Skip to main content
Log in

Dissociation Constants of Protonated Amines in Water at Temperatures from 293.15 K to 343.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The dissociation constants of protonated 2-amino-1-ethanol (MEA), diethanol amine (DEA), triethanol amine (TEA), methyldiethanol amine (MDEA), 2-amino-2-methyl-1-propanol (AMP), 3-dimethylamino-1-propanol (DMAP), tris(hydromethyl)aminomethane (THAM), 2-[2-(dimethylamino)ethoxy]ethanol (DMAEOE) and, 1,2-bis(2-aminoethoxy)ethane (DiAEOE) were determined in the temperature range 293.15 to 343.15 K using a potentiometric titration method. The experimental technique was first validated using as reference the available literature data of MDEA. The dissociation enthalpies of amines were derived from their dissociation constants using the Van’t Hoff equation. Experimental dissociation constants and dissociation enthalpies were discussed in term of amine structure and compared with literature values when available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

K :

dissociation constant

Δd H :

standard enthalpies of dissociation

ρ w :

volumic mass of pure water

A,B,C :

adjustable parameters for Eq. 8

a :

activity

γ :

activity coefficient

m :

molality

c :

molarity

n :

mole number

n 0 :

initial mole number

z :

charge number

k :

ionic radius parameter

T :

temperature

A D,B D :

Debye–Hückel constants

I :

ionic strength

σ,s :

standard deviation

Am:

amine

AmH+ :

protonated amine

H+ :

hydrogen ion

OH :

hydroxide ion

Cl :

chloride ion

w:

water

References

  1. Lecomte, F., Broutin, P., Lebas, E.: CO2 Capture, Technologies to Reduce Greenhouse Gas Emissions. TECHNIP, Paris (2010)

    Google Scholar 

  2. Arcis, H., Rodier, L., Ballerat-Busserolles, K., Coxam, J.-Y.: Enthalpy of solution of CO2 in aqueous solutions of methyldiethanolamine at T=322.5 K and pressure up to 5 MPa. J. Chem. Thermodyn. 40, 1022–1029 (2008)

    Article  CAS  Google Scholar 

  3. Arcis, H., Rodier, L., Ballerat-Busserolles, K., Coxam, J.-Y.: Enthalpy of solution of CO2 in aqueous solutions of methyldiethanolamine at T=372.9 K and pressures up to 5 MPa. J. Chem. Thermodyn. 41, 836–841 (2009)

    Article  CAS  Google Scholar 

  4. Arcis, H., Rodier, L., Ballerat-Busserolles, K., Coxam, J.-Y.: Modeling of (vapor + liquid) equilibrium and enthalpy of solution of carbon dioxide (CO2) in aqueous methyldiethanolamine (MDEA) solutions. J. Chem. Thermodyn. 41, 783–789 (2009)

    Article  CAS  Google Scholar 

  5. Kim, I., Hoff, K.A., Hessen, E.T., Haug-Warberg, T., Svendsen, H.F.: Enthalpy of absorption of CO2 with alkanolamine solutions predicted from reaction equilibrium constants. Chem. Eng. Sci. 64, 2027–2038 (2009)

    Article  CAS  Google Scholar 

  6. Oscarson, J.L., Wu, G., Faux, P.W., Izatt, R.M., Christensen, J.J.: Thermodynamics of protonation of alkanolamines in aqueous solution to 325 °C. Thermochim. Acta 154, 119–127 (1989)

    Article  CAS  Google Scholar 

  7. Schwabe, K., Graichen, W., Spiethoff, D.: Physicochemical investigations on alkanolamines. Z. Phys. Chem. 20, 68–82 (1959)

    Article  CAS  Google Scholar 

  8. Littel, R.J., Bos, M., Knoop, G.J.: Dissociation-constants of some alkanolamines at 293-K, 303-K, 318-K, and 333-K. J. Chem. Eng. Data 35, 276–277 (1990)

    Article  CAS  Google Scholar 

  9. Perez-Salado Kamps, A., Maurer, G.: Dissociation constant of N-methyldiethanolamine in aqueous solution at temperatures from 278 K to 368 K. J. Chem. Eng. Data 41, 1505–1513 (1996)

    Article  CAS  Google Scholar 

  10. Hamborg, E.S., Niederer, J.P.M., Versteeg, G.F.: Dissociation constants and thermodynamic properties of amino acids used in CO2 absorption from (293 to 353) K. J. Chem. Eng. Data 52, 2491–2502 (2007)

    Article  CAS  Google Scholar 

  11. Hamborg, E.S., Versteeg, G.F.: Dissociation constants and thermodynamic properties of amines and alkanolamines from (293 to 353) K. J. Chem. Eng. Data 54, 1318–1328 (2009)

    Article  CAS  Google Scholar 

  12. Coulier, Y., Ballerat-Busserolles, K., Rodier, L., Coxam, J.Y.: Temperatures of liquid–liquid separation and excess molar volumes of {N-methylpiperidine–water} and {2-methylpiperidine–water} systems. Fluid Phase Equilib. 296, 206–212 (2010)

    Article  CAS  Google Scholar 

  13. Manov, G.G., Bates, R.G., Hamer, W.J., Acree, S.F.: Values of the constants in the Debye–Hückel equation for activity coefficients 1. J. Am. Chem. Soc. 65, 1765–1767 (1943)

    Article  CAS  Google Scholar 

  14. Kielland, J.: Individual activity coefficients of ions in aqueous solutions. J. Am. Chem. Soc. 59, 1675–1678 (1937)

    Article  CAS  Google Scholar 

  15. Edwards, T.J., Maurer, G., Newman, J., Prausnitz, J.M.: Vapor–liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. AIChE J. 24, 966–976 (1978)

    Article  CAS  Google Scholar 

  16. Hill, P.G.: A unified fundamental equation for the thermodynamic properties of H2O. J. Phys. Chem. Ref. Data 19, 1233–1274 (1990)

    Article  CAS  Google Scholar 

  17. Bates, R.G., Schwarzenbach, G.: Triathanolamin als puffersubstanz. Helv. Chim. Acta 37, 1437–1439 (1954)

    Article  CAS  Google Scholar 

  18. Bates, R.G., Allen, G.F.: Acidic dissociation constants and related thermodynamic quantities for triethanolammonium ion in water from 0 to 50 °C. J. Res. Natl. Bur. Stand., A Phys. Chem. 64, 343 (1960)

    Google Scholar 

  19. Bates, R.G., Pinching, G.D.: Acidic dissociation constant and related thermodynamic quantities for monoethanolammonium ion in water from 0 °C to 50 °C. J. Res. Natl. Bur. Stand. 46, 349–352 (1951)

    CAS  Google Scholar 

  20. Datta, S.P., Grzybowski, A.K.: Acid dissociation constants of ammonium group in 2-aminoethanol, 2-aminoethyl phosphate, and 2-aminoethyl sulphate. J. Chem. Soc. 3068–3075 (1962)

  21. Ford, T.D., Call, T.G., Origlia, M.L., Stark, M.A., Woolley, E.M.: Apparent molar volumes and apparent molar heat capacities of aqueous 2-amino-2-hydroxymethyl-propan-1,3-diol (Tris of THAM) and THAM plus equimolal HCl. J. Chem. Thermodyn. 32, 499–516 (2000)

    Article  CAS  Google Scholar 

  22. Blauwhoff, P.M., Bos, M.: Dissociation-constants of diethanolamine and diisopropanolamine in an aqueous 1.00-M KCl solution. J. Chem. Eng. Data 26, 7–8 (1981)

    Article  CAS  Google Scholar 

  23. Chremos, G.N., Zimmerman, H.K.: Protolysis equilibria of N-substituted diethanolamines. Z. Phys. Chem. (Frankfurt/Main) 35, 129–132 (1962)

    Article  CAS  Google Scholar 

  24. Bower, V.E., Robinson, R.A., Bates, R.G.: Acidic dissociation constant and related thermodynamic quantities for diethanolammonium ion in water from 0 to 50 °C. J. Res. Natl. Bur. Stand., A Phys. Chem. 66, 71–75 (1962)

    Google Scholar 

  25. Bjerrum, J., Schwarzenbach, G., Sillen, L.G.: Organic ligands. In: Stability Constants, Part I, Special Publication No. 6. The Chemical Society, London (1957)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the French National Research Agency (ANR) in the post combustion capture project CAPCO2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ballerat-Busserolles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simond, M.R., Ballerat-Busserolles, K., Coulier, Y. et al. Dissociation Constants of Protonated Amines in Water at Temperatures from 293.15 K to 343.15 K. J Solution Chem 41, 130–142 (2012). https://doi.org/10.1007/s10953-011-9790-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9790-3

Keywords

Navigation