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Predictive Rate-Distortion for Infinite-Order Markov Processes
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Predictive rate-distortion analysis suffers from the curse of dimensionality: clustering arbitrar-
ily long pasts to retain information about arbitrarily long futures requires resources that typically
grow exponentially with length. The challenge is compounded for infinite-order Markov processes,
since conditioning on finite sequences cannot capture all of their past dependencies. Spectral argu-
ments confirm a popular intuition: algorithms that cluster finite-length sequences fail dramatically
when the underlying process has long-range temporal correlations and can fail even for processes
generated by finite-memory hidden Markov models. We circumvent the curse of dimensionality in
rate-distortion analysis of finite- and infinite-order processes by casting predictive rate-distortion ob-
jective functions in terms of the forward- and reverse-time causal states of computational mechanics.
Examples demonstrate that the resulting algorithms yield substantial improvements.

Keywords: optimal causal filtering, computational mechanics, epsilon-machine, causal states, pre-
dictive rate-distortion, information bottleneck
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I. INTRODUCTION

Biological organisms and engineered devices are often

required to predict the future of their environment ei-

ther for survival or performance. Absent side information

about the environment that is inherited or hardwired,

their only guide to the future is the past. One strategy for

adapting to environmental challenges, then, is to mem-

orize as much of the past as possible—a strategy that

ultimately fails, even for simple stochastic environments,

due to the exponential growth in required resources—the

curse of dimensionality.

One way to circumvent resource limitations is to iden-

tify minimal sufficient statistics of prediction, or the

forward-time causal states S+. Storing these states costs

on average C+
µ = H[S+] bits of Shannon information, a

quantity more popularly known as the statistical com-

plexity [1–3]. However, for most processes [4, 5], statisti-

cal complexity is infinite and so storing the causal states

themselves exceeds the capacity of any learning strategy.

As such, one asks for approximate, lossy features

that predict the future as well as possible given re-

source constraints. Shannon introduced rate-distortion

theory to analyze such trade-offs [6, 7]. When applied

to prediction, rate-distortion theory provides a princi-

pled framework for calculating the function delineating
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achievable from unachievable predictive distortion for a

given amount of memory. In practice, one typically com-

presses finite-length pasts to retain information about

finite-length futures [8, 9]. This can yield reasonable esti-

mates of predictive rate-distortion functions at sufficient

lengths, but how long is long enough?

We introduce a new theory and algorithm for calculat-

ing predictive rate-distortion functions and lossy predic-

tive features when given a model of a process. The heart

of this is a new theorem that identifies lossy predictive

features as lossy causal states, an extension of a previ-

ous result identifying lossless predictive features as causal

states [8, 9]. The theorem allows us to calculate lossy pre-

dictive features and predictive rate-distortion functions

directly from bidirectional models, without ever having

to calculate trajectory probabilities—effectively leverag-

ing the mechanistic information supplied by the model

to obtain only the needed information about the process’

statistics. This ameliorates, and sometimes eliminates,

the aforementioned curse of dimensionality.

Most research in this area is primarily focused on new

techniques for building predictive models from data, sug-

gesting the question: why build an optimal approximate

predictive model when a maximally predictive model is

known? We envision at least two applications. Accurate

calculation of lossy predictive features has already found

utility in testing the predictive capabilities of biological

sensory systems [10]. As such, the results presented here

expand the range of stimuli for which an organism’s pre-

dictive capabilities can be tested. And, more broadly,
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this or similar work might aid computation of optimally

coarse-grained dynamical models, which can be useful

when one wants to interpret the results of large-scale sim-

ulations.

The usefulness of the algorithms presented here nat-

urally depend on the quality of the model with which

one starts. The examples shown here suggest that when

one’s model is accurate, and when the underlying pro-

cess has relatively long-range temporal correlations, the

new predictive rate-distortion algorithm given here can

substantially outperform existing algorithms.

Section II reviews minimal maximally predictive mod-

els and predictive rate-distortion theory. Section III

describes fundamental limitations to current predictive

rate-distortion algorithms. Section IV introduces a new

theorem that reformulates predictive rate-distortion ob-

jectives in terms of minimal sufficient statistics of pre-

diction and retrodiction. Section V then describes a

new class of algorithms for computing lossy causal states

based on this theorem, given a model of a process, and il-

lustrates its performance on several simple infinite-order

Markov processes. Section VI summarizes outstanding

issues, desirable extensions, and future applications.

II. BACKGROUND

When an information source’s entropy rate falls below

a channel’s capacity, Shannon’s Second Coding Theorem

says that there exists an encoding of the source messages

such that the information can be transmitted error-free,

even over a noisy channel.

What happens, though, when the source rate is above

this error-free regime? This is what Shannon solved by

introducing rate-distortion theory [6, 7]. Our view is

that, for natural systems, the above-capacity regime is

disproportionately more common and important than the

original error-free coding with which Shannon and follow-

ers started. This viewpoint may be particularly impor-

tant for understanding biological sensory systems; e.g., as

studied in Refs. [10–12]. Summarizing sensory informa-

tion not only helps reduce demands on memory, but also

the computational complexity of downstream perceptual

processing, cognition, and acting. For instance, much ef-

fort has focused on determining memory and the ability

to reproduce a given time series [13], but that memory

may only be important to the extent that it affects the

ability to predict the future; e.g., see Refs. [4, 10, 14, 15].

We are interested, therefore, as others have been, in

identifying lossy predictive features.

First, we review the calculus of minimal maximally

predictive models. These, finally, lead us to describe

what we mean by lossy causal states. The following as-

sumes familiarity with information theory at the level of

Ref. [16].

A. Processes and Their Causal States

When predicting a system the main object is the pro-

cess P it generates: the list of all of a system’s behav-

iors or realizations {. . . x−2, x−1, x0, x1, . . .} as specified

by their joint probabilities Pr(. . . X−2, X−1, X0, X1, . . .).

We denote a contiguous chain of random variables as

X0:` = X0X1 · · ·X`−1. Left indices are inclusive; right,

exclusive. We suppress indices that are infinite. In this

setting, the present Xt:t+` is the length-` chain beginning

at t, the past is the chain X:t = . . . Xt−2Xt−1 leading up

the present, and the future is the chain following the

present Xt+`: = Xt+`+1Xt+`+2 · · · . When being more

expository, we use arrow notation; for example, for the

past
←−
X = X:0 and future

−→
X = X0:. We refer on occasion

to the space
←−
X of all pasts. Finally, we assume a process

is ergodic and stationary—Pr(X0:`) = Pr(Xt:`+t) for all

t ∈ Z—and the measurement symbols xt range over a

finite alphabet: x ∈ A. We make no assumption that

the symbols represent the system’s states—they are at

best an indirect reflection of an internal Markov mecha-

nism. That is, the process a system generates is a hidden

Markov process [17].

Forward-time causal states S+ are minimal sufficient

statistics for predicting a process’s future [1, 2]. This

follows from their definition as sets of pasts grouped by

the equivalence relation ∼+:

x:0 ∼+x′:0
⇔ Pr(X0:|X:0 = x:0) = Pr(X0:|X:0 = x′:0) . (1)

As a shorthand, we denote a cluster of pasts so defined,

a causal state, as σ+ ∈ S+. We implement Eq. (1) via

the causal state map: σ+ = ε+(←−x ). Through it, each

state σ+ inherits a probability π(σ+) from the process’s

probability over pasts Pr(X:0). The forward-time statis-

tical complexity is defined as the Shannon entropy of the

probability distribution over forward-time causal states

[1]:

C+
µ = H[S+] . (2)

A generative model—the process’s ε-machine—is built

out of the causal states by endowing the state set with a

transition dynamic:

T xσσ′ = Pr(S+t+1 = σ′, Xt = x|S+t = σ) ,

matrices that give the probability of generating the next

symbol xt and ending in the next state σt+1, if starting
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in state σt. (Since output symbols are generated during

transitions there is, in effect, a half time-step difference in

index. We suppress notating this.) For a discrete-time,

discrete-alphabet process, the ε-machine is its minimal

unifilar Hidden Markov Model (HMM) [1, 2]. (For gen-

eral background on HMMs see Refs. [18–20]. For a math-

ematical development of ε-machines see Ref. [21].) Note

that the causal-state set of a process generated by even

a finite HMM can be finite, countable, or uncountable.

Minimality can be defined by either the smallest number

of causal states or the smallest statistical complexity Cµ
[2]. Unifilarity is a constraint on the transition matrices

such that the next state σt+1 is determined by knowing

the current state σt and the next symbol xt.

A similar equivalence relation ∼− can be applied to

find minimal sufficient statistics for retrodiction [22]. Fu-

tures are grouped together if they have equivalent condi-

tional probability distributions over pasts:

x0: ∼−x′0:
⇔ Pr(X:0|X0: = x0:) = Pr(X:0|X0: = x′0:) . (3)

A cluster of futures—a reverse-time causal state—defined

by ∼− is denoted σ− ∈ S−. Again, each σ− inher-

its a probability π(σ−) from the probability over futures

Pr(X0:). And, the reverse-time statistical complexity is

the Shannon entropy of the probability distribution over

reverse-time causal states:

C−µ = H[S−] . (4)

In general, the forward- and reverse-time statistical com-

plexities are not equal [22, 23]. That is, different amounts

of information must be stored from the past (future) to

predict (retrodict). Their difference Ξ = C+
µ − C−µ is a

process’s causal irreversibility and it reflects this statis-

tical asymmetry.

The amount of information in the future that is pre-

dictable from the past is the past-future mutual informa-

tion or excess entropy :

E = I[
←−
X,
−→
X ] .

The forward- and reverse-time causal states play a key

role in prediction. First, one must track the causal states

in order to predict the E bits of future information that

are predictable. Second, they shield the past and future

from one another. That is:

Pr(
←−
X,
−→
X |S+) = Pr(

←−
X |S+) Pr(

−→
X |S+) and

Pr(
←−
X,
−→
X |S−) = Pr(

←−
X |S−) Pr(

−→
X |S−) ,

even though S+ and S− are functions of
←−
X and

−→
X , re-

spectively. Thus, the excess entropy vanishes if one con-

ditions on the causal states: I[
←−
X ;
−→
X |S+] = 0.

B. Lossy Predictive Features

Lossy predictive features are naturally defined via pre-

dictive rate-distortion or its information-theoretic in-

stantiations [8, 9, 24]. Interested readers can refer to

Refs. [6, 7, 25] or Ref. [16, Ch. 10] for more detailed ex-

positions of rate-distortion theory. The admittedly brief

presentation here is adapted to serve our focus on pre-

diction.

The basic setting of rate-distortion theory requires

specifying two items: an information source to encode

and a distortion measure d that quantifies the quality of

an encoding. The focus on prediction means that the in-

formation source is a process’s past
←−
X with realizations

←−x and the relevant variable is its future
−→
X . That is, we

enforce the Markov chain R → ←−X → −→X when looking

for states R coarse-grained at a level determined by d.

Our distortion measures have the form:

d(←−x , r) = d
(

Pr(
−→
X |←−X =←−x ),Pr(

−→
X |R = r)

)
.

This form is atypical for distortions and, technically, an

extension of traditional rate-distortion theory. More typ-

ical distortions would include, for example, a normalized

Hamming distance between a given←−x and the estimated

past from the codeword r ∈ R. However, these “pre-

dictive distortions” are well adapted to the applications

described earlier. The minimal code rate R at expected

distortion D is given by the predictive rate-distortion

function:

R(D) = min
〈d(←−x ,r)〉←−X,R≤D

I[R;
←−
X ] . (5)

Determining the optimal lossy predictive features

Pr(R|←−X ) that achieve these limits, as well as the pre-

dictive rate-distortion function, is the goal of predictive

rate distortion theory.

Among predictive distortions, predictive informational

distortions of the form

d(←−x , r) = DKL[Pr(
−→
X |←−X =←−x )||Pr(

−→
X |R = r)] (6)

are of special interest, as they have been well studied by

others [8–10, 24, 26] and also satisfy several reasonable

criteria for how one might choose a good distortion mea-

sure [27]. The expected value of a predictive information

distortion is I[
←−
X ;
−→
X |R] = E − I[R;

−→
X ], so that mini-

mizing predictive information distortion is equivalent to

maximizing I[R;
−→
X ]. We often find it useful to define the
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predictive information function:

R(I0) = min
I[R;
−→
X ]≥I0

I[R;
←−
X ] , (7)

which is related to the corresponding predictive rate-

distortion function in a straightforward manner [28]. As

in the literature, we refer to this as the predictive in-

formation bottleneck (PIB). Previous results established

that the zero-distortion predictive features are a process’s

causal states and so the maximal R(I0) = C+
µ [8, 9] and

this code rate occurs at an I0 = E [22, 29].

The choice of method name can lead to confusion since

the recursive information bottleneck (RIB) introduced in

Ref. [30] is an information bottleneck approach to pre-

dictive inference that does not take the form of Eq. (7).

However, RIB is a departure from the original IB frame-

work since its objective function explicitly infers lossy

machines rather than lossy statistics [31].

III. CURSE OF DIMENSIONALITY IN

PREDICTIVE RATE-DISTORTION

Let’s consider the performance of any predictive in-

formation bottleneck algorithm that clusters pasts of

length M to retain information about futures of length

N . When finite-block algorithms work, in the lossless

limit they find features that capture I[X−M :0;X0:N ] =

E(M,N) of the total predictable information I[
←−
X ;
−→
X ] =

E at a coding cost of C+
µ (M,N). As M,N → ∞,

they should recover the forward-time causal states giv-

ing predictability E and coding cost C+
µ . Increas-

ing M and N come with an associated computational

cost, though: storing the joint probability distribution

Pr(X−M :0, X0:N ) of past and future finite-length trajec-

tories requires storing |A|M+N probabilities.

More to the point, applying these algorithms at small

distortions requires storing and manipulating a matrix of

dimension |A|M × |A|N . This leads to obvious practical

limitations—an instantiation of the curse of dimensional-

ity for prediction. For example, current computing is lim-

ited to matrices of size 105×105 or less, thereby restrict-

ing rate-distortion analyses to M,N ≤ log|A| 105. (This

is an overestimate, since the sparseness of the sequence

distribution is determined by a process’s topological en-

tropy rate.) And so, even for a binary process, when

|A| = 2, one is practically limited to M,N ≤ 16. No-

tably, M,N ≤ 5 are more often used in practice [8, 9, 32–

34]. Finally, note that these estimates do not account for

the computational costs of managing numerical inaccu-

racies when measuring or manipulating the vanishingly

small sequence probabilities that occur at large M and

N .

These constraints compete against achieving good ap-

proximations of the information rate-distortion function:

we require that E − E(M,N) be small. Otherwise, ap-

proximate information functions provide a rather weak

lower bound on the true information function for larger

code rates. This has been noted before in other con-

texts, when approximating non-Gaussian distributions

as Gaussians leads to significant underestimates of in-

formation functions [35]. This calls for an independent

calibration for convergence. We address this by calcu-

lating E−E(M,N) in terms of the transition matrix W

of a process’ mixed-state presentation. When W is diag-

onalizable with eigenvalues {λi}, Ref. [36] provides the

closed-form expression:

E−E(M,N) =∑
i:λi 6=1

λMi + λN+1
i − λM+N+1

i

1− λi
〈δπ|Wλi |H(WA)〉, (8)

where 〈δπ|Wλi
|H(WA)〉 is a dot product between the

eigenvector 〈δπ|Wλi corresponding to eigenvalue λi and

a vector H(WA) of transition uncertainties out of each

mixed state [37]. Here, π is the stationary state distri-

bution, 〈δπ| is the probability vector over mixed states

with full weight on the mixed state corresponding to the

stationary state distribution, and Wλi is the projection

operator associated with λi. When W ’s spectral gap

γ = 1 − maxi:λi 6=1 |λi| is small, then E(M,N) necessar-

ily asymptotes more slowly to E. When γ is small, then

(loosely speaking) we need M,N ∼ log1−γ(ε/γ) in order

to achieve a small error ε ∼ E − E(M,N) � 1 for the

predictive information function.

Figure 1(bottom) shows E(M,N) as a function of M

andN for the Even Process, whose ε-machine is displayed

in the top panel. The process’s spectral gap γ ≈ 0.3

bits and, correspondingly, we see E(M,N)/E asymptotes

slowly to 1. For example, capturing 90% of the total

predictable information requires M,N ≥ 8. (The figure

caption contains more detail on allowed (M,N) pairs.)

This, in turn, translates to requiring very good estimates

of the probabilities of ≈ 104 length-16 sequences. In Fig.

3 of Ref. [9], by way of contrast, Even Process informa-

tion functions were calculated using M = 3 and N = 2.

As a consequence, the estimates there captured only 27%

of the full E.

The Even Process is generated by a simple two-state

HMM, so it is notable that computing its information

function (done shortly in Sec. V) is at all challenging.

Then again, the Even Process is an infinite-order Markov

process [39].

The difficulty can easily become extreme. Altering the

Even Process’s lone stochastic transition probability can
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FIG. 1. Curse of dimensionality when predicting the Even
Process: (top) The ε-machine, its minimal unifilar HMM.
Edge labels p|x denote generating symbol x ∈ A while taking
the transition with probability p. (bottom) E(M,N)/E as
a function of N and M calculated exactly using Eq. (8) and
the values of {λi}, 〈δπ|Wλi |H(WA)〉 from the Supplementary
Materials for Ref. [38]. The Even Process’s total predictable
information E ≈ 0.9183 bits. Capturing 90% of E requires:
M = 6, N ≥ 13 or N = 6, M ≥ 13; M = 7, N ≥ 9 or
N = 7, M ≥ 9; and M ≥ 8, N ≥ 8.

increase its temporal correlations such that correctly cal-

culating its information function requires massive com-

pute resources. Thus, the curse of dimensionality is a

critical concern even for finite-Cµ processes generated by

finite HMMs.

As we move away from such simple prototype processes

and towards real data sets, the attendant inaccuracies

generally worsen. Many natural processes in physics, bi-

ology, neuroscience, finance, and quantitative social sci-

ence are highly non-Markovian with slowly asymptoting

or divergent E [40]. This implies rather small spectral

gaps if the process has a countable infinity of causal

states—e.g., as in Ref. [41]—or a distribution of eigen-

values heavily weighted near λ = 0, if the process has

an uncountable infinity of causal states. In short, com-

plex processes [4, 14] are those for which sequence-based

algorithms are most likely to fail.

IV. RECASTING PREDICTIVE RATE

DISTORTION THEORY

Circumventing the curse of dimensionality in predic-

tive rate-distortion, even given an accurate model of the

process, requires an alternative approach to predictive

rate distortion that leverages the structural information

about a process captured by that model. The results

now turn to describe exactly how this structural infor-

mation can be exploited. Lemma 1 equates lossy predic-

tive features to lossy forward-time causal states. Theo-

rem 1 shows that, for many predictive distortion mea-

sures, reverse-time causal states can replace semi-infinite

futures. A corollary is that the predictive information

bottleneck—compression of semi-infinite pasts to retain

information about semi-infinite futures—can be recast as

compression of forward-time causal states to retain infor-

mation about reverse-time causal states. The joint prob-

ability distribution of forward- and reverse-time causal

states may seem somewhat elusive, but previous work

has shown that this joint probability distribution can be

obtained given the process’ model [23].

The theory builds on a simple observation: any predic-

tive codebook can be recast as a codebook over forward-

time causal states. Though the old and new codebooks

have equivalent predictive distortions, the new codebook

is either equivalent to or “smaller” than the old code-

book. This observation is made precise by the following

remark.

Remark. Given any codebook Pr(R|←−X ), construct a new

codebook by setting Pr(R|←−X = ←−x ) to be Pr(R|S+ =

ε+(←−x )). This new codebook has equivalent predictive

distortion, since predictive distortion depends only on

Pr(r, σ+):

E[d(←−x , r)]
=
∑
←−x ,r

Pr(←−x , r)d(Pr(
−→
X |←−X =←−x ),Pr(

−→
X |R = r))

=
∑
←−x ,r

Pr(←−x , r)d(Pr(
−→
X |S+ = ε+(←−x )),Pr(

−→
X |R = r))

=
∑
σ+,r

Pr(σ+, r)d(Pr(
−→
X |S+ = σ+),Pr(

−→
X |R = r)) .

More importantly, this new codebook has equal or smaller

rate, since:

I[R;
←−
X ] = I[R;S+] + I[R;

←−
X |S+] ≥ I[R;S+] , (9)

with equality when
←−
X → S+ → R; as is true for the new,

but not necessarily for the old, codebook.

After the procedure implied by the remark, we can de-

crease not just the rate, but the number of predictive
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features by clustering together r and r′ with equivalent

future morphs Pr(
−→
X |·). (In a sense, two predictive fea-

tures with equivalent future morphs are just copies of

the same object.) Then, the number of predictive fea-

tures never exceeds the number of causal states, and

the entropy H[R] never exceeds the statistical complex-

ity. While potentially useful—some models have rate

I[R;
←−
X ] equivalent to the statistical complexity, despite

their nonminimality, effectively by copying one or more

causal states—this second operation is unnecessary for

the statements below.

To start, inspired by the previous finding that PIB re-

covers the forward-time causal states in the lossless limit

[8, 9], we argue that compressing either the past
←−
X or

forward-time causal states S+ should yield the same lossy

predictive features. In other words, lossy predictive fea-

tures are lossy causal states, and vice versa.

Lemma 1. Compressing the past
←−
X to minimize ex-

pected predictive distortion is equivalent to compressing

the forward-time causal states S+ to minimize expected

predictive distortion.

Proof. A codebook that optimally compresses the past

to achieve at most a distortion of E[d] ≤ D minimizes

rate I[R;
←−
X ], while a codebook that optimally compresses

forward-time causal states to achieve at most a distor-

tion of E[d] ≤ D minimizes a rate I[R;S+]. (See Eq. (5)

and accompanying text.) Clearly, a codebook that opti-

mally compresses forward-time causal states to minimize

expected predictive distortion also optimally compresses

pasts to minimize expected predictive distortion, since for

such a codebook, the objective functions are equivalent:

I[R;
←−
X ] = I[R;S+]. In the other direction, suppose that

some codebook optimally compresses the past to minimize

expected predictive distortion, in that it has the smallest

possible rate I[
←−
X ;R] given distortion E[d] ≤ D. From

the above remark, this codebook can be conceptualized as

a codebook over forward-time causal states and has rate

I[R;
←−
X ] = I[R;S+]. Hence, the corresponding codebook

over forward-time causal states also optimally compresses

forward-time causal states to minimize expected predic-

tive distortion, since for such a codebook, the objective

functions are again equivalent.

This lemma already provides a form of dimensionality

reduction: semi-infinite pasts are replaced with the (po-

tentially finite) forward-time causal states. Interestingly,

in a nonprediction setting, Ref. [42] states Lemma 1 in

their Eq. (2.2) without conditions on the distortion mea-

sure. However, a distortion measure that is not of the

form d(←−x , r) = d(Pr(
−→
X |←−X =←−x ),Pr(

−→
X |R = r)) can still

look like a predictive distortion measure, but actually in-

corporate potentially unnecessary information about the

past, e.g. by penalizing the difference between an esti-

mated and true future trajectories. In those situations,

Lemma 1 may not apply, depending on the particular fu-

ture trajectory estimator. In other situations, further di-

mensionality reduction is possible depending on the pre-

dictive distortion; e.g., as in Ref. [43].

When the distortion measure takes a particular spe-

cial form, then we can simplify the objective function

further. Our inspiration comes from Refs. [22, 29, 44]

which showed that the mutual information between past

and future is identical to the mutual information be-

tween forward and reverse-time causal states: I[
←−
X ;
−→
X ] =

I[S+;S−]. In other words, forward-time causal states S+
are the only features needed to predict the future as well

as possible, and reverse-time causal states S− are fea-

tures one can predict about the future.

Theorem 1. Compressing the past
←−
X to minimize ex-

pected distortion of the future
−→
X is equivalent to com-

pressing the forward-time causal states S+ to minimize

expected distortion of reverse-time causal states S−, if

the predictive distortion measure is an f -divergence.

Proof. If d(·, ·) is an f -divergence, then it takes the

form:

d(←−x , r) =
∑
−→x

Pr(
−→
X = −→x |←−X =←−x )f

(
Pr(
−→
X = −→x |←−X =←−x )

Pr(
−→
X = −→x |R = r)

)
,

for some f [45]. Reverse-time causal states S− are func-

tions of the future
−→
X that shield the future from the past

and the representation: R →←−X → S− → −→X . And, so:

Pr(
−→
X = −→x |←−X =←−x )

= Pr(
−→
X = −→x |S− = ε−(−→x )) Pr(S− = ε−(−→x )|←−X =←−x )

and:

Pr(
−→
X = −→x |R = r)

= Pr(
−→
X = −→x |S− = ε−(−→x )) Pr(S− = ε−(−→x )|R = r) .

In this way, predictive distortions that are f -divergences

can also be expressed as:

d(←−x , r)
=
∑
−→x

Pr(
−→
X = −→x |S− = ε−(−→x )) Pr(S− = ε−(−→x )|←−X =←−x )

× f
(

Pr(S− = ε−(−→x )|←−X =←−x )

Pr(S− = ε−(−→x )|R = r)

)
=
∑
σ−

Pr(S− = σ−|←−X =←−x )f

(
Pr(S− = σ−|←−X =←−x )

Pr(S− = σ−|R = r)

)
.

Given this fact and Lemma 1, we recover the theorem’s

statement.

Distortion measures that are not f -divergences, such as



7

mean squared-error distortion measures, implicitly em-

phasize predicting one reverse-time causal state over an-

other. The Kullback-Leibler divergence given in Eq. (6),

though, is an example of an f -divergence. It follows that

informational predictive distortions treat all reverse-time

causal states equally. Corollary 1 then follows as a par-

ticular application of Thm. 1. It recasts the predictive

information bottleneck in terms of forward- and reverse-

time causal states.

Corollary 1. Compressing the past
←−
X to retain infor-

mation about the future
−→
X is equivalent to compressing

S+ to retain information about S−.

Naturally, there is an equivalent version for the time-

reversed setting in which past and future are swapped

and the causal state sets are swapped. Also, any forward-

and reverse-time prescient statistics can be used in place

of S+ and S− in any of the statements above. (Prescient

statistics are essentially refinements of causal states [2].)

These proofs follow almost directly from the definitions

of forward- and reverse-time causal states. Variations or

portions of Lemma 1, Thm. 1, and Coro. 1 are, hopefully,

intuitive. That said, to the best of our knowledge, they

are also new.

Throughout, we cavalierly manipulated semi-infinite

pasts and futures and their conditional and joint proba-

bility distributions—e.g., Pr(
−→
X |←−X ). This is mathemati-

cally suspect, since then many sums should be measure-

theoretic integrals, our codebooks seemingly have an un-

countable infinity of codewords, many probabilities van-

ish, and our distortion measures apparently divide 0 by 0.

So, a more formal treatment would instead: (i) consider

a series of objective functions that compress finite-length

pasts to retain information about finite-length futures for

a large number of lengths, giving finite codebooks and fi-

nite sequence probabilities at each length; (ii) trivially

adapt the proofs of Lemma 1, Thm. 1 and Coro. 1 for

these objective functions with finite-time causal states;

and (iii) take the limit as those lengths go to infinity; e.g.,

as in Ref. [44]. As long as the finite-time forward- and

reverse-time causal states limit to their infinite-length

counterparts, which seems to be the case for ergodic sta-

tionary processes but not for nonergodic processes, one

recovers Lemma 1, Thm. 1 and Coro. 1. We leave the

task of an expanded measure-theoretic development to

those with greater mathematical fortitude.

These statements nominally reduce the numeri-

cally intractable problem of clustering in the infinite-

dimensional sequence space (
←−
X,
−→
X ) to the potentially

tractable one of clustering in (S−,S+). This is hugely

beneficial when a process’s causal state set is finite. How-

ever, many processes have an uncountable infinity of

forward-time causal states or reverse-time causal states

[4, 5]. Is Thm. 1 useless in these cases? Not necessar-

ily. Predictive rate-distortion functions can be approxi-

mated to any desired accuracy by a finite or countable

ε-machine. Additional work is required to understand

how approximations of a process’ minimal maximally

predictive model map to approximations of its predictive

rate-distortion function.

V. EXAMPLES

Theorem 1 suggests a new objective function to define

lossy predictive features and predictive rate-distortion

functions. It is unclear from theory alone how useful this

new objective function might be. We now compare the

results of an algorithm suggested by Coro. 1 to results of

more commonly used PIB algorithms for several simple

stochastic processes to investigate when and why moving

to bidirectional model space proves useful.

To date, PIB algorithms cluster finite-length pasts to

retain information about finite-length futures. For sim-

plicity’s sake, we assume that lengths of pasts and futures

are both L. These algorithms find Pr(R|←−XL) that max-

imize:

Lβ = I[R;
−→
XL]− β−1 I[

←−
XL;R] , (10)

and vary the Lagrange multiplier β to achieve different

distortions. We refer to such algorithms as optimal causal

filtering (OCF). Using Coro. 1, we can instead search for

a codebook Pr(R|S+) that maximizes:

Lβ = I[R;S−]− β−1 I[S+;R] , (11)

and again vary the Lagrange multiplier β to achieve dif-

ferent distortions. We refer to procedures that maxi-

mize this objective function as causal information bottle-

neck (CIB) algorithms. At large enough L, the approxi-

mated predictive features become indistinguishable from

the true predictive features. However, several examples

below give a rather sober illustration of the substantial

errors that arise for OCF when operating at finite-L and

do so for surprisingly simple processes.

We calculate solutions to both objective functions fol-

lowing Ref. [26]. For example, given Pr(S+,S−), then,

one solves for the Pr(R|S+) that maximizes the objective

function in Eq. (11) at each β by iterating the dynamical
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system:

Prt(r|σ+) =
Prt−1(r)

Zt(σ+, β)
e−βDKL[Pr(σ−|σ+)||Prt−1(σ

−|r)]

(12)

Prt(r) =
∑
σ+

Pr
t

(r|σ+) Pr(σ+) (13)

Prt(σ
−|r) =

∑
σ+

Pr(σ−|σ+)Prt(σ
+|r) , (14)

where Zt(σ
+, β) is the normalization constant for

Prt(r|σ+). Iterating Eqs. (12) and (14) at fixed β gives

(i) one point on the function (Rβ , Dβ) and (ii) the explicit

optimal lossy predictive features Pr(R|S+).

We used a similar procedure to calculate finite-L ap-

proximations of information functions, but where σ+ and

σ− are replaced by x−L:0 and x0:L, which are then re-

placed by finite-time causal states S+L,L and S−L,L using

a finite-time variant of Coro. 1. The joint probability

distribution of these finite-time causal states was calcu-

lated exactly by (i) calculating sequence distributions of

length 2L directly from the ε-machine transition matri-

ces and (ii) clustering these into finite-time causal states

using the equivalence relation described in Sec. II A, ex-

cept when the joint probability distribution was already

analytically available. This procedure avoids the compli-

cations of finite sequence samples. As a result, differences

between the algorithms derive entirely from a difference

in objective function.

We display calculations in two ways. The first

is the information function, a rate-distortion function

that graphs the code rate I[
←−
X ;R] versus the distor-

tion I[
←−
X ;
−→
X |R] [46]. The second is a feature curve of

code rate I[
←−
X ;R] versus inverse temperature β. We re-

call that at zero temperature (β → ∞) the code rate

I[
←−
X ;R] = C+

µ and the forward-time causal states are re-

covered: R → S+. At infinite temperature (β = 0) there

is only a single state that provides no shielding and so

the information distortion limits to I[
←−
X ;
−→
X |R] = E. As

suggested by Sec. III, these extremes are useful references

for monitoring convergence.

For each β, we chose 500 random initial Pr0(r|σ+),

iterated Eqs. (12)-(14) 300 times, and recorded the so-

lution with the largest Lβ . This procedure finds local

maxima of Lβ , but does not necessarily find global max-

ima. Thus, if the resulting information function was non-

monotonic, we increased the number of randomly chosen

initial Pr0(r|σ+) to 5000, increased the number of itera-

tions to 500, and repeated the calculations. This brute

force approach to the nonconvexity of the objective func-

tion was feasible here only due to analyzing processes

with small ε-machines. Even so, the estimates might in-

clude suboptimal solutions in the lossier regime. A more

sophisticated approach would leverage other results; e.g.,

using those of Refs. [47–49] to move carefully from high-β

to low-β solutions.

Note that in contrast with deterministic annealing pro-

cedures that start at low β (high temperature) and add

codewords to expand the codebook as necessary, we can

also start at large β with a codebook with codewords

S+ and decrease β, allowing the representation to natu-

rally reduce its size. This is usually “naive” [50] due to

the large number of local maxima of Lβ , but here, we

know the zero-temperature result beforehand. More im-

portantly, we are usually searching for the lossless predic-

tive features at large β, but here, we are asking different

questions. Of course, we could also start at low β and

increase β. The key difference between the algorithm

suggested by Coro. 1 and traditional predictive infor-

mation bottleneck algorithms is not the algorithm itself,

but the joint probability distribution of compressed and

relevant variables—causal states versus sequences.

Section V A gives conditions on a process that guaran-

tee that its information functions can be accurately calcu-

lated without first having a maximally-predictive model

in hand. Section V B describes several processes that

have first-order phase transitions in their feature curves

at β = 1. Section V C describes how information func-

tions and feature curves can change nontrivially under

time reversal. Finally, Sec. V D shows how predictive

features describe predictive “macrostates” for the pro-

cess generated the symbolic dynamics of the chaotic Tent

Map of the unit interval.

A. Unhidden and Almost Unhidden Processes

Predictive information bottleneck algorithms that clus-

ter pasts of length M ≥ 1 to retain information about

futures of length N ≥ 1 calculate accurate information

functions when E(M,N) ≈ E. (Recall Sec. III.) Such

algorithms work exactly on order-R Markov processes

when M,N ≥ R, since E(R,R) = E. However, there

are many processes that are “almost” order-R Markov,

for which these algorithms should work quite well.

The quality of a process’s approximation can be mon-

itored by the convergence error E − E(M,N), which is

controlled by the elusive information σµ(L), defined as

I[
←−
X ;XL:|X0:L] [36]. To see this, we apply the mutual

information chain rule repeatedly:

E = I[X:0;X0:]

= I[X:0;X0:N−1] + σµ(N)

= E(M,N) + I[X:−M−1;X0:N−1|X−M−1:0] + σµ(N) .
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The last mutual information is difficult to interpret, but

easy to bound:

I[X:−M−1;X0:N−1|X−M−1:0]

≤ I[X:−M−1;X0:|X−M−1:0]

= σµ(M) ,

And so, the convergence error is upper-bounded by the

elusive information:

0 ≤ E−E(M,N) ≤ σµ(N) + σµ(M) . (15)

The inequality of Eq. (15) suggests that, as far as accu-

racy is concerned, if a process has a small σµ(L) relative

to its E for some reasonably small L, then sequences are

effective states. This translates into the conclusion that

for this class of process calculating information functions

by first moving to causal state space is unnecessary.

A B1
2 |1

1
2 |0

1|1

A B1
2 |0

1
2 |0

1
2 |0

1
2 |1

FIG. 2. (top) Golden Mean HMM, an ε-machine. (bottom)
Simple Nonunifilar Source HMM presentation; not the SNS
process’s ε-machine.

Let’s test this intuition. The prototypical example

with σµ(1) = 0 is the Golden Mean Process, whose HMM

is shown in Fig. 2(top). It is order-1 Markov, so OCF

with L = 1 is provably equivalent to CIB, illustrating

one side of the intuition.

A more discerning test is an infinite-order Markov pro-

cess with small σµ. One such process is the Simple

Nonunifilar Source (SNS) whose (nonunifilar) HMM is

shown in Fig. 2(bottom). As anticipated, Fig. 3(top)

shows that OCF with L = 1 and CIB yield very simi-

lar information functions at low code rate and low β. In

fact, many of SNS’s statistics are well approximated by

the Golden Mean HMM.

The feature curve in Fig. 3(bottom) reveals a slightly

more nuanced story, however. The SNS is highly cryptic,

in that it has a much larger Cµ than E. As a result,

OCF with L = 1 approximates E quite well but under-

estimates Cµ, replacing an (infinite) number of feature-

discover transitions with a single transition. (More on

these transitions shortly.)

0.0 0.02 0.04 E

I [
←−
X ;
−→
X |R]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Cµ

I
[←− X

;R
]

10−1 100 101 102 103 104 105

β

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Cµ

I
[←− X

;R
]

FIG. 3. Simple Nonunifilar Source: (Top panel) Information
function: coding cost versus distortion. (Bottom panel) Fea-
ture curve: coding cost as a function of inverse temperature
β. (Blue solid line, circles) CIB with a 10-state approximate
ε-machine. (Green dashed line, crosses) OCF at L = 1.

This particular type of error—missing predictive

features—only matters for predicting the SNS when

low distortion is desired. Nonetheless, it is important

to remember that the process implied by OCF with

L = 1—the Golden Mean Process—is not the SNS. The

Golden Mean Process is an order-1 Markov process. The

SNS HMM is nonunifilar and generates an infinite-order

Markov process and so provides a classic example [4] of

how difficult it can be to exactly calculate information

measures of stochastic processes.

Be aware that CIB cannot be directly applied to an-

alyze the SNS, since the latter’s causal state space is

countably infinite; see Ref. [51]’s Fig. 3. Instead, we

used finite-time causal states with finite past and future
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lengths and with the state probability distribution given

in App. B of Ref. [51]. Here, we used M,N = 10, ef-

fectively approximating the SNS as an order-10 Markov

process.

B. First-order Phase Transitions at β = 1

Feature curves have discontinuous jumps (“first-order

phase transitions”) or are nondifferentiable (“second-

order phase transitions”) at critical temperatures when

new features or new lossy causal states are discovered.

The effective dimension of the codebook changes at these

transitions. Symmetry breaking plays a key role in iden-

tifying the type and temperature (β here) of phase tran-

sitions in constrained optimization [49, 52]. Using the

infinite-order Markov Even Process of Sec. III, CIB al-

lows us to explore in greater detail why and when first-

order phase transitions occur at β = 1 in feature curves.

There are important qualitative differences between in-

formation functions and feature curves obtained via CIB

and via OCF for the Even Process. First, as Fig. 4(top)

shows, the Even Process CIB information function is a

simple straight line, whereas those obtained from OCF

are curved and substantially overestimate the code rate.

Second, as Fig. 4(bottom) shows, the CIB feature curve

is discontinuous at β = 1, indicating a single first-order

phase transition and the discovery of highly predictive

states. In contrast, OCF functions miss that key transi-

tion and incorrectly suggest several phase transitions at

larger βs.

The first result is notable, as Ref. [9] proposed that

the curvature of OCF information functions define natu-

ral scales of predictive coarse-graining. In this interpre-

tation, linear information functions imply that the Even

Process has no such intermediate natural scales. And,

there are good reasons for this.

So, why does the Even Process exhibit a straight line?

Recall that the Even Process’s recurrent forward-time

causal states code for whether or not one just saw an even

number of 1’s (state A) or an odd number of 1’s (state B)

since the last 0. Its recurrent reverse-time causal states

(Fig. 2 in Ref. [29]) capture whether or not one will see

an even number of 1’s until the next 0 or an odd number

of 1’s until the next 0. Since one only sees an even number

of 1’s between successive 0’s, knowing the forward-time

causal state uniquely determines the reverse-time causal

state and vice versa. The Even Process’ forward causal-

state distribution is Pr(S+) =
(
2/3 1/3

)
and the con-

ditional distribution of forward and reverse-time causal

0.0 0.2 0.4 0.6 0.8 1.0E

I [
←−
X ;
−→
X |R]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Cµ

I
[R

;←− X
]

0 2 4 6 8 10 12 14
β

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Cµ
I

[R
;←− X

]

FIG. 4. Even Process analyzed with CIB (solid line, blue cir-
cles) and with OCF (dashed lines, colored crosses) at various
values of M = N = L: (right to left) L = 2 (green), L = 3
(red), L = 4 (light blue), and L = 5 (purple). (top) Infor-
mation functions. (bottom) Feature curves. At β = 1, CIB
functions transition from approximating the Even Process as
IID (biased coin flip) to identifying both causal states.

states is:

Pr(S−|S+) =

(
1 0

0 1

)
.

Thus, there is an invertible transformation between S+
and S−, a conclusion that follows directly from the pro-

cess’s bidirectional machine. The result is that:

I[R;S+] = I[R;S−] . (16)

And so, we directly calculate the information function
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from Eq. (7):

R(I0) = min
I[R;S−]≥I0

I[R;S+]

= min
I[R;S−]≥I0

I[R;S−]

= I0 ,

for all I0 ≤ E. Similar arguments hold for periodic pro-

cess as described in Ref. [8, 9] and for general cyclic

(noisy periodic) processes as well. However, periodic

processes are finite-order Markov, whereas the infinite

Markov-order Even Process hides its deterministic rela-

tionship between prediction and retrodiction underneath

a layer of stochasticity. This suggests that the bidirec-

tional machine’s switching maps [29] are key to the shape

of information functions.

The Even Process’s feature curve in Fig. 4(bottom)

shows a first-order phase transition at β = 1. Similar to

periodic and cyclic processes, its lossy causal states are

all-or-nothing. Iterating Eqs. (12) and (14) is an attempt

to maximize the objective function of Eq. (11). However,

Eq. (16) gives:

Lβ = (1− β−1) I[R;S+] .

Recall that 0 ≤ I[R;S+] ≤ Cµ. For β < 1, on the one

hand, maximizing Lβ requires minimizing I[R;S+], so

the optimal lossy model is a biased coin approximation

of the Even Process—a single-state HMM. For β > 1, on

the other, maximizing Lβ requires maximizing I[R;S+],

so the optimal lossy features are the causal states A and

B themselves. At β = 1, though, Lβ = 0, and any repre-

sentation R of the forward-time causal states S+ is opti-

mal. In sum, the discontinuity of coding cost I[R;S+] as

a function of β corresponds to a first-order phase transi-

tion and the critical inverse temperature is β = 1.

Both causal states in the Even Process are unusu-

ally predictive features: any increase in memory of such

causal states is accompanied by a proportionate increase

in predictive power. These states are associated with

a one-to-one (switching) map between a forward-time

and reverse-time causal state. In principle, such states

should be the first features extracted by any predic-

tive rate-distortion algorithm. More generally, when the

joint probability distribution of forward- and reverse-

time causal states can be permuted into diagonal block-

matrix form, there should be a first-order phase transi-

tion at β = 1 with one new codeword for each of the

blocks.

Many processes do not have probability distributions

over causal states that can be permuted, even approx-

imately, into a diagonal block-matrix form; e.g., most

of those described in Refs. [51, 53]. However, we sus-

pect that diagonal block-matrix forms for Pr(S+,S−)

might be relatively common in the highly structured pro-

cesses generated by low entropy-rate deterministic chaos,

as such systems often have many irreducible forbidden

words. Restrictions on the support of the sequence dis-

tribution easily yield blocks in the joint probability dis-

tribution of forward- and reverse-time causal states.

For example, the Even Process forbids words with an

odd number of 1s, which is expressed by its irreducible

forbidden word list F = {012k+10 : k = 0, 1, 2, . . .}. Its

causal states group pasts that end with an even (state

A) or odd (state B) number of 1s since the last 0. Given

the Even Process’ forbidden words F , sequences follow-

ing from state A must start with an even number of ones

before the next 0 and those from state B must start with

an odd number of ones before the next 0. The restricted

support of the Even Process’ sequence distribution there-

fore gives its causal states substantial predictive power.

Moreover, many natural processes are produced by de-

terministic chaotic maps with added noise [54]. Such

processes may also have Pr(S+,S−) in nearly diagonal

block-matrix form. These joint probability distributions

might be associated with sharp second-order phase tran-

sitions.

However, numerical results for the “four-blob” problem

studied in Ref. [49] suggest the contrary. The joint prob-

ability distribution of compressed and relevant variables

is “a discretization of a mixture of four well-separated

Gaussians” [49] and has a nearly diagonal block-matrix

form, with each block corresponding to one of the four

blobs. If the joint probability distribution were exactly

block diagonal—e.g., from a truncated mixture of Gaus-

sians model—then the information function would be lin-

ear and the feature curve would exhibit a single first-

order phase transition at β = 1 from the above argu-

ments. The information function for the four-blob prob-

lem looks linear; see Fig. 5 of Ref. [49]. The feature

curve (Fig. 4, there) is entirely different from the fea-

ture curves that we expect from our earlier analysis of

the Even Process. Differences in the off-diagonal block-

matrix structure allowed the annealing algorithm to dis-

criminate between the nearly equivalent matrix blocks, so

that there are three phase transitions to identify each of

the four blobs. Moreover, none of the phase transitions

are sharp. So, perhaps the sharpness of phase transi-

tions in feature curves of noisy chaotic maps might have

a singular noiseless limit, as is often true for information

measures [53].
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FIG. 5. Random Insertion Process (RIP): (Top) Forward-
time ε-machine. (Bottom) Reverse-time ε-machine.

C. Temporal Asymmetry in Lossy Prediction

As Refs. [22, 29] describe, the resources required to

losslessly predict a process can change markedly under

time reversal. The prototype example is the Random In-

sertion Process (RIP), shown in Fig. 5. Its bidirectional

machine is known analytically [22]. Therefore, we know

the joint Pr(S+,S−) via Pr(S+) =
(
2/5 1/5 2/5

)
and:

Pr(S−|S+) =

0 1
2 0 1

2

0 1
2

1
2 0

1 0 0 0

 .

There are three forward-time causal states and four

reverse-time causal states. And, the forward-time statis-

tical complexity and reverse-time statistical complexity

are unequal, making the RIP causally irreversible. For

instance, C+
µ ≈ 1.8 bits and C−µ ≈ 1.5 bits, even though

the excess entropy E ≈ 1.24 bits is by definition time-

reversal invariant.

However, it could be that the lossy causal states are

somehow more robust to time reversal than the (loss-

less) causal states themselves. Let’s investigate the differ-

ence in RIP’s information and feature curves under time
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FIG. 6. Random Insertion Process (RIP) Information Func-
tions: RIP is a causally irreversible process: C+

µ < C−µ . There
are more causal states in reverse time than forward time, lead-
ing to more kinks in the reverse-time process’ information
function (bottom) than in the forward-time process’ informa-
tion function (top). Legend as in previous figure: (solid line,
blue circles) CIB function and (dashed lines, colored crosses)
OCF at various sequence lengths.

reversal. Figure 6 shows information functions for the

forward-time and reverse-time processes. Despite RIP’s

causal irreversibility, information functions look similar

until informational distortions of less than 0.1 bits. RIP’s

temporal correlations are sufficiently long-ranged so as to

put OCF with L ≤ 5 at a significant disadvantage rela-

tive to CIB, as the differences in the information func-

tions demonstrate. OCF greatly underestimates E by

about 30% and both underestimates and overestimates

the correct Cµ.

The RIP feature curves in Fig. 7 reveal a similar story
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FIG. 7. Random Insertion Process (RIP) Feature Curves:
Having more causal states in reverse time than forward time
leads to more phase transitions in the reverse-time process’
feature curve (bottom) than in the forward-time process’ fea-
ture curve (top). Legend as in previous figure.

in that OCF fails to asymptote to the correct Cµ for

any L ≤ 5 in either forward or reverse time. Unlike

the information functions, though, feature curves reveal

temporal asymmetry in the RIP even in the lossy (low

β) regime.

Both forward and reverse-time feature curves show a

first-order phase transition at β = 1, at which point

the forward-time causal state C and the reverse-time

causal state D are added to the codebook, illustrating

the argument of Sec. V B. (Forward-time causal state

C and reverse-time causal state D are equivalent to the

same bidirectional causal state C/D in RIP’s bidirec-

tional ε-machine. See Fig. 2 of Ref. [22].) This common

bidirectional causal state is the main source of similarity

in the information functions of Fig. 6.

Both feature curves also show phase transitions at β =

2, but similarities end there. The forward-time feature

curve shows a first-order phase transition at β = 2, at

which point both remaining forward-time causal states

A and B are added to the codebook. The reverse-time

feature curve has what looks to be a sharp second-order

phase transition at β = 2, at which point the reverse-time

causal state F is added to the codebook. The remaining

two reverse-time causal states, E and G, are finally added

to the codebook at β = 5. We leave solving for the critical

temperatures and confirming the phase transition order

using a bifurcation discriminator [47] to the future.

D. Predictive Hierarchy in a Dynamical System

Up to this point, the emphasis was analyzing selected

prototype infinite Markov-order processes to illustrate

the differences between CIB and OCF. In the following,

instead we apply CIB and OCF to gain insight into a

nominally more complicated process—a one-dimensional

chaotic map of the unit interval—in which we empha-

size the predictive features detected. We consider the

symbolic dynamics of the Tent Map at the Misiurewicz

parameter a =
(

3
√

9 +
√

57 +
3
√

9−
√

57
)
/ 3
√

9, studied

in Ref. [55]. Figure 8 gives both the Tent Map and

the analytically derived ε-machine for its symbolic dy-

namics, from there. The latter reveals that the symbolic

dynamic process is infinite-order Markov. The bidirec-

tional ε-machine at this parameter setting is also known.

Hence, one can directly calculate information functions

as described in Sec. V.

From Fig. 9’s information functions, one easily gleans

natural coarse-grainings, scales at which there is new

structure, from the functions’ steep regions. As is typ-

ically true, the steepest part of the predictive informa-

tion function is found at very low rates and high distor-

tions. Though the information function of Fig. 9(top)

is fairly smooth, the feature curve (Fig. 9(bottom)) re-

veals phase transitions where the feature space expands

a lossier causal state into two distinct representations.

To appreciate the changes in underlying predictive fea-

tures as a function of inverse temperature, Fig. 10 shows

the probability distribution Pr(S+|R) over causal states

given each compressed variable—the features. What we

learn from such phase transitions is that some causal

states are more important than others and that the most

important ones are not necessarily intuitive. As we move

from lossy to lossless (β → ∞) predictive features, we

add forward-time causal states to the representation in

the order A, B, C, and finally D. The implication is

that A is more predictive than B, which is more predic-
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FIG. 8. Symbolic dynamics of the Tent Map at the Misi-
urewicz parameter a. (top) The map iterates points xn in the
unit interval [0, 1] according to xn+1 = a

2
(1− 2|xn− 1

2
|), with

x0 ∈ [0, 1]. The symbolic dynamics translates the sequence
x0, x1, x2, . . . of real values to a 0 when xn ∈ [0, 1

2
) and to a 1

when xn ∈ [ 1
2
, 1]. (bottom) Calculations described elsewhere

[55] yield the ε-machine shown. (Reproduced from Ref. [55]
with permission.)

tive than C, which is more predictive than D. Note that

this predictive hierarchy is not the same as a “stochastic

hierarchy” in which one prefers causal states with smaller

H[X0|S+ = σ+]. The latter is equivalent to an ordering

based on correctly predicting only one time step into the

future. Such a hierarchy privileges causal state C over B

based on the transition probabilities shown in Fig. 8(bot-

tom), in contrast to how CIB orders them.

VI. CONCLUSION

We introduced a new relationship between predictive

rate-distortion theory and computational mechanics [3].

Theorem 1 of Refs. [8, 9] say that the predictive informa-

tion bottleneck can identify forward-time causal states,

in theory. The analyses and results in Secs. III-V sug-
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I [
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FIG. 9. Rate distortion analysis for symbolic dynamics of
the Tent Map at the Misiurewicz parameter a given in the
text. (top) Information functions. (bottom) Feature curves.
Comparing CIB (solid line, blue circles) and OCF (dashed
lines, colored crosses) at several values of L. Legend same as
previous.

gest that in practice, when studying time series with

longer-range temporal correlations, we calculate substan-

tially more accurate lossy predictive features and predic-

tive rate-distortion functions by deriving or inferring an

ε-machine first and working entirely within that model

space.

The culprit is the curse of dimensionality for predic-

tion: the number of possible sequences increases expo-

nentially with their length. The longer-ranged the tem-

poral correlations, the longer sequences need to be. And,

as Secs. III and V demonstrated, a process need not have

very long-ranged temporal correlations for the curse of

dimensionality to rear its head. These lessons echo that
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FIG. 10. Tent Map predictive features as a function of in-
verse temperature β: Each state-transition diagram shows
the ε-machine in Fig. 8(bottom) with nodes gray-scaled by
Pr(S+|R = r) for each r ∈ R. White denotes high probabil-
ity and black low. Transitions are shown only to guide the
eye. The four β are chosen to be close to the “critical β” at
which the number of predictive features increases, shown by
the β at which the feature curve in Fig. 9(bottom) appears
to jump discontinuously. (a) β = 0.01: one state that puts
unequal weights on states C and D. (b) β = 1.9: two states
identified, A and a mixture of C and D. (c) β = 3.1: three
states are identified, A, B, and the mixture of C and D. (d)
β →∞: original four states identified, A, B, C, and D.

found when analyzing a process’s large deviations [56]:

Estimate a predictive model first and use it to estimate

the probability of extreme events, events that almost by

definition are not in the original data used for model in-

ference.

This result is part of a larger body of work [36, 38, 57]

that suggests prediction-related information properties

are more accurately and more easily calculable from max-

imally predictive models, when available—the ε-machine

or other prescient models [2]—than directly from tra-

jectory distributions. These information measures are

sometimes of interest to researchers, even when a model

of the process is already known, because they summa-

rize the intrinsic “uncertainty” or “predictability” of the

process with a single number. A great deal of effort has

been spent trying to correctly estimate such quantities

from trajectory distributions [58]. Figure 11 outlines an

alternative scheme to estimate such quantities: a theo-

retically derived, inferred, or already known model of the

process is converted into a maximally predictive model

using the mixed-state operator, and information mea-

sures are then estimated directly from labeled transition

matrices of the maximally predictive model. In some

cases, working with the so-obtained maximally predic-

tive model may not be tractable, or the process may be

effectively low-order Markov. Then, one will likely prefer

to estimate information measures from trajectory distri-

butions, simulating the process if one is initially given

its model. In other cases—in particular, when the pro-

cess is generated or approximately generated by finite

ε-machines—the new scheme likely will outperform the

latter.

Maximally
Predictive
Models:

ε-Machine &
Prescient HMMs

Sequence
Data:

. . . x−1x0x1 . . .

Information
Properties:
hµ, rate

distortion
functions, . . .

Alternate
Generators:
Nonunifilar

HMMs
Tractable for

Countable
ε-Machines

Curse of
DimensionalityModel

Inference

Simulation

Mixed-State
Operator

Tractable for
Finite

ε-Machines

Model
Inference

Simulation

FIG. 11. Prescient models and inferring information
properties: Estimating information measures directly from
sequence data encounters a curse of dimensionality or, in other
words, severe undersampling. Instead, one can calculate in-
formation measures in closed-form from (derived or inferred)
maximally predictive (prescient) models [38]. Rate-distortion
functions are now on the list of information properties that
can be accurately calculated. Alternate generative models
that are not prescient cannot be used directly, as Blackwell
showed in the 1950s [59].

That said, cumbersome maximally predictive models

are likely the norm, rather than the exception, and using

approximate ε-machines can only yield approximate lossy

predictive features. For instance, we approximated the

SNS in Sec. V A by a 10-state unifilar HMM, even though

the SNS technically has an infinite-state ε-machine. This

approximation in model space led to incorrect informa-

tion functions only at very low expected distortions. Fu-

ture research could focus on relating distortions in model

space (e.g., such as a distance between model and se-

quence data distributions) to errors in the rate-distortion

functions. Such bounds will be important for applying

CIB when only approximate ε-machines are known.

Section IV’s methods can be directly extended to com-

pletely different rate-distortion settings, such as when the

underlying minimal directed acyclic graphical model be-
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tween compressed and relevant random variables is ar-

bitrarily large and highly redundant. Also, though we

mainly focused on informational distortions, Thm. 1

places fewer restrictions on the distortion measure. This

opens up a wider range of applications; for example, those

in which other properties, besides structure or prediction,

are desired [43], including utility function optimization.

At first glance, the results presented here may seem

rather unsurprising. It seems intuitive that one should be

able to calculate more accurate lossy predictive features

given lossless predictive features. Even so, until now, no

theory or examples underlay this intuition.

At second glance, these results may also seem rather

useless. Why would one want lossy predictive features

when lossless predictive features are available? Accu-

rate estimation of lossy predictive features could and

have been used to further test whether or not biologi-

cal organisms are near-optimal predictors of their envi-

ronment [10]. Perhaps more importantly, lossless models

can sometimes be rather large and hard to interpret, and

a lossy model might be desired even when a lossless model

is known.

Viewed in this way, the causal information bottleneck

(CIB) is a new tool for accurately identifying emergent

macrostates of a stochastic process [4]—lossy features

relevant to interpreting biological, neurobiological, and

social science phenomena in which the key emergent fea-

tures are not known a priori or from first-principles cal-

culation. In the context of neurobiological data, for ex-

ample, such macrostates can provide approximately pre-

dictive models of neural spike trains [60, 61], perhaps

eventually reducing large-scale simulations to more man-

ageable models. In the context of social science data,

in which “lossless” networks are often known, lossy fea-

tures of various kinds might be related to new kinds of

community organization. While it is encouraging to look

forward, we appreciate that natural processes are quite

complicated and that there is some way to go before we

have fully automated detection of emergent macrostates.
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