where Bω = {η ∈ IIN | (η, ω) ∈ B}. The detailed construction of the measure
Q (for example, the measurability issues) the interested reader can find in
the paper by Graf, Mauldin and Williams [14, Section 1]. We note that the
definition of µω in [14,30] differs by the factor (diam J)d compared to the con-
vention we have chosen in this paper. The operation of integrating measures,
in general, is described by Elliott in [10] as regular conditional measure.

In this paper, we consider mean porosities tied to the geometry of the con-
struction. By the construction based mean porosity, we mean, for a given point
of the limit set, the average proportion of levels of the tree T at which we can
observe a cube-shaped hole of the given relative size inside the construction
cube. We prove that the construction based mean porosities of the natural
measure and of the limit set exist and are equal to each other Q-almost surely
for all parameter values outside of a countable set (see Theorem 4.11). We also
show that the construction based mean porosities are continuous as a function
of the parameter outside this exceptional set (see Theorem 4.5). Unlike the up-
per and lower porosities, the construction based mean porosities of the set and
the natural measure at typical points are non-trivial. Indeed, we prove that
the construction based mean porosities of the set and the natural measure are
positive and less than one Q-almost surely for all non-trivial parameter values
(see Corollaries 4.8 and 4.13). In the sequel, we omit the adjective ”construc-
tion based” when referring to porosities, if this is clear from the context. As
an application of our results, we solve the conjecture of [20] completely (and
give a new proof for the part solved in [6]) by showing that, almost surely for
almost all points with respect to the natural measure νω, the regular (based on
Euclidean balls) lower porosities of the limit set and of the measure are equal
to the minimum value of 0, whereas the regular upper porosities of the set and
of the measure νω attain their maximum values of 1

2 and 1, respectively (see
Corollary 4.14).

The article is organised as follows. In Section 2, we go over the definition of
the limit set Kω of the Mandelbrot percolation process and adduce some basic
facts about the natural measure νω. In Section 3, we define porosities and con-
struction based mean porosities and describe some of their properties. Finally,



Porosities of Mandelbrot percolation 5

in Section 4, we prove our results about construction based mean porosities of
the limit set and of the natural measure in the Mandelbrot percolation process.

2 Preliminaries

For k,m ∈ IN with k ≥ 2, we consider the alphabet I = {1, . . . , km} and the
set of all finite sequences of the alphabet I∗ =

⋃∞
i=0 I

i, where I0 = ∅. An
element σ ∈ Ii is called a word and its length is |σ| = i. For all σ ∈ Ii and
σ′ ∈ Ij , we denote by σ ∗ σ′ the element of Ii+j whose first i coordinates
are those of σ and the last j coordinates are those of σ′. For all i ∈ IN and
σ ∈ I∗ ∪ IIN, denote by σ|i the word in Ii formed by the first i elements of σ.
For σ ∈ I∗ and τ ∈ I∗ ∪ IIN, we write σ ≺ τ if the sequence τ starts with σ.

Let Ω = {c, n}I∗ be the set of functions ω : I∗ → {c, n} equipped with the
topology induced by the metric ρ(ω, ω′) = k−|ω∧ω

′|, where

|ω ∧ ω′| = min{j ∈ IN | ∃σ ∈ Ij with ω(σ) 6= ω′(σ)}.

Each ω ∈ Ω can be thought of as a code that tells us which cubes we choose (c)
and which we neglect (n). The image of η ∈ IIN under the natural projection
from IIN to [0, 1]m is denoted by x(η), that is,

x(η) =

∞⋂
i=0

Jη|i ,

where η|0 = ∅ and Jη|i ⊂ [0, 1]m is the k-adic cube with side length k−i as
described in the Introduction. If ω(σ) = n for σ ∈ Ii we define Jσ(ω) = ∅, and
if ω(σ) = c we set Jσ(ω) = Jσ. For all ω ∈ Ω, we define

Kω =

∞⋂
i=0

⋃
σ∈Ii

Jσ(ω).

Fix 0 ≤ p ≤ 1. We make the above construction random by defining a
probability measure P on Ω by setting P = (pδc + (1 − p)δn)I

∗
, where δs is

the Dirac measure at s for s ∈ {c, n}, that is, every cube Jσ is chosen with
respect to the measure pδc + (1− p)δn independently of every other cube Jτ .
We shortly explain how our definition is related to the one described in the
fifth paragraph of the Introduction. Observe that if ω(σ) = n for some σ ∈ I∗,
then the value of ω on σ∗τ for τ ∈ I∗ plays no role in the definition of Kω since
Jσ(ω) = ∅. Define an equivalence relation ∼ on Ω by setting that ω ∼ ω′ if, for
all η ∈ IIN with x(η) 6∈ Kω, we have min{i | ω(η|i) = n} = min{i | ω′(η|i) = n}
and similarly for all η ∈ IIN with x(η) 6∈ Kω′ . Let Ω̃ = Ω/ ∼ and let P̃ be

the probability measure on Ω̃ induced by P . Then (Ω̃, P̃ ) is the probability
space defining the Mandelbrot percolation as described in the fifth paragraph
of the Introduction, that is, for any finite set of codes σi of finite length such
that σi1 6≺ σi2 and σi2 6≺ σi2 for all i1 6= i2, if Jσi is chosen then Jσi∗j ,
j = 1, . . . , km, are chosen independently with probability p for all different
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squares Jσi . Both (Ω,P ) and (Ω̃, P̃ ) are used in the literature to model the
Mandelbrot percolation but, in the sequel, we use only the space (Ω,P ).

It is a well-known result in the theory of branching processes that if the
expectation of the number of chosen cubes of side length k−1 does not exceed
one, then the limit set Kω is P -almost surely empty and, otherwise, Kω 6= ∅
with positive probability (see [1, Theorem 1]). In our case, this expectation
equals kmp and, thus,

P (Kω 6= ∅) > 0 ⇐⇒ k−m < p ≤ 1. (2.1)

For all σ, τ ∈ I∗, we define the random variable

lσ,τ (ω) = k−|τ |11{ω(σ∗(τ |j))=c for all j=1,...,|τ |}

on Ω. In the case σ = ∅, we write simply lτ for l∅,τ . For all σ ∈ I∗, the
martingale {

∑
τ∈Ij l

d
σ,τ}j∈IN is L2-bounded according to [30, Theorem 2.1],

where d is as in (1.1). Therefore, it converges almost surely to a finite limit,
which we denote by Xσ(ω). By the choice of d, we have that

EP

[ ∑
τ∈Ij

ldσ,τ

]
= 1 for all j ∈ IN and EP [Xσ] = 1. (2.2)

Further,

Xσ(ω) =
∑
τ∈Ij

lσ,τ (ω)dXσ∗τ (ω) (2.3)

whenever Xσ is defined. For all σ, τ ∈ I∗, the random variables Xσ and Xτ are
identically distributed, and if σ 6≺ τ and τ 6≺ σ, they are independent. For P -
almost all ω ∈ Ω, we define a non-trivial finite random Borel measure µω on IIN

by setting µω([σ]) = lσ(ω)dXσ(ω) for cylinder sets [σ] = {τ ∈ IIN : σ ≺ τ} and
extending µω naturally to all Borel sets. (Recall that the cylinder sets generate
the topology of IIN.) Let νω be the projection of µω under the projection map
x : IIN → Kω. By construction, we have the following properties (for a detailed
proof, see [30, Theorem 3.2]).

Property 2.1 For P -almost all ω ∈ Ω, we have that

νω(Jσ) = lσ(ω)dXσ(ω) for all σ ∈ I∗ and∑
τ∈Ij

Jτ∩B 6=∅

lτ (ω)dXτ (ω)↘ νω(B) as j →∞ for all Borel sets B ⊂ Kω.

By (1.2) and Property 2.1, expectations with respect to the measures P
and Q are connected in the following way (see also [14, (1.16)]).

Property 2.2 If j ∈ IN and Y : IIN × Ω → IR is a random variable such that
Y (η, ω) = Y (η′, ω) provided that η|j = η′|j , then

EQ[Y ] = EP

[ ∑
σ∈Ij

ldσXσY (σ, ·)
]
.
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For all l ∈ IN ∪ {0}, define random variables Xl on IIN ×Ω by Xl(η, ω) =
Xη|l(ω). Then the random variables Xl, l ∈ IN ∪ {0}, have the same distribu-
tion. By the definitions of µω and Q and Property 2.2, we have that

Q(Xl = 0) = 0 and

EQ[Xl] = EP [
∑
σ∈Il

ldσX
2
σ] = EP [X2

0 ] <∞ for all l ∈ IN ∪ {0}, (2.4)

since X0 has a finite second moment by [30, Theorem 2.1].

3 Porosities

In this section, we define porosities and construction based mean porosities of
sets and measures and prove some basic properties for them.

Definition 3.1 Let A ⊂ IRm, x ∈ IRm and r > 0. The local porosity of A at
x at distance r is

por(A, x, r) = sup{α ≥ 0 | there is z ∈ IRn such that

B(z, αr) ⊂ B(x, r) \A},

where the open ball centred at x and with radius r is denoted by B(x, r). The
lower and upper porosities of A at x are defined as

por(A, x) = lim inf
r→0

por(A, x, r) and por(A, x) = lim sup
r→0

por(A, x, r),

respectively. If por(A, x) = por(A, x), the common value, denoted by por(A, x),
is called the porosity of A at x.

Definition 3.2 The lower and upper porosities of a Radon measure µ on IRm

at a point x ∈ IRm are defined by

por(µ, x) = lim
ε→0

lim inf
r→0

por(µ, x, r, ε) and

por(µ, x) = lim
ε→0

lim sup
r→0

por(µ, x, r, ε),

respectively, where for all r, ε > 0,

por(µ, x, r, ε) = sup{α ≥ 0 | there is z ∈ IRm such that

B(z, αr) ⊂ B(x, r) and µ(B(z, αr)) ≤ εµ(B(x, r))}.

If the upper and lower porosities agree, the common value is called the porosity
of µ at x and denoted by por(µ, x).
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Remark 3.3 (a) In some sources, the condition B(z, αr) ⊂ B(x, r)\A in Defini-
tion 3.1 is replaced by the condition B(z, αr)∩A = ∅, leading to the definition

p̃or(A, x, r) = sup{α ≥ 0 | there is z ∈ B(x, r) such that

B(z, αr) ∩A = ∅}.
It is not difficult to see that

p̃or(A, x) =
por(A, x)

1− por(A, x)
,

which is valid both for the lower and upper porosity. Indeed, this follows from
two geometric observations. First, B(z, αr) ∩ A = ∅ with z ∈ ∂B(x, r) if and
only if B(z, αr) ⊂ B(x, (1+α)r)\A with ∂B(z, αr)∩∂B(x, (1+α)r) 6= ∅, where
the boundary of a set B is denoted by ∂B. Second, at local minima and maxima
of the function r 7→ por(A, x, r), we have ∂B(z, αr) ∩ ∂B(x, (1 + α)r) 6= ∅,
and at local minima and maxima of the function r 7→ p̃or(A, x, r), we have
z ∈ ∂B(x, r).

(b) Unlike the dimension, which is the same for equivalent metrics, the
porosity is sensitive to the choice of a metric. For example, defining cube-
porosities by using cubes instead of balls in the definition, there is no formula
to convert porosities to cube-porosities or vice versa. It is easy to construct
a set such that the cube-porosity attains its maximum value (at some point)
but the porosity does not. Take, for example, the union of the x- and y-axes
in the plane. However, the lower porosity is positive, if and only if the lower
cube-porosity is positive.

(c) In general metric spaces, in addition to B(z, αr) ⊂ B(x, r) \ A, it is
sometimes useful to require that the empty ball B(z, αr) is inside the reference
ball B(x, r) also algebraically, that is, d(x, z) + αr ≤ r. For further discussion
about this matter, see [32].

The lower and upper porosities give the relative sizes of the smallest and
largest holes, respectively. Taking into considerations the frequency of scales
where the holes appear, leads to the notion of mean porosity. We proceed by
giving a definition which is adapted to the Mandelbrot percolation process. We
will use the maximum metric %, that is, %(x, y) = maxi∈{1,...,m}{|xi−yi|}, and
denote by B%(y, r) the open ball centred at y and with radius r with respect
to this metric. Recall that the balls in the maximum metric are cubes whose
faces are parallel to the coordinate planes.

Definition 3.4 Let A ⊂ IRm, µ be a Radon measure on IRm, x ∈ IRm, α ∈
[0, 1] and ε > 0. For j ∈ IN, we say that A has an α-hole at scale j near x if
there is a point z ∈ Qkj (x) such that

B%(z,
1
2αk

−j) ⊂ Qkj (x) \A.

Here Qkj (x) is the half-open k-adic cube of side length k−j containing x and

B%(z,
1
2αk

−j) is called an α-hole. We say that µ has an (α, ε)-hole at scale j
near x if there is a point z ∈ Qkj (x) such that

B%(z,
1
2αk

−j) ⊂ Qkj (x) and µ(B%(z,
1
2αk

−j)) ≤ εµ(Qkj (x)).
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Remark 3.5 Note that, unlike in Definition 3.1, we have divided the radius of
the ball in the complement of A as well as that with small measure by 2 and,
therefore, α may attain values between 0 and 1. The reason for this is that the
point x may be arbitrarily close to the boundary of Qkj (x) and, if the whole

cube Qkj (x) is empty, it is natural to say that there is a hole of relative size 1.

Definition 3.6 Let α ∈ [0, 1]. The lower α-mean porosity of a set A ⊂ IRm

at a point x ∈ IRm is

κ(A, x, α) = lim inf
i→∞

Ni(A, x, α)

i

and the upper α-mean porosity is

κ(A, x, α) = lim sup
i→∞

Ni(A, x, α)

i
,

where

Ni(A, x, α) = card{j ∈ IN | j ≤ i and A has an α-hole at scale

j near x}.

In the case the limit exists, it is called the α-mean porosity and denoted by
κ(A, x, α). The lower α-mean porosity of a Radon measure µ on IRm at x ∈ IRm

is

κ(µ, x, α) = lim
ε→0

lim inf
i→∞

Ñi(µ, x, α, ε)

i

and the upper one is

κ(µ, x, α) = lim
ε→0

lim sup
i→∞

Ñi(µ, x, α, ε)

i
,

where

Ñi(µ, x, α, ε) = card{j ∈ IN | j ≤ i and µ has an (α, ε)-hole at

scale j near x}.

If the lower and upper mean porosities coincide, the common value, denoted
by κ(µ, x, α), is called the α-mean porosity of µ.

Remark 3.7 Mean porosity is highly sensitive to the choice of parameters. The
definition is given in terms of k-adic cubes. For the Mandelbrot percolation,
this is natural. For general sets, fixing an integer h > 1, a natural choice is
to say that A has an α-hole at scale j near x, if there is z ∈ IRm such that
B(z, αh−jr0) ⊂ B(x, h−jr0) \ A for some (or for all) h−1 < r0 ≤ 1. However,
the choice of r0 and h matters as will be shown in Example 3.8 below. Shmerkin
proposed in [35] the following base and starting scale independent notion of
lower mean porosity of a measure (which can be adapted for sets and upper
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porosity as well): a measure µ is lower (α, κ)-mean porous at a point x ∈ IRm

if

lim inf
ρ→1

(log 1
ρ )−1

∫ 1

ρ

11{r|por(µ,x,r,ε)≥α}r
−1 dr ≥ κ for all ε > 0.

The disadvantage of this definition is that it is more complicated to calculate
than the discrete version. To avoid these problems, one option is to aim at
qualitative results concerning all parameter values, as our approach will show.

Next, we give a simple example demonstrating the dependence of mean
porosity on the starting scale and the base of scales.

Example 3.8 Fix an integer h > 1. In this example, we use a modification of
Definitions 3.4 and 3.6, where A ⊂ IRm has an α-hole at scale j near x if there
exists z ∈ IRm such that B(z, αh−j) ⊂ B(x, h−j) \ A. Let x ∈ IR2. We define
a set A ⊂ IR2 as follows. For all i ∈ IN ∪ {0}, consider the half-open annulus
D(i) = {y ∈ IR2 | h−i−1 < |y−x| ≤ h−i}. Let A =

⋃∞
i=0D(3i+ 1)∪D(3i+ 2),

that is, we choose two annuli out of every three successive ones and leave the
third one empty. In this case, κ(A, x, 12 (1−h−1)) = 1

3 . If we replaced h by h3 in
the definition of scales, we would conclude that κ(A, x, 12 (1−h−1)) = 1. (Note
that the lower and upper porosities are equal.) If we define A by starting with
the two filled annuli, that is, A =

⋃∞
i=0D(3i) ∪D(3i+ 1), then κ(A, x, 12 (1−

h−1)) = 1
3 using scales determined by h and κ(A, x, 12 (1 − h−1)) = 0 if scales

are determined by powers of h3. By mixing these construction in a suitable
way, one easily finds an example where κ(A, x, 12 (1−h−1)) = 1

3 for scales given
by h, but κ(A, x, 12 (1− h−1)) = 0 and κ(A, x, 12 (1− h−1)) = 1 if the scales are
determined by h3.

We finish this section with some measurability results. For that we need
some notation.

Definition 3.9 For all j ∈ IN and α ∈ [0, 1], define a function χαj : IIN×Ω →
{0, 1} by setting χαj (η, ω) = 1, if and only if Kω has an α-hole at scale j near

x(η). Define a function χαj : IIN ×Ω → {0, 1} in the same way except that the
α-hole is a closed ball instead of an open one. For all α ∈ (0, 1), ε > 0 and
j ∈ IN, define a function χα,εj : IIN × Ω → {0, 1} by setting χα,εj (η, ω) = 1, if
and only if νω has an (α, ε)-hole at scale j near x(η). Finally, define a function
χα,εj : IIN × Ω → {0, 1} by setting χα,εj (η, ω) = 1, if and only if there exists

z ∈ Qkj (x(η)) such that νω(B%(z,
1
2αk

−j)) < ενω(Qkj (x(η))). Here the closed

ball in metric % centred at z ∈ IRm with radius r > 0 is denoted by B%(z, r).

Lemma 3.10 The maps

(η, ω) 7→ κ(Kω, x(η), α),

(η, ω) 7→ κ(Kω, x(η), α),

(η, ω) 7→ κ(νω, x(η), α) and

(η, ω) 7→ κ(νω, x(η), α)

are Borel measurable for all α ∈ [0, 1].
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Proof Note that χαj (·, ω) is locally constant for all ω ∈ Ω, that is, its value
depends only on η|j . Further, suppose that χαj (η, ω) = 1. Then Kω has a closed
α-hole H at scale j near x(η). Since H and Kω are closed, their distance is
positive. So there exists a finite set T ⊂ I∗ such that ω(τ) = n for all τ ∈ T
and

H ⊂
⋃
τ∈T

Jτ .

If ω′ ∈ Ω is close to ω, then ω′(τ) = n for all τ ∈ T , which implies that
χαj (η, ω′) = 1. We conclude that χαj is continuous at (η, ω). Trivially, χαj is
lower semi-continuous at those points where χαj (η, ω) = 0. Therefore, χαj is
lower semi-continuous.

Let αi be a strictly increasing sequence approaching α. We claim that

lim
i→∞

χαij (η, ω) = χαj (η, ω) (3.1)

for all (η, ω) ∈ IIN × Ω. Indeed, obviously χαj (η, ω) ≤ χαij (η, ω) for all i ∈ IN,
and the sequence (χαij (η, ω))i∈IN is decreasing. Thus, it is enough to study

the case limi→∞ χαij (η, ω) = 1. Let (B%(zi,
1
2αik

−j))i∈IN be a corresponding
sequence of closed holes. In this case, one may find a convergent subsequence
of (zi)i∈IN converging to z ∈ IRd and B%(z,

1
2αk

−j) ⊂ Qkj (x(η)) \ Kω, com-
pleting the proof of (3.1). As a limit of semi-continuous functions, χαj is Borel

measurable. Now Ni(Kω, x(η), α) =
∑i
j=1 χ

α
j (η, ω), implying that the map

(η, ω) 7→ κ(Kω, x(η), α) (as well as the upper mean porosity) is Borel measur-
able.

By construction, the map ω 7→ Xτ (ω) is Borel measurable for all τ ∈ I∗.
Therefore, ω 7→ νω(B) is a Borel map for all Borel sets B ⊂ IRm by Prop-
erty 2.1. In particular, the map (η, ω) 7→ νω

(
B%(z,

1
2αk

−j)
)
− ενω

(
Qkj (x(η))

)
is Borel measurable for all z ∈ IRm, α ∈ [0, 1], ε > 0 and j ∈ IN. Let (zi)i∈IN
be a dense set in [0, 1]m. Let s > 0, α ∈ [0, 1] and j ∈ IN. Suppose that
there exists z ∈ Qkj (x(η)) such that νω(B%(z,

1
2αk

−j)) < s. Since the map

x 7→ νω(B%(x, r)) is upper semicontinuous, there exists zi ∈ Qkj (x(η)) such that

νω(B%(zi,
1
2αk

−j)) < s. Thus, χα,εj is Borel measurable. Further, χα,εj (η, ω) = 1
if and only if there exist an increasing sequence (αi)i∈IN tending to α and a
decreasing sequence (εi)i∈IN tending to ε such that χαi,εij (η, ω) = 1. There-
fore, χα,εj is Borel measurable, and the claim follows as in the case of mean
porosities of sets.

Remark 3.11 (a) Note that, for all (η, ω) ∈ IIN×Ω, the function α 7→ χα0 (η, ω)
is decreasing and, thus, the lower and upper mean porosity functions are also
decreasing as functions of α.

(b) Later, we will need modifications of the functions χαj defined in the
proof of Lemma 3.10. Their Borel measurability can be proven analogously to
that of χαj .
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4 Results

In this section, we state and prove our results concerning mean porosities of
Mandelbrot percolation and its natural measure. To prove the existence of
mean porosity and to compare the mean porosities of the limit set and the
construction measure, we need a tool to establish the validity of the strong law
of large numbers for certain sequences of random variables. We will use [15,
Theorem 1] (see also [26, Corollary 11]), which we state (in a simplified form)
for the convenience of the reader. Denote the covariance and the variance of
random variables by Cov and Var, respectively.

Theorem 4.1 Let {Yn}n∈IN be a sequence of square-integrable random vari-
ables and suppose that there exists a sequence of constants (ρk)k∈IN such that

sup
n∈IN
|Cov(Yn, Yn+k)| ≤ ρk

for all k ∈ IN. Assume that

∞∑
n=1

Var(Yn) log2 n

n2
<∞ and

∞∑
k=1

ρk <∞.

Then {Yn}n∈IN satisfies the strong law of large numbers, i.e., almost surely

lim
k→∞

∑k
n=1(Yn − E[Yn])

k
= 0.

We will apply Theorem 4.1 to stationary sequences of random variables
which are indicator functions of events with equal probabilities. In this setup,
all conditions of the theorem will be satisfied if

∞∑
j=1

Cov(Y0, Yj) <∞ (4.1)

and, in particular, if Yi and Yj are uncorrelated once |i − j| is greater than
some fixed integer.

For all α ∈ [0, 1] and j, r ∈ IN, define χαj,r : IIN × Ω → {0, 1} similarly to
χαj with the exception that the whole hole is assumed to be in Jη|j \ Jη|j+r .
Observe that χαj,r(η, ω) = χαj,r(η

′, ω) provided that η|j+r = η′|j+r. Therefore,

for any τ ∈ Ij+r, we may define χαj,r(τ, ω) = χαj,r(η, ω), where η|j+r = τ . Note
that, given lτ |j 6= 0, the value of the function χαj,r(τ, ·) depends only on the
restriction of ω to [τ |j ]∗ \ [τ |j+r]∗, where [σ]∗ = {η ∈ I∗ | σ ≺ η} for all σ ∈ I∗.
Further, given lτ |j 6= 0, the distribution of χαj,r(τ |j ∗ ·, ·) is independent of τ |j .

The following “uncorrelation” lemma will be used several times later.
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Lemma 4.2 Let f, g : IIN × Ω → IR be Borel functions. Assume that there
are a, b, c ∈ IN with a < b ≤ c such that, for all η, η′ ∈ IIN, we have that
f(η, ·) = f(η′, ·) provided η|b = η′|b, given lη|b 6= 0, f(η|b, ·) depends only
on [η|a]∗ \ [η|b]∗ and, given lη|c 6= 0, g(η, ·) depends only on [η|c]∗ and the
distribution of g(η|c ∗ ·, ·) is independent of η|c. Then

EQ[fg] = EQ[f ]EQ[g].

Proof Since the distribution of g(η|c ∗ ·, ·) is independent of η|c given lη|c 6= 0,
we have that EQ[g(η|c ∗ ·, ·) | lη|c 6= 0] = Cg is independent of η|c. By the

definition of µω, we have, for all σ ∈ I∗, that (µω)|[σ] = lσ(ω)dµ(ω|[σ]∗ ), where
µ(ω|[σ]∗ ) is the conditional measure given lσ 6= 0. For all A ⊂ I∗, we denote by

P |A the restriction of P to {c, n}A. Recalling (2.2), we conclude that

EQ[g] =
∑
η∈Ic

∫
lη(ω|I∗\[η]∗)d

×
∫∫

g(η ∗ τ, ω|[η]∗) dµ(ω|[η]∗ )(τ)dP |[η]∗(ω|[η]∗)dP |I∗\[η]∗(ω|I∗\[η]∗)

= Cg
∑
η∈Ic

∫
lη(ω|I∗\[η]∗)d dP |I∗\[η]∗(ω|I∗\[η]∗)

= Cg

∫ ∑
η∈Ic

lη(ω)d dP (ω) = Cg

and, further,

EQ[fg] =
∑
σ∈Ib

∫
lσ(ω|I∗\[σ]∗)df(σ, ω|[σ|a]∗\[σ]∗)

∑
η∈Ic−b

∫
lσ,η(ω|[σ]∗\[σ∗η]∗)d

×
∫∫

g(σ ∗ η ∗ τ, ω|[σ∗η]∗) dµ(ω|[σ∗η]∗ )(τ)dP |[σ∗η]∗(ω|[σ∗η]∗)

× dP |[σ]∗\[η]∗(ω|[σ]∗\[η]∗)dP |I∗\[σ]∗(ω|I∗\[σ]∗)

= EQ[g]
∑
σ∈Ib

∫
lσ(ω|I∗\[σ]∗)df(σ, ω|[σ|a]∗\[σ]∗) dP |I∗\[σ]∗(ω|I∗\[σ]∗)

= EQ[g]
∑
σ∈Ib

∫
lσ(ω|I∗\[σ]∗)df(σ, ω|[σ|a]∗\[σ]∗)

∫∫
1 dµ(ω|[σ]∗ )(τ)

× dP |[σ]∗(ω|[σ]∗)dP |I∗\[σ]∗(ω|I∗\[σ]∗)
= EQ[g]EQ[f ].

Next we prove a lemma which gives lower and upper bounds for mean
porosities at typical points.

Lemma 4.3 For all α ∈ (0, 1), we have

EQ[χα0 ] ≤ κ(Kω, x(η), α) ≤ κ(Kω, x(η), α) ≤ EQ[χα0 ]

for Q-almost all (η, ω) ∈ IIN ×Ω.
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Proof Note that, for every α ∈ (0, 1) and r ∈ IN with k−r < α, we have

χαj,r(η, ω) ≤ χαj (η, ω) ≤ χα−k
−r

j,r (η, ω) (4.2)

for all (η, ω) ∈ IIN × Ω satisfying x(η) ∈ Kω. Recall that νω is supported on
Kω for P -almost all ω ∈ Ω. Observe that χαi,r and χαj,r satisfy the assumptions
of Lemma 4.2 provided j − i ≥ r with f = χαi,r, g = χαj,r, a = i, b = i+ r and
c = j. Thus, the assumptions of Theorem 4.1 are valid and, for all r ∈ IN and
Q-almost all (η, ω) ∈ IIN×Ω, we conclude that (note that EQ[χαj,r] = EQ[χα0,r]
for all j ∈ IN)

EQ[χα0,r] = lim
n→∞

1

n

n∑
j=1

χαj,r(η, ω) ≤ κ(Kω, x(η), α)

≤ κ(Kω, x(η), α) ≤ lim
n→∞

1

n

n∑
j=1

χα−k
−r

j,r (η, ω) = EQ[χα−k
−r

0,r ].

Observe that, for all (η, ω) ∈ IIN×Ω satisfying x(η) ∈ Kω holds the inequality
limr→∞ χα0,r(η, ω) ≥ χα0 (η, ω), since the distance between a closed α-hole and
Kω is positive. Further, the inequality

χα−k
−r

0,r ≤ χα−2k
−r

0 (4.3)

is always valid if 2k−r ≤ α, and limr→∞ χα−2k
−r

0 = χα0 by (3.1). Hence,

EQ[χα0 ] ≤ κ(Kω, x(η), α) ≤ κ(Kω, x(η), α) ≤ EQ[χα0 ]

for Q-almost all (η, ω) ∈ IIN ×Ω.

In fact, the upper bound we have found in Lemma 4.3 is an exact equality.

Proposition 4.4 For all α ∈ (0, 1), we have that

κ(Kω, x(η), α) = EQ[χα0 ]

for Q-almost all (η, ω) ∈ IIN ×Ω.

Proof We start by proving that, for all α ∈ (0, 1),

lim
j→∞

Cov(χα0 , χ
α
j ) = 0.

Let α ∈ (0, 1). By (4.2), we have the following estimate:

Cov(χα0 , χ
α
j ) = EQ[χα0χ

α
j ]− EQ[χα0 ]EQ[χαj ]

≤ EQ[χα−k
−j

0,j χαj ]− EQ[χα0 ]EQ[χαj ]
(4.4)
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for all j ∈ IN with 2k−j < α. The functions χα−k
−j

0,j and χαj satisfy the as-

sumptions of Lemma 4.2 with a = 0 and b = c = j, giving EQ[χα−k
−j

0,j χαj ] =

EQ[χα−k
−j

0,j ]EQ[χαj ]. Hence, by (4.4) and (4.3),

Cov(χα0 , χ
α
j ) ≤ EQ[χαj ]EQ[χα−k

−j

0,j − χα0 ] ≤ EQ[χα0 ]EQ[χα−2k
−j

0 − χα0 ].

Since limj→∞(α − 2k−j) = α, the equality (3.1) and the dominated conver-

gence theorem imply that limj→∞EQ[χα−2k
−j

0 −χα0 ] = 0. Now, by Bernstein’s
theorem [2] (see also [13, p. 265]), the sequence 1

nNn(A, x, α) = 1
n

∑n
i=1 χ

α
i

converges in probability to EQ[χα0 ]. Once we have the convergence in proba-
bility, we can find a subsequence converging almost surely and, therefore, the
upper bound in Lemma 4.3 is attained.

Define

D = {α ∈ (0, 1) | β 7→ EQ[χβ0 ] is discontinuous at β = α}.

Since β 7→ EQ[χβ0 ] is decreasing, the set D is countable.

Theorem 4.5 For Q-almost all (η, ω) ∈ IIN ×Ω, we have that

κ(Kω, x(η), α) = EQ[χα0 ]

for all α ∈ (0, 1) \ D. In particular, for Q-almost all (η, ω) ∈ IIN × Ω, the
function α 7→ κ(Kω, x(η), α) is defined and continuous at all α ∈ (0, 1) \D.

Proof Since χα
′

0 ≤ χα0 ≤ χα0 for all α′ > α, we have that EQ[χα0 ] = EQ[χα0 ]
for all α ∈ (0, 1) \ D. Lemma 4.3 implies that, for all α ∈ (0, 1) \ D, there
exists a Borel set Bα ⊂ IIN × Ω such that κ(Kω, x(η), α) = EQ[χα0 ] for all
(η, ω) ∈ Bα and Q(Bα) = 1. Let (αi)i∈IN be a dense set in (0, 1). Since the
functions α 7→ κ(Kω, x(η), α) and α 7→ κ(Kω, x(η), α) are decreasing, we have,
for all (η, ω) ∈

⋂∞
i=1Bαi , that κ(Kω, x(η), α) = EQ[χα0 ] for all α ∈ (0, 1) \D.

Since Q(
⋂∞
i=1Bαi) = 1, the proof is complete.

Proposition 4.6 Suppose that p > k−m+1. Then the set D is non-empty.

Proof Since EQ[χα
′

0 ] ≤ EQ[χα0 ] ≤ EQ[χα0 ] for all α′ > α, it is enough to show
that there exists α ∈ (0, 1) such that EQ[χα0 ] < EQ[χα0 ]. This, in turn, follows
if

Q({(η, ω) ∈ IIN ×Ω | χα0 (η, ω) = 0 and χα0 (η, ω) = 1}) > 0, (4.5)

since χα0 ≤ χα0 . A pair (η, ω) belongs to the set defined in (4.5), if α = k−r for
some r ∈ IN, one construction cube Jσ at level r is neglected, Kω intersects
all (m − 1)-dimensional faces of Jσ and there is no hole of size α other than
Jσ. Next we make this idea precise.

Let α = k−r for some r ∈ IN. Fix σ ∈ Ir and set Σσ = {σ′ ∈ Ir |
dim(Jσ′ ∩Jσ) = m−1}. Let A = {ω ∈ Ω | ω(σ) = n and ω(σ′) = c for all σ′ ∈
Ir \ {σ}}. Clearly, A is a Borel set and P (A) > 0. For all σ′ ∈ Σσ, define
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Fσ′ = Jσ′ ∩ Jσ and Aσ′ = {ω ∈ Ω | Kω ∩ Intm-1 Fσ′ 6= ∅}, where Intm-1

refers to the interior when Fσ′ is viewed as a (m − 1)-dimensional set. Given
A, Kω ∩ Fσ′ defines an (m − 1)-dimensional Mandelbrot percolation process.
Since p > k−m+1, it follows from (2.1) (with m replaced by m − 1) that
P (Kω ∩Fσ′ 6= ∅ | A) > 0. Since P (Kω ⊂ ∂J∅ | Kω 6= ∅) = 0 in any dimension,
we have that P (Aσ′ | A) > 0. Given A, the events Aσ′ , σ

′ ∈ Σσ, are clearly

independent. Let Ã = {ω ∈ Ω | Kω ∩ IntJσ̃ 6= ∅ for all σ̃ ∈ Ir+1 with σ 6≺ σ̃}.
Then P (Ã | A) > 0 and the events Ã and ∩σ′∈ΣσAσ′ are positively correlated.

Therefore, A0 = A ∩ Ã ∩ ∩σ′∈ΣσAσ′ is a Borel set and P (A0) > 0. For all
ω ∈ A0 and for all η ∈ IIN, we have that χα0 (η, ω) = 1 and χα0 (η, ω) = 0. This
implies inequality (4.5).

Remark 4.7 A similar construction as in the proof of Proposition 4.6 can be
done for any positive α =

∑n
j=1 qjk

−rj < 1, where rj ∈ IN and qj ∈ Z, that
is, for any hole which is a finite union of construction squares. We do not
know whether κ(Kω, x(η), α) exists for α ∈ D. If p ≤ k−m+1, we have that
Kω ∩ F = ∅ almost surely for all (m− 1)-dimensional faces F of construction
cubes. Thus the above proof does not apply. We do not know whether D = ∅
in this case.

Corollary 4.8 For P -almost all ω ∈ Ω and for νω-almost all x ∈ Kω, we
have that

0 < κ(Kω, x, α) ≤ κ(Kω, x, α) < 1

for all α ∈ (0, 1), κ(Kω, x, 0) = 1 and κ(Kω, x, 1) = 0.

Proof Since 0 < EQ[χα0 ] < 1 for all α ∈ (0, 1) and the functions α 7→
κ(Kω, x(η), α) and α 7→ κ(Kω, x(η), α) are decreasing, the first claim fol-
lows from Theorem 4.5. The claim κ(Kω, x, 0) = 1 is obvious. Finally, if
κ(Kω, x, 1) > 0, the set Kω has a 1-hole near x at scale j for some j ∈ IN.
Hence, x should be on the boundary of the hole and Jη|j which, in turn, implies
that Kω has a 1-hole near x at all scales larger than j. Thus κ(Kω, x, α) = 1
for all α ≤ 1 which is a contradiction with the first claim.

To study the mean porosities of the natural measure, we need some auxil-
iary results.

Proposition 4.9 For all s > 0, the sequence {11{Xj≤s}}j∈IN satisfies the
strong law of large numbers.

Proof Since the sequence (Xj)j∈IN is stationary, we only have to check that the
series (4.1) converges with Yj = 11{Xj≤s}. Since X0 − k−jdXj and Xj satisfy
the assumptions of Lemma 4.2 with a = 0 and b = c = j, also 11{X0−k−jdXj≤s}
and 11{Xj≤s} satisfy them for all s > 0. Using the fact that Xj and X0 have
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the same distribution, we can make the following estimate:

Cov(11{X0≤s}, 11{Xj≤s})

= Q(X0 ≤ s and Xj ≤ s)−Q(X0 ≤ s)Q(Xj ≤ s)
≤ Q(X0 − k−jdXj ≤ s and Xj ≤ s)−Q(X0 ≤ s)Q(Xj ≤ s)
= Q(Xj ≤ s)

(
Q(X0 − k−jdXj ≤ s)−Q(X0 ≤ s)

)
= Q(X0 ≤ s)Q(s < X0 ≤ s+ k−jdXj)

≤ Q(X0 ≤ s)
(
Q(s < X0 ≤ s+ k−

1
2 jd) +Q(X0 > k

1
2 jd)

)
.

By a result of Dubuc and Seneta [9] (see also [1, Theorem II.5.2]), the distri-
bution of X0 has a continuous P -density q(x) on (0,+∞). From Property 2.2,
we obtain

Q(s < X0 ≤ s+ k−
1
2 jd) = EQ

[
11
{s<X0≤s+k−

1
2
jd}

]
= EP

[
X011

{s<X0≤s+k−
1
2
jd}

]
≤ (s+ k−

1
2d)P (s < X0 ≤ s+ k−

1
2 jd)

≤ (s+ k−
1
2d)k−

1
2 jd max

x∈[s,s+k−
1
2
d]

q(x).

Therefore, by Markov’s inequality,

∞∑
j=1

Cov(11{X0≤s}, 11{Xj≤s}) ≤

Q(X0 ≤ s)
(
(s+ k−

1
2d) max

x∈[s,s+k−
1
2
d]

q(x) + EQ(X0)
) ∞∑
j=1

k−
1
2 jd <∞.

For all α ∈ (0, 1), ε, δ > 0 and j ∈ IN, define a function Hα,ε,δ
j : IIN ×Ω →

{0, 1} by setting Hα,ε,δ
j (η, ω) = 1, if and only if νω has an (α, ε)-hole at scale

j near x(η) but Kω does not have an (α− δ)-hole at scale j near x(η).

Lemma 4.10 Let α ∈ (0, 1). For all δ > 0, there exists ε0 > 0 such that, for
Q-almost all (η, ω) ∈ IIN ×Ω holds the inequality

lim sup
n→∞

1

n

n∑
j=1

Hα,ε,δ
j (η, ω) ≤ δ

for all 0 < ε ≤ ε0.

Proof Fix 0 < δ < α. Let r ∈ IN be the smallest integer such that 2k−r < δ.
Let ε > 0. Assume that Hα,ε,δ

j (η, ω) = 1 and denote by H the (α, ε)-hole at
scale j near x(η). Considering the relative positions of H and Jη|j+r , we will
argue that we arrive at the following possibilities:

(i) If Jη|j+r ⊂ H, we have νω(Jη|j+r ) ≤ ενω(Jη|j ).
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(ii) In the case Jη|j+r 6⊂ H, there exists τ ∈ Ij+r such that τ 6= η|j+r, Jτ ⊂ H,
Kω ∩ Jτ 6= ∅ and νω(Jτ ) ≤ ενω(Jη|j ).

Suppose that (i) is not valid. Since Hα,ε,δ
j (η, ω) = 1, the set Kω does not have

an (α− δ)-hole at scale j near x(η). Observe that

H \
⋃

σ∈Ij+r
Jσ 6⊂H

Jσ

contains a cube with side length (α− δ)k−j since 2k−r < δ. Since Jη|j+r 6⊂ H,

there exists τ ∈ Ij+r as in (ii).
Next we estimate how often (i) or (ii) may happen for Q-typical (η, ω) ∈

IIN × Ω. We denote by A1,ε
j the event that νω(Jη|j+r ) ≤ ενω(Jη|j ), that is,

according to Property 2.1,

A1,ε
j =

{
(η, ω) ∈ IIN ×Ω |

Xη|j+r (ω) ≤ ε

1− ε
∑

τ∈Ij+r
η|j≺τ, τ 6=η|j+r, lτ (ω)6=0

Xτ (ω)
}
.

For all s > 0, let

As,εj,1 =
{

(η, ω) ∈ IN ×Ω | Xη|j+r (ω) ≤ εs

1− ε
}

and Asj,2 =
{

(η, ω) ∈ IN ×Ω |
∑

τ∈Ij+r
η|j≺τ, τ 6=η|j+r, lτ (ω)6=0

Xτ (ω) > s
}
.

The set in the case (ii) is covered by

A2,ε
j = {(η, ω) ∈ IIN ×Ω | ∃τ ∈ Ij+r such that τ � η|j ,

τ 6= η|j+r and 0 < k−rdXτ (ω) ≤ εXη|j (ω)}.

Recall that, for any τ ∈ I∗, we have P (Xτ (ω) > 0 | Kω ∩ Jτ 6= ∅) = 1 by [30,
Theorem 3.4]. For all s > 0, we define

Asj,3 = {(η, ω) ∈ IIN ×Ω | Xη|j (ω) > s} and

As,εj,4 = {(η, ω) ∈ IIN ×Ω | ∃τ ∈ Ij+r such that τ � η|j ,

τ 6= η|j+r and 0 < k−rdXτ (ω) ≤ εs}.

Combining the above definitions, we conclude that

Hα,ε,δ
j ≤ 11A1,ε

j
+ 11A2,ε

j
≤ 11As,εj,1 + 11Asj,2 + 11Asj,3 + 11As,εj,4

for all s > 0. We will fix an appropriate s > 0 at the end of this proof. By
Proposition 4.9, the functions 11As,εj,1 and 11Asj,3 satisfy the strong law of large

numbers. The functions 11Asi,2 and 11Asj,2 as well as 11As,εi,4 and 11As,εj,4 satisfy the
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assumptions of Lemma 4.2 as soon as j−i ≥ r. Therefore, by Theorem 4.1, the
functions 11Asj,2 and 11As,εj,4 also satisfy the strong law of large numbers. Hence,

we obtain the estimate

lim sup
n→∞

1

n

n∑
j=1

Hα,ε,δ
j (η, ω) ≤ Q(As,ε0,1) +Q(As0,2) +Q(As0,3) +Q(As,ε0,4)

for Q-almost all (η, ω) ∈ IIN×Ω. Observe that the left hand side of the above
inequality decreases as ε decreases for all (η, ω) ∈ IIN×Ω. For all large enough
s, the value of Q(As0,2) + Q(As0,3) is less than 1

2δ. Fix such an 0 < s < ∞.
According to (2.4), we have Q(Xr = 0) = 0. Therefore, for all ε small enough,
we have Q(As,ε0,1) +Q(As,ε0,4) < 1

2δ, completing the proof.

Now we are ready to prove that the mean porosity of the natural measure
equals that of the Mandelbrot percolation set.

Theorem 4.11 For Q-almost all (η, ω) ∈ IIN ×Ω the following equality

κ(Kω, x(η), α) = κ(νω, x(η), α)

holds for all α ∈ (0, 1) \D.

Proof For all α ∈ (0, 1), ε > 0 and j ∈ IN, let χαj and χα,εj be as in Definition 3.9

and Hα,ε,δ
j as in Lemma 4.10. The inequalities

κ(Kω, x(η), α) ≤ κ(νω, x(η), α) and κ(Kω, x(η), α) ≤ κ(νω, x(η), α)

are obvious for all α ∈ (0, 1) and (η, ω) ∈ IIN ×Ω since χαj ≤ χ
α,ε
j . Therefore,

for Q-almost all (η, ω) ∈ IIN × Ω, we have κ(Kω, x(η), α) ≤ κ(νω, x(η), α) for
all α ∈ (0, 1) \D by Theorem 4.5.

Let 0 < δ < α and ε > 0. Since χα,εj ≤ χα−δj + Hα,ε,δ
j for all j ∈ IN, the

following holds by Lemma 4.10, for Q-almost all (η, ω) ∈ IIN ×Ω:

κ(νω, x(η), α) = lim
ε→0

lim sup
n→∞

1

n

n∑
j=1

χα,εj (η, ω)

≤ lim sup
n→∞

1

n

n∑
j=1

χα−δj (η, ω) + lim
ε→0

lim sup
n→∞

1

n

n∑
j=1

Hα,ε,δ
j (η, ω)

≤κ(Kω, x(η), α− δ) + δ.

Since α 7→ κ(Kω, x(η), α) is continuous at all α ∈ (0, 1)\D by Theorem 4.5, we
conclude that, for all α ∈ (0, 1) \D, we have for Q-almost all (η, ω) ∈ IIN ×Ω
that κ(νω, x(η), α) ≤ κ(Kω, x(η), α). As in the proof of Theorem 4.5, we see
that the order of the quantifiers may be reversed.

Before stating a corollary of the previous theorem, we prove a lemma, which
is well known, but for which we did not find a reference.
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Lemma 4.12 For all hyperplanes V the following holds:

P
(
νω(Kω ∩ V ) > 0

)
= 0.

Proof According to Property 2.1,

νω(Kω ∩ V ) = lim
j→∞

∑
τ∈Ij

Jτ∩V 6=∅

lτ (ω)dXτ (ω),

and the above sequence decreases monotonically as j tends to infinity. Hence,

EP [νω(Kω ∩ V )] ≤ lim
j→∞

EP

[ ∑
τ∈Ij

Jτ∩V 6=∅

lτ (ω)dXτ (ω)

]
.

Note that, without the restriction Jτ ∩ V 6= ∅, the expectation on the right
hand side equals 1. Since the restriction Jτ∩V 6= ∅ determines an exponentially
decreasing proportion of indices as j tends to infinity and since the random
variables ldτXτ have the same distribution, the limit of the expectation equals
0.

Next corollary is the counterpart of Corollary 4.8 for mean porosities of
the natural measure.

Corollary 4.13 For P -almost all ω ∈ Ω and for νω-almost all x ∈ Kω, we
have the following inequalities

0 < κ(νω, x, α) ≤ κ(νω, x, α) < 1

for all α ∈ (0, 1), κ(νω, x, 0) = 1 and κ(νω, x, 1) = 0.

Proof The first claim follows from Corollary 4.8, Theorem 4.11 and the mono-
tonicity of the functions α 7→ κ(νω, x, α) and α 7→ κ(νω, x, α). Since for all
x ∈ Kω holds the inequality κ(Kω, x, 0) ≤ κ(νω, x, 0), the second claim follows
from Corollary 4.8. Note that χ1,ε

j (η, ω) = 1 only if νω(∂Jη|j ) > 0. Therefore,
the last claim follows from Lemma 4.12.

The following corollary solves completely Conjecture 3.2 stated in [20].

Corollary 4.14 For P -almost all ω ∈ Ω and for νω-almost all x ∈ Kω, the
following holds

por(Kω, x) = por(νω, x) = 0, por(Kω, x) =
1

2
and por(νω, x) = 1.

Proof By Corollary 4.8, for Q-almost all (η, ω) ∈ IIN × Ω, we have that
κ(Kω, x(η), α) < 1 for all α > 0. Hence, for P -almost all ω ∈ Ω and for
νω-almost all x ∈ Kω, there are, for all α > 0, arbitrarily large i ∈ IN such
that Kω does not have an α-hole at scale i near x which is contained in Qki (x).
Recall that Corollary 4.8 concerns the construction based mean porosities that
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are defined in terms of k-adic cubes (see Definitions 3.4 and 3.6). Therefore,
we may only conclude that there is no z ∈ IRm such that

B(z,
1

2

√
mαk−i) ⊂ (B(x, k−i) ∩Qki (x)) \Kω.

Since the claim concerns the regular porosity (Definitions 3.1 and 3.2) where
the holes are defined using Euclidean balls, we should prove that the above
claim is true without the intersection with Qki (x) on the right hand side. We
show that there are infinitely many i ∈ IN such that this is indeed the case. The
heuristic reason for this is that, for typical points, positive proportion of scales
i are such that x is close to the centre of Qki (x) and this event is essentially
independent of the non-existence of holes of certain size. Thus, both events
appear with positive probability. Now we formalise this idea.

Fix α ∈ (0, 14 ) and r > 8 large enough so that 2k−r < α. Let I ′ ⊂ Ir

be the set of words such that, for all τ ∈ I ′, the %-distance from all points
of Jτ to the centre of J∅ is at most 1

4 . For all i ∈ IN, define Y αi : IIN × Ω →
{0, 1} by setting Y αi (η, ω) = 1, if and only if Jη|i is chosen, η|i+r ends with

a word from I ′ and Kω does not have an 1
2α-hole at scale i near x(η) (in

the sense of Definition 3.4) which is completely inside Jη|i \ Jη|i+r . Note that
if x(η) ∈ Kω, and Kω has an α-hole at scale i near x(η), then at least half
of this hole is in Jη|i \ Jη|i+r . Thus, Kω does not have an α-hole at scale i
near x(η) if Y αi (η, ω) = 1. The indicator functions of the events {(η, ω) ∈
IIN × Ω | Y αi (η, ω) = 1} and {(η, ω) ∈ IIN × Ω | Y αj (η, ω) = 1} satisfy the
assumptions of Lemma 4.2 provided j − i ≥ r. Therefore, by Theorem 4.1,
the averages of the random variables Y αi (η, ω) converge to EQ(Y α0 ) > 0 for
Q-almost all (η, ω) ∈ IIN ×Ω. If Y αi (η, ω) = 1, then B(x(η), 14k

−i) ⊂ Jη|i and

there is no z ∈ B(x(η), 14k
−i) such that B(z, 12

√
mαk−i) ⊂ B(x(η), 14k

−i) \
Kω. Therefore, por(Kω, x(η), 14k

−i) ≤ 2
√
mα. A similar argument shows that

por(νω, x(η), 14k
−i) ≤ 2

√
mα. Let (αj)j∈IN and (εk)k∈IN be sequences tending

to 0. For Q-almost all (η, ω) ∈ IIN×Ω, we have for all j, k ∈ IN that there are
infinitely many scales i ∈ IN such that

por(Kω, x(η),
1

4
k−i) < αj and por(νω, x(η),

1

4
k−i, εk) < αj .

Hence, we conclude that

por(Kω, x) = 0 = por(νω, x)

for P -almost all ω ∈ Ω and for νω-almost all x ∈ Kω.
The remaining claims are proven in a similar manner. To prove that the

upper porosity por(Kω, x) = 1
2 , we need to show that typical points are in-

finitely often close to the centre of a (m−1)-dimensional face of a construction
cube and, at the same time, the construction cube has a large hole. This can
be formalised as follows: Let α = 1− δ, where δ < 1

8 . Choose r ∈ IN such that

k−r < δ. Let F be a (m− 1)-dimensional face of J∅. Define Ĩ ⊂ Ir as the set
of those τ ∈ Ir for which Jτ ∩ F 6= ∅ and the distance of all points of Jτ to
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the centre of F is less than 1
4 . For all i ∈ IN, define Ỹ αi : IIN × Ω → {0, 1}

by setting Ỹ αi (η, ω) = 1, if and only if Jη|i is chosen, η|i+r ends with a word

from Ĩ and Kω has an α-hole at scale i near x(η) (in the sense of Defini-

tion 3.4) which is completely inside Jη|i \ Jη|i+r . If Ỹ αi (η, ω) = 1, we have

that there is z ∈ IRm such that B(z, 18k
−i) ⊂ B(x(η), ( 1

4 + δ)k−i) \Kω, giving

por(Kω, x(η), ( 1
4 + δ)k−i) ≥ 1

2(1+4δ) . Since EQ[Ỹ α0 ] > 0, we conclude as above

that

por(Kω, x) =
1

2

for P -almost all ω ∈ Ω and for νω-almost all x ∈ Kω.
Finally, to prove that por(νω, x) = 1, we need to show that typical points

x are infinitely often close to the centre of Qki (x) and, at the same time,
νω(B(x, r)) is small compared to νω(B(x, (1+δ)r)). More precisely, fix α = 1−δ
with δ < 1

8 and r ∈ IN such that
√
mk−r < δ. Let I ′ be as above. For all

i ∈ IN, define Ŷ αi : IIN × Ω → {0, 1} by setting Ŷ αi (η, ω) = 1, if and only if

Jη|i is chosen, η|i+r ends with a word from Ĩ, B(x(η), 14k
−i) ∩ Kω ⊂ Jη|i+r ,

there are Ckr(m−1) words τ ∈ Ir such that Jη|i∗τ ⊂ B(x(η), 14 (1 + δ)k−i) \
B(x(η), 14k

−i) and the measures νω(Jη|i∗τ ) are comparable to each other and

to νω(Jη|i+r ). Here the constant C depends only on m. If Ŷ αi (η, ω) = 1 then

por(νω, x(η), 14 (1 + δ)k−i, ĉk−r(m−1)) ≥ 1
1+4δ , where ĉ depends only on m.

Since EQ[Ŷ αi ] > 0, we conclude as above that

por(νω, x) = 1

for P -almost all ω ∈ Ω and for νω-almost all x ∈ Kω.

Remark 4.15 (a) We can obtain some inequalities connecting regular mean
porosities and our construction based mean porosities. We note that a square
based hole of size α at scale i guarantees the presence of a Euclidean hole of
size 1

2αk
−i (recall the factor 1

2 in Definition 3.4) in a ball of size
√
mk−i. So if

we define the regular lower mean porosity p(A, x, α) using scales
√
mk−i, we

have, for all sets A ⊂ IRm, for all points x ∈ A and for all α ≥ 0, that

p(A, x, α) ≥ κ(A, x, 2
√
mα), (4.6)

and similarly for the upper mean porosities. For an arbitrary set A ⊂ IRm and
a point x ∈ A, there is no upper bound for p(A, x, α) in terms of κ(A, x, β).
Indeed, let A = [0, 1]m and x = 0. Then κ(A, x, α) = 0 and p(A, x, α) = 1 for
all α > 0.

For typical points of Kω, we may say more. Note that if α ≥ 1
2
√
m

, then

inequality (4.6) is trivial. However, for any 0 < α < 1
2 , one may guarantee

an existence of a Euclidean hole of size α in a ball of radius k−i by covering
a ball with construction cubes and noting that, with positive probability, all
of these cubes are neglected. Thus, for P -almost all ω ∈ Ω and for νω-almost
all x ∈ Kω, we have p(Kω, x, α) > 0 for all 0 ≤ α < 1

2 . One may also bound
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p(Kω, x, α) from above for typical points x. Namely, if x is close to the centre
of a construction cube Qki (x), then there is no Euclidean hole of size α in
B(x, ck−i) if there is no cube-shaped hole of size 2√

m
α in Qki (x), where c

depends on how close to the centre of Qki (x) the point x is. Since the events
“x is close to the centre of Qki (x)” and “Qki (x) does not contain a cube-shaped
hole of size 2√

m
α” can be estimated by independent events, there is positive

probability that both of them happens. Thus, for P -almost all ω ∈ Ω and for
νω-almost all x ∈ kω, we have p(Kω, x, α) < 1 for all 0 < α ≤ 1

2 . In order
to get bounds which are close to the optimal ones, one should estimate the
frequencies of scales when x is close to the boundaries of Qki (x) and there is a
hole in a neighbour cube of Qki (x) close to the boundary of Qki (x).

(b) Similarly to the cube shaped holes, for an arbitrary convex seed set
J = Cl(Int(J)) ⊂ Rd, we can consider holes in the metric whose unit ball
is shaped like J and then consider construction based mean porosities with
holes in that metric (cf. Definition 3.4). We believe that, given that the fractal
does not concentrate on the boundary of the seed set (cf. random strong open
set condition in [5]), for a corresponding homogeneous random stochastically
self-similar set with the seed set J , Theorems 4.5 and 4.11 and Corollary 4.14
will still hold.
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20. E. Järvenpää, M. Järvenpää and R. D. Mauldin, Deterministic and random aspects of
porosities, Discrete Contin. Dyn. Syst. 8, 121–136 (2002).

21. A. Käenmäki, T. Rajala and V. Suomala, Local homogeneity and dimensions of mea-
sures in doubling metric spaces, An. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XVI, 1315–
1351 (2016).
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Nonlinearity 16, 247–255 (2003).

33. A. Salli, On the Minkowski dimension of strongly porous fractal sets in IRn, Proc.
London Math. Soc. 62, 353–372 (1991).

34. P. Shmerkin, Porosity, dimension, and local entropies: a survey, Rev. Un. Mat. Ar-
gentina 52, 81–103 (2011).

35. P. Shmerkin, The dimension of weakly mean porous measures: a probabilistic approach,
Int. Math. Res. Not. IMRN 9, 2010–2033 (2012).
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