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Abstract 

Intra-specific geographic variation is probably one of the most common patterns studied in ungulate morphology. 

However, the shape of the mandible, a crucial feature with regard to feeding, has been greatly understudied in this 

context. Here, we utilized a museum collection of moose (Alces alces) mandibles to investigate whether we could detect 

significant variation in this species, and test for the existence of geographic patterns and associations with population 

genetic structure. We applied a landmark-based geometric morphometrics approach, analyzing shape data with principal 

component analysis and linear mixed models. A significant geographic shift in the shape of the moose mandible was 

revealed. The main pattern was similar in both sexes; however, there was a consistent difference in shape between 

males and females over the latitudinal scale. The main changes included an enlargement in the attachment surfaces of 

the muscles controlling biting and mastication, suggesting more effective mastication towards the north, plausibly as an 

adaptive response to a harder and tougher wintertime diet. Additionally, more subtle, yet statistically significant age-

related shape variation was discovered. Interestingly, no or only a weak association between the morphometric variation 

and the genetic population structure was detected with neutral molecular markers. 
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Introduction 

In morphological studies, the main focus has traditionally been on rather simply measured traits, such as size and mass. 

The development of geometric morphometrics methodology in the early 1990s, however, enabled a refined analysis of 

complex morphological shapes (Rohlf and Marcus 1993; Adams et al. 2004). One focal aspect in the context of shape 

analysis is the great variety of different biological processes that can result in morphologic differences between 

individuals and populations: e.g., long-term genetic divergence or environmentally driven plastic effects (Zelditch et al. 

2012). In both cases, a further intriguing point is whether the outcome of the shape alteration is adaptive, i.e., whether it 

brings advantage in function, and/or moreover, an increase in fitness to the individual (Ghalambor et al. 2007). 

The mammalian mandible, fundamentally important in food selection and comminution, has been investigated 

intensively as a general model for the development and evolution of complex morphological structures (e.g., Atchley 

and Hall 1991; Atchley 1993; Klingenberg et al. 2003, 2004). In addition, the relationship between the shape of the 

mandible, its biomechanical function and foraging ecology has recently been gaining increasing interest in evolutionary 

morphology (e.g., Monteiro et al. 2010; Young and Badyaev 2010; Prevosti et al. 2011; Anderson et al. 2014). In 

ungulates, the research has mostly concentrated on the inter-specific differences in the mandible shape in relation to the 

various feeding categories, such as browsers, grazers, or mixed feeders (Hofmann and Stewart 1972; Hofmann 1989; 

Pérez-Barbería and Gordon 1999; Raia et al. 2010; Fraser and Theodor 2011). On the contrary, the intra-specific level 

has received much less attention, despite the great geographic distribution and morphological variation in many 

ungulate species (Geist 1998). Yet, remarkable variation in the shape of the mandible related to differences in the 

habitat and diet has been reported in a few species of ungulates, such as the roe deer (Capreolus capreolus; Aragon et 

al. 1998) and the sika deer (Cervus nippon; Ozaki et al. 2007), as well as in studies on other mammalian taxa, including, 

e.g., the punaré rat (Thrichomys apereoides; Monteiro et al. 2003), the wood mouse (Apodemus sylvaticus; Renaud and 

Michaux 2003), and the raccoon dog (Nyctereutes procyonoides; Haba et al. 2008). 

The moose (Alces alces) is a large, sexually size-dimorphic, boreal ungulate with a vast area of distribution 

throughout the Holarctic region (Garel et al. 2006). Currently, the species is divided into up to eight subspecies 

displaying differences in body size, coloration, and behavior, some of which are considered as ecological adaptations to 

the major habitat types within the moose range, i.e., tundra, boreal forests, and alpine areas (Peterson 1955; Geist 1987; 

Hundertmark and Bowyer 2004; Lister 2005). However, the masticatory system of the moose is globally regarded to 

show strict specialization (Breda 2010). Described as a concentrate selector and a browser herbivore (Hofmann et al. 

1985; Hofmann 1989), the modern moose feeds mainly on various species of herbs, shrubs and sprigs during the 
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summer, whereas the shoots and twigs of trees and shrubs compose its more monotonous wintertime diet (Telfer 1984; 

Shipley et al. 1998; Mysterud 2000; Wam et al. 2010; Milligan and Koricheva 2013). However, fossil mandibles of 

ancient moose discovered in western Siberia from the late Pleistocene - Holocene epochs were indicative of adaptation 

to a steppe environment and mastication of dry and coarse food (Vasiliev 2011). So far, the question whether the 

modern moose exhibits any significant intra-specific variation in mandible shape on a geographic scale has remained 

unexplored. Yet, the remarkably varying environmental conditions within the present moose range would imply 

possible local adaptations. 

The aim of the current study was to investigate whether we could detect geographic variation in mandible shape of 

the moose in Finland, northern Europe, residing between 60 and 70 degrees latitude with a clear bioclimatic south-north 

gradient (Fig. 1; Karlsen et al. 2006). Additionally, indications of possible local adaptations were inspected. The Finnish 

moose population is genetically divided into three latitudinal clusters, separated by admixture zones (Fig 1; Kangas et 

al. 2015). The emergence of these clusters was estimated to have occurred ~4,500 years ago, some thousands of years 

after the postglacial re-colonization of Finland. It is still unknown whether these particular clusters exhibit any 

phenotypic differences. Previous studies support a significant phylogenetic effect in mandible shape disparity in the 

ungulates at the inter-specific level (e.g., Pérez-Barbería and Gordon 1999; Raia et al. 2010). Furthermore, genetic 

structure was recently suggested to be reflected in the geographic variation of phenotypic traits in the moose (Herfindal 

et al. 2014). Therefore, we assessed whether the genetic background of the studied moose individuals plays a role in the 

formation of the mandible shape. 
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Material and methods 

Data 

We utilized a museum collection (maintained by the Zoological Museum of the University of Oulu) of the right side 

mandibles gathered from legally hunted moose across the whole of Finland in 1998 (Fig. 1). Altogether, 179 age-

defined individuals, 93 males (mean age = 4.7 years) and 86 females (mean age = 7.0 years), with intact mandibles and 

fully developed incisors and molars were selected for the morphometric analyses. The age determination was performed 

in Matson’s Laboratory (Montana, USA) from the root of the first or the second incisor according to the method of 

Sergeant and Pimlott (1959). The younger age of male moose in the data reflects the actual age structure of the Finnish 

moose population, where the sexually selective harvesting has caused the mean ages of males and females to diverge 

(Nygrén 2009). 

All the sampled moose individuals have been previously genotyped at 15 microsatellite loci (see full details in 

Kangas et al. 2015) as part of a larger data set. These data were analyzed with the spatially explicit Bayesian clustering 

method implemented in the program TESS (Chen et al. 2007; Durand et al. 2009), where all the individuals were given 

an assignment probability into each of the three genetic clusters detected: southwestern, eastern, or northern (Fig. 1). 

Here, we divided the sampled individuals into these clusters according to the estimated probabilities (also called 

membership coefficients) using a threshold of 0.5. With this division, altogether 91 individuals were assigned to the 

southwestern cluster, 52 to the eastern cluster and 24 to the northern cluster. The remaining 12 admixed un-assigned 

individuals formed a fourth group. 

Morphometric analyses 

The shape of the mandibles was studied using landmark-based geometric morphometrics (Bookstein 1997; 

Zelditch et al. 2012). The labial view of each specimen was photographed in a standardized manner and altogether 

28 points, composed of ten landmarks and 18 sliding semilandmarks, were digitized on the images to depict the 

mandible shape using the program TPSDIG2 (Rohlf 2013a;). The fixed landmarks (1, 6, 7, 8 12, 13, 15, 22, 26, and 

27) were: 1) the tip of the coronoid process, 6) the posterior alveolar margin of the sixth molar (m6), 7) the border 

of the alveolar margins between m3 and m4, 8) the anterior alveolar margin of m1, 12) the posterior margin of the 

fourth incisor alveolus, 13) the anterior margin of the first incisor alveolus, 15) the posterior edge of the mental 

foramen, 22) the curve between the ramus and the body of the mandible, 26) the posterior tip of the condyle , and 
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27) the ventral edge of the mandibular notch, as illustrated with sample no. SK4671-98 in Fig. 2 (SK refers to 

Satakunta, a region in southwestern Finland where the specimen was collected; the sample is stored with this 

identification number in the mammalian mandible collection of the Zoological Museum of the University of 

Oulu). Generalized Procrustes superimposition of the landmark configurations was performed in TPSRELW 

(Bookstein 1997; Rohlf 2013b) to remove all the non-shape variation, i.e., variation due to size, translation, and 

rotation, from the data. At the same time, a consensus configuration of landmarks across all specimens was 

computed and partial warps scores (shape variables depicting localized shape change), two uniform components, 

and centroid size values were obtained. 

Although the superimposition removes the effects of isometric growth, the effects of allometry remain (Zelditch et 

al. 2012). Therefore, all the partial warps and uniform components in the full data were regressed against the centroid 

size in order to remove the potential effects of allometric growth on the moose mandible (Sæther 1983, Stelkens et al. 

2012). The residuals of each regression were then subjected to principal component (PCA) analysis in R (R Core Team 

2013), after which the retained principal components (PCs, with a minimum proportion of variance of 0.075), were 

visualized by deformation grids (deformations of the consensus landmark configuration corresponding to the PC scores) 

in order to interpret the shape changes. These grids were obtained using the software TPSREG 1.3 (Rohlf 2011), 

performing multivariate regression of the shape (captured by the partial warp scores and two uniform shape 

components) onto the retained PCs. 

 In order to estimate the possible measurement error introduced during the photographing and landmark digitizing 

procedure, the mandibles of 30 randomly selected moose individuals were photographed twice. After landmark 

placement, superimposition, and PCA, the values were entered into one-way analysis of variance in R with PCs set as 

dependent variables and individual as a factor. The measurement error was then calculated as the percentage of within-

individual variance of the total variance (Yezerinac et al. 1992). 

Statistical analyses 

We first ran a multivariate linear model on the partial warps and uniform components to analyze general patterns of 

shape variation in the moose mandible with sex, age, latitude, and longitude as well as their interactions set as fixed 

factors. Subsequently, we applied separate linear mixed models (function ‘lmer’ in the package lme4 in R, Bates et al. 

2014) on the retained PCs. One after another, each of them was set as a dependent variable with all possible 

combinations of fixed variables (sex, age, latitude, longitude) and their interactions, while including the genetic cluster 

as a constant random factor (function ‘dredge’ in the package MuMIn; Bartoń 2012). The residuals of the models were 
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visually examined to assure acceptable fit. All the models were ranked on the basis of the Akaike information criterion 

(AIC) for goodness-of-fit (Burnham and Anderson 2002). In case the AIC was not able to rank the models 

unambiguously (ΔAIC < 2), we utilized an information criterion-based model averaging for the top models (function 

‘model.avg’ in the package MuMIn) to acquire the definitive models and then to assess the relative importance of the 

fixed effects. All the explanatory variables were centered and standardized in the model averaging analyses to enable 

the correct interpretation of the main effects in case of significant interactions (see Schielzeth 2010). The model 

averaging approach was mainly used for finding the most important factors explaining the shape variation. In further 

analyses and graphics, we considered the factors that were significant and relatively important (the sum of the Akaike 

weights over all of the models in which the term appears being > 0.75) in the model averaging results (without 

shrinkage, i.e., averaging over only models in which the variable is present; Burnham and Anderson 2002). Excluding 

the random factor (see Results), the effects of the significant fixed factors on the shape were graphically described by 

applying the ‘predict’ function in R; the predicted response was plotted on the minimum to maximum scale of the 

explanatory variable while keeping the other explanatory variables constant, either at their mean values, or for 

categorical factors (e.g., sex) at a specific value. As we had a constant random effects structure in the lmer-analyses, we 

used maximum likelihood (ML) in model selection for the fixed effects structure (e.g., Bolker et al. 2008). 

The relationship between the morphological and genetic variation among moose was investigated further with 

partial Mantel test (Mantel 1967; Smouse et al. 1986) implemented by the software PASSAGE2 (Rosenberg and 

Anderson 2011) while controlling for the geographic distances among the studied individuals. As a morphological trait, 

we used pairwise Procrustes distances calculated from the landmark configurations in TPSSMALL 1.02 (Rohlf 1997), 

whereas the pairwise genetic distances were computed from the microsatellite data in GENALEX 6.5 (Peakall and 

Smouse 2012). The analysis was repeated separately for males and females and statistical significances were tested with 

10,000 permutations. 

The existence and direction of possible geographic gradients in the mandible shape was further examined with the 

bearing analysis (Falsetti and Sokal 1993; Fruciano et al. 2011), also implemented by PASSAGE2. Put simply, this 

method determines the geographic direction of greatest correlation between morphometric distances (calculated as 

Procrustes distances) and geographic distances, and the statistical significance is tested with a standard Mantel 

permutation test (10,000 permutations). 



8 

 

Results 

The multivariate general linear model revealed significant overall variation in the moose mandible shape; all the four 

fixed factors had a significant effect (age: Wilk’s λ = 0.456, P = 3.309-6; sex: Wilk’s λ = 0.385, P = 2.710-9; latitude: 

Wilk’s λ = 0.472, P = 1.205-5; longitude: Wilk’s λ = 0.607, P = 0.039) in addition to two significant interactions (age x 

sex: Wilk’s λ = 0.596, P = 0.024; age x latitude: Wilk’s λ = 0.559, P = 0.004). 

After the PCA, altogether three variable components were retained with the following proportions of variance: 

0.324, 0.131, and 0.076. The corresponding measurement error values calculated with the subset of 30 individuals for 

these variables were: 1.01%, 3.38%, and 4.60%. The measurement error was considered not to have a notable effect on 

the obtained results. 

The existence of geographic trends in the moose mandible shape was supported by the most fit linear mixed model 

explaining the variable PC1, which included the significant effects of sex, latitude, and longitude (Table 1); this variable 

was positively related to latitude but negatively to longitude, and females had a higher intercept than males (Fig. 3). 

However, the addition of longitude alongside with sex and latitude did not improve the final model according to an 

ANOVA comparison (F= 3.239, P = 0.073); thus its effect was considered to be minor. The deformation grids showed 

PC1 to be associated with a change in the width of the mandibular angle, orientation of the ascending ramus, the length 

and orientation of the coronoid process, and the angularity of the corpus (Fig. 3). Moreover, as the PC1 value increases 

with increasing latitude the mandibular angle widens and the ascending ramus becomes less posteriorly inclined. For 

PC2, the only statistically significant effect was that of age (Table 1); the decreasing values of PC2 along the increasing 

age included a shift in the horizontal position of the mental foramen, a decrease in the width of the coronoid process, 

and thickness and angularity of the anterior part of the corpus as well as a change in the roundness of the mandibular 

angle (Fig. 4). Respectively, the decreasing values of PC3 were associated with a shortening of the coronoid process 

and widening of the mandibular angle (Fig. 1 Online Resource 1). However, neither the applied explanatory variables 

nor their interactions were able to explain the changes described by PC3 (Table 1). 

The significance of genetic clustering on the mandible shape variation as a random effect was very low, as revealed 

by the marginal variance component in the lmer-analyses (Table 1 in Online Resource 1). Therefore, the random factor 

was left out from the predicted response estimations. In comparison, the partial Mantel test performed between the 

morphometric and genetic distance matrices suggested no correlation for males r = 0.036, two-tailed p = 0.477, whereas 

a weak but statistically significant positive relationship was detected for females (r = 0.140, two tailed p = 0.020). 
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The bearing analysis found a significant relationship between the mandible shape and geography: the strongest 

positive correlation (r = 0.083, p = 0.014; Fig. 2 in Online Resource 1) between the morphometric and geographic 

distances at 145° clockwise from the north, which resides between directions of southeast to northwest and south-

southwest to north-northwest, respectively (Fig. 1). In contrast, the strongest negative correlations were discovered at 

25-30° (r = -0.066, p = 0.030; Fig 2. in Online Resource 1) corresponding close to direction of south-southwest to 

North-northeast. 
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Discussion 

With the help of geometric morphometrics, we revealed a significant geographic cline in the shape of the moose 

mandible in a northern population. The main pattern was similar in both sexes; however, there was a consistent sexual 

difference in the shape over the spatial scale. Depending on the applied method, no or only a weak association was 

found between the morphometric variation and the population genetic structure detected with neutral molecular markers 

(Kangas et al. 2015). Additionally, more subtle, yet statistically significant age-related shape variation was discovered. 

Latitudinal variation in morphology is probably one of the most common patterns found in ungulates. For example, 

in northern Europe, moose have been shown to follow Bergmann’s rule (Bergmann 1848 in Mayr 1963) of increasing 

body size towards the north, a phenomenon considered an adaptation to the colder environment (Herfindal et al. 2006; 

Nygrén et al. 2007; Lundmark 2008). In a similar fashion, latitude was the main geographic factor in explaining the 

mandible shape variation of moose in the present data set. The lesser effect of longitude was shown as a slight deviation 

from the strict north-to-south direction in the bearing analysis, which brought further evidence for the existence of a 

significant spatial trend. 

In Finland, latitude correlates strongly with a number of environmental factors, such as the mean annual 

temperature and snow depth during the winter. These factors in turn affect the annual growing season, which is 

significantly shorter in the north of the country compared with the south (Karlsen et al. 2006). As a consequence, the 

northern moose are dependent on dormant woody plants for notably longer periods of time during the year (Swihart and 

Bryant 2001). In fact, the latitudinal gradient in the hardness and toughness of diet does provide a feasible explanation 

for the observed main pattern in the moose mandible shape. The most substantial changes occur in the coronoid process 

and the mandibular angle (Fig. 3), which are the attachment points of the temporalis and the masseter/pterygoid group 

muscles, respectively. These muscles control biting and mastication and therefore play an important role in grinding and 

chewing of food (Pérez-Barbería and Gordon 1999). Moreover, the widening of the mandibular angle implies enlarging 

masseter and pterygoid muscles (Greaves 1991) and thus more effective mastication better suited for harder and tougher 

food towards the north. This, in turn, would suggest that the shape shift is adaptive. Additionally, the more vertically 

oriented ascending ramus and coronoid process (Fig. 3) can possibly enhance bite force of the northern moose by 

increasing the moment arm of the temporalis muscle as well as reducing its resistance moment arm, according to the 

lever model by Pérez-Barbería and Gordon (1998). Moreover, the change in the orientation of the coronoid can also 

change the muscle line of action of the temporalis, and thus its mechanical advantage and efficiency. However, the 
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question whether the shift in shape provides actual evolutionary adaptive advantage and hence an increase in fitness is 

well beyond the scope of this study to answer. 

The mammalian mandible is a developmentally complex structure resulting from a number of different factors. 

According to the quantitative genetic model by Atchley and Hall (1991), the development of the mandible is affected by 

intrinsic genetic, epigenetic, postnatal nursing, and non-heritable environmental factors, as well as their interactions. 

Interestingly, the observed geographic trend in the moose mandible shape was not influenced by the genetic background 

of the studied individuals, resembling the previous findings on other taxa by Renaud and Michaux (2003) and Caumul 

and Polly (2005), for example. In addition, only a weak relationship between the pairwise morphological and genetic 

distances was discovered in female moose with the partial Mantel test. These results contradict the suggestion of 

Herfindal et al. (2014) according to which the genetic structure might play an important role in the distribution of 

phenotypic variation in the moose. Consequently, the questions of whether the mandible shape presents only an 

exception to a general pattern, and whether the three detected genetic clusters of the Finnish moose exhibit any distinct 

phenotypic differences, require further attention.  

Instead of genetic structure, our discovery suggests that the shift in the shape of the mandible results more likely 

from other factors, such as differential selection or environmentally induced plastic response. Interestingly, previous 

studies on mice and shrews have linked plasticity in the mandible development to formation of shape variation and local 

ecological adaptations. More particularly, foraging and diet consistency have been shown to have a significant impact 

on the growth and shape remodelling of the mandible as bones respond to their functional environment (Renaud et al. 

2010; Young and Badyaev 2010). Furthermore, the shift in the shape caused by hard food, requiring a higher bite force, 

was recently proven to enhance the biomechanical abilities of the mouse jaw and increase its adaptation to its function, 

i.e., more powerful mastication (Anderson et al. 2014). In this sense, it could be that the latitudinal shape trend observed 

here in the moose reflects a plastic response to a gradient in diet consistency. A similar type of geographic variation in 

mandible morphology has been reported, e.g., in the roe deer (Aragon et al. 1998), the wood mouse (Renaud and 

Michaux 2003), and the punaré rat (Monteiro et al. 2003). In all three cases, the cause for the shape change was 

considered to be environment and diet-induced. Unfortunately, detailed data on the composition and consistency of the 

annual diet of the moose in a geographic scale is not available to address the issue further. On the whole, more 

extensive studies are needed in order to separate the total contribution of the genetic and environmental components to 

the mandible shape variation in this species. One possible and rather simple approach would be to investigate whether a 

similar trend can be observed in the mandibles of calves, i.e., individuals that have not been subjected to a winter diet. 
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Moose exhibit clear sexual size dimorphism as well as behavioral differences in habitat selection, use, and foraging 

(Nikula et al. 2004; Garel et al. 2006; Bjørneraas et al. 2011; Bjørneraas et al. 2012). Barboza and Bowyer (2000) 

hypothesized that the sexual segregation in dimorphic ungulates is a consequence of the differing life-histories and 

energetic needs among males (body and antler growth) and females (gestation and lactation). As the differences in the 

diet can induce phenotypic changes in the mandible through biomechanical function (Anderson et al. 2014), it is 

possible that the clear differences in the mandible shape between the two sexes reflect their different dietary optimum 

and foraging behavior (Barboza and Bowyer 2000). An alternative (or additional) process is brought about by the 

seasonal growth and presence of antlers in males, plausibly affecting the structure of the cranium (Bartosiewicz 1987; 

Nygrén et al. 1992a, 1992b). This effect could be mediated further to the shape of the mandible, causing structural 

dimorphism between the sexes. In addition to sexual difference, subtle age-related changes in the shape of the coronoid 

and the position of the mental foramen were revealed (Table 1, Fig. 1 and 2 in Online Resource 1). The peculiar 

reduction in the size of the coronoid with increasing age might be explained by a relatively stronger growth of the rest 

of the mandible (Sæther 1983), i.e., allometry, which still remains despite the size correction performed. 

The present study provided the first evidence of a significant geographic mandibular shape shift in the modern 

moose. Thus, it seems that the mandible shape is more flexible than previously anticipated. We likely have managed 

only to scratch the surface of the true quantity of the morphological variation and plausible adaptive potential possessed 

by this species. These features together with the very flexible behavior (e.g., Bjørneraas et al. 2011, 2012; Eldegard et 

al. 2012; Melin et al. 2014) would give at least a partial explanation for the success and extensive range of the moose. 
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Tables 

Table 1. Model-averaged fixed effects and their relative (Rel.) importance of linear models explaining variation in 

mandible shape variable principal components 1–3. Statistically significant effects are highlighted in bold. 

Variable Estimate SE z p Rel. importance 

PC1      

(Intercept) 0.00011 0.00096 0.111 0.912  

Sex 0.00556 0.00187 2.950 0.003 1.00 

Lat 0.00482 0.00185 2.592 0.010 1.00 

Lon -0.00395 0.00196 2.007 0.045 0.94 

Lat x Lon -0.00754 0.00452 1.655 0.098 0.65 

Age 0.00156 0.00227 0.682 0.495 0.59 

Age x Lon 0.00634 0.00387 1.628 0.104 0.37 

Sex x Age 0.00604 0.00461 1.300 0.194 0.26 

Sex x Lon -0.00415 0.00394 1.044 0.296 0.21 

PC2      

(Intercept) -0.00009 0.00059 0.147 0.883  

Age -0.00584 0.00135 4.292 <0.001 1.00 

Lat 0.00162 0.00112 1.431 0.153 0.65 

Age x Lat -0.00283 0.00256 1.095 0.274 0.50 

Sex -0.00083 0.00119 0.697 0.486 0.32 

Sex x Age 0.00445 0.00282 1.566 0.117 0.17 

PC3      

(Intercept) -0.00023 0.00066 0.345 0.730  

Lat -0.00135 0.00091 1.476 0.140 0.18 

Age -0.00058 0.00091 0.628 0.530 0.16 

Lon 0.00066 0.00101 0.650 0.516 0.16 

Lat=latitude, Lon=longitude. 
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Figure legends 

Fig. 1. The sampling localities of moose in Finland. Black circles represent individuals assigned to the southwestern, 

white to the eastern, and grey to the northern cluster, respectively, whereas black triangles stand for un-assigned 

individuals. The black two-headed arrow points in the direction of the strongest positive correlation between the 

morphometric and geographic distances, according to the bearing analysis. 

Fig. 2. Mandible of a moose (museum specimen number: SK4671-98) with landmarks 1−28 (A) and points of the 

consensus plot (B). Points 1, 6, 7, 8 12, 13, 15, 22, 26, and 27 were defined as fixed landmarks and the rest as sliding 

landmarks. C.P = coronoid process, M.A. = mandibular angle. 

Fig. 3. Relationship between the shape variable principal component 1 (PC1) and latitude together with mandible shape 

deformation grids at the positive and negative extreme values of the PC1. 

Fig. 4. Relationship between the shape variable principal component 2 (PC2) and moose age together with mandible 

shape deformation grids at the positive and negative extreme values of the PC2.  


