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Abstract This paper deals with the basics of cryocoolers and related thermodynamic
systems. The treatment is based on the first and second law of thermodynamics for
inhomogeneous, open systems using enthalpy flow, entropy flow, and entropy produc-
tion. Various types of machines, which use an oscillating gas flow, are discussed such
as: Stirling refrigerators, GM coolers, pulse-tube refrigerators, and thermoacoustic
coolers and engines. Furthermore the paper deals with Joule-Thomson and dilution
refrigerators which use a constant flow of the working medium.

Keywords Thermodynamics · Cryocoolers · Thermoacoustics · Dilution
refrigerators

1 Introduction

This paper deals with the basics of cryocoolers and related thermodynamic systems.
A cryocooler is a standalone cooler of table-top size which is used to cool some
particular application. Reference [1] is a recent review. In this paper the essence of
the system operation will be discussed. Whenever possible mathematical complica-
tions will be avoided. Distracting practical effects, such as high-order disturbances,
streaming, heat leaks, transient effects, etc. will be neglected. The starting point will
be the first and second law of thermodynamics for inhomogeneous, open systems [2].
Important concepts as enthalpy flow, entropy flow, and entropy production will be
introduced. Thoroughly understanding thermal machines (coolers and heat engines)
without these concepts is impossible.

After the introduction and a short discussion of ideal regenerators and heat ex-
changers, various types of coolers are discussed which operate with oscillating flows.
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Fig. 1 (Color online) General representation of a system that consists of a number of subsystems. The
interaction with the surroundings of the system can be in the form of exchange of heat and other forms of
energy, exchange of matter, and change of shape. The interactions between the subsystems are of a similar
nature and lead to entropy production. In this figure the V̇k stand for dVk/dt

Next, properties are discussed of less ideal regenerators, followed by a treatment of
thermoacoustic coolers and engines. The paper ends with the discussion of Joule-
Thomson coolers and dilution refrigerators which operate with a steady flow of the
working fluid. Appendix A gives some useful thermodynamic formulae, Appendix B
is a derivation of the so-called volume-flow equation, and Appendix C is about the
harmonic model.

2 The First and Second Law of Thermodynamics

The laws of thermodynamics apply to well-defined systems. Figure 1 is a general rep-
resentation of a thermodynamic system. We consider systems which can be inhomo-
geneous. We allow heat and mass transfer across the boundary (nonadiabatic, open
systems), and we allow the boundary to move. In our formulation we will assume
that heat and mass transfer and volume changes take place only at some well-defined
regions of the system boundary. Equations (1) and (4) are not the most general formu-
lations of the first and second law. E.g. kinetic energy terms are missing and exchange
of matter by diffusion is excluded.

2.1 First Law

The first law reads

dU

dt
=

∑

k

Q̇k +
∑

k

∗
Hk −

∑

k

pk

dVk

dt
+ P. (1)
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In (1) t is time,

• U is a function of state, called the internal energy of the system.
• Q̇k are the heat flows into the system at the various regions of the boundary which

are labeled with k.

• ∗
Hk are the enthalpy flows into the system due to the matter that flows into the
system. It is defined as

∗
Hk = ∗

nkHmk = ∗
mkhk, (2)

where
∗
nk is the molar flow of matter flowing into the system and Hmk its molar

enthalpy,1 hk the specific enthalpy (i.e. enthalpy per unit mass), and

∗
mk = Mk

∗
nk (3)

the mass flow with Mk the molar mass.
• dVk/dt are the rates of change of the volume of the system due to the various

moving boundaries, pk is the pressure behind boundary k.
• P takes into account all other forms of power applied to the system by its environ-

ment (such as electrical, shaft power, etc.).

We use the notation
∗
Y for the flow of a thermodynamic state function Y and dY/dt

for the rate of change of Y . Even though the dimensions of
∗
Y and dY/dt are the

same their physical meaning is distinctly different. For the heat flow we use the dot
notation.

2.2 Second Law

The second law reads

dS

dt
=

∑

k

Q̇k

Tk

+
∑

k

∗
Sk +

∑

k

Ṡik with Ṡik ≥ 0. (4)

Here

• S is a function of state, called the entropy of the system.
• Tk represent the temperatures at which the heat flows Q̇k enter the system.

• ∗
Sk represent the entropy flows into the system, due to matter flowing into the sys-
tem, given by

∗
Sk = ∗

nkSmk = ∗
mksk. (5)

Here Smk and sk are the molar and specific entropy of the matter, flowing into the
system, respectively.

1We will use the lower index m to indicate molar quantities. In many thermoacoustic papers the lower
index m is used to indicate the mean value. For the latter we will use the lower index 0.
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Fig. 2 Schematic diagram of a heat engine. A heating power Q̇H enters the system at some high tempera-
ture TH, and Q̇a is released at ambient temperature Ta. A power P is produced and the entropy production
rate is Ṡi

• Ṡik represent the entropy production rates due to internal processes. Each of the
entropy production rates is always positive or zero. This is an essential aspect of
the second law. The summation is over all processes in the system. The most im-
portant irreversible processes, for our application, are heat flow over a temperature
difference and mass flow over a pressure difference.

In many cases Q̇/T is also considered as an entropy flow which is associated with
the heat flow. In this case the second law is a conservation law with flow and source
terms.

2.3 Consequences of the First and Second Law

2.3.1 Heat Engines

Figure 2 is a schematic diagram of a heat engine. The machine is cyclic and in the
steady state. A heating power Q̇H enters the engine at a temperature TH and a heat
flow Q̇a leaves it at ambient temperature Ta. A power P is produced. The sign con-
ventions of P and the heat flows are chosen in such a way that their values are positive
under normal system operation. They differ from the signs defined in Fig. 1.

Due to the irreversible processes inside the engine entropy is produced at a rate Ṡi.
After one cycle, the state of the engine is the same as at the beginning of the cycle,

thus, on average, dU/dt = 0 and dS/dt = 0. The system is closed so
∗
H = 0 and

∗
S = 0. The boundaries of the system are fixed so dVk/dt = 0. As a result the first law
for the engine reduces to

Q̇H − Q̇a = P (6)

and the second law to

0 = Q̇H

TH
− Q̇a

Ta
+ Ṡi with Ṡi ≥ 0 (7)
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or

Ṡi = Q̇a

Ta
− Q̇H

TH
≥ 0. (8)

If Q̇a would be zero condition (8) would reduce to

Ṡi = −Q̇H

TH
≥ 0. (9)

As TH > 0 and Q̇H ≥ 0 condition (9) would not be satisfied. So Q̇a cannot be zero.
This means that a heat engine can operate only if heat is released at a low temperature.
This is the well-known Kelvin formulation of the second law.

Eliminating Q̇a from (7), with (6), gives

P =
(

1 − Ta

TH

)
Q̇H − TaṠi. (10)

As Ṡi ≥ 0 we must require

P ≤
(

1 − Ta

TH

)
Q̇H. (11)

The efficiency of a heat engine is defined as

η = P

Q̇H
. (12)

With (11) it follows

η ≤ 1 − Ta

TH
. (13)

This famous relation shows that the efficiency of all thermal engines has a maximum
given by the Carnot efficiency defined as

ηC = 1 − Ta

TH
. (14)

From (10) it can be seen that the efficiency of all heat engines is reduced due to the
term TaṠi. This important quantity is called the dissipated energy.

2.3.2 Refrigerators

Refrigerators, as depicted in Fig. 3, can be treated in a similar way as heat engines.
The first law gives

Q̇a = P + Q̇L (15)

and the second law

0 = Q̇L

TL
− Q̇a

Ta
+ Ṡi with Ṡi ≥ 0 (16)
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Fig. 3 Schematic diagram of a refrigerator. Q̇L is the cooling power at some low temperature TL, and Q̇a
is released at ambient temperature Ta. A power P is supplied to the system and Ṡi is the entropy production
rate

or

Ṡi = Q̇a

Ta
− Q̇L

TL
≥ 0. (17)

Eliminating Q̇a from (17) by (15) gives

Ṡi = P + Q̇L

Ta
− Q̇L

TL
≥ 0. (18)

If P would be zero then (18) would reduce to

Ṡi =
(

1

Ta
− 1

TL

)
Q̇L ≥ 0. (19)

This condition is not satisfied since both Q̇L ≥ 0 and Ta > TL. This means that heat
can not flow from a low temperature to a high temperature without doing work. This
is Clausius formulation of the second law.

Turning back to (18), we see that

P = Ta − TL

TL
Q̇L + TaṠi. (20)

As Ṡi ≥ 0 we must require

P ≥ Ta − TL

TL
Q̇L. (21)

The Coefficient Of Performance (COP) ξ of coolers is defined as

ξ = Q̇L

P
. (22)
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With (21) follows

ξ ≤ TL

Ta − TL
. (23)

This relation shows that the COP of all refrigerators has a maximum given by

ξC = TL

Ta − TL
. (24)

This quantity is called the Carnot COP of refrigerators. From (20) it can be seen that
the COP of the cooler is reduced by the dissipated energy TaṠi.

2.3.3 The Volume-Flow Equation

From the first law a very useful expression can be derived which we will call the
volume-flow equation. In case of a periodic pressure change, with angular frequency
ω, the characteristic length scale for temperature variations of the working fluid is
given by the thermal penetration depth δκ given by

δ2
κ = 2κVm

ωCp
. (25)

Here κ is the thermal conductivity, Vm the molar volume, and Cp the molar heat
capacity at constant pressure. Viscous effect are characterized by the viscous pene-
tration depth δν given by

δ2
ν = 2η

ωρ
(26)

with η the viscosity and ρ the density. The two penetration depths are related by the
Prandtl number

Pr = ηCp

Mκ
, (27)

with M the molar mass, as follows

δ2
ν = Prδ

2
κ . (28)

For many working fluids Pr is practically constant and of order 1, so the two penetra-
tion depths are of the same order of magnitude. For helium gas Pr ≈ 0.66.

For helium, at typical working conditions of cryocoolers, the thermal penetration
depth is in the 0.1–0.5 mm range. Many spaces in thermal machines, such as the
compression and expansion spaces in Stirling coolers, the pulse tube in a pulse-tube
refrigerator, etc. are much larger than this, so the bulk of the gas is thermally isolated
from the surroundings. In other words, in many cases, the pressure changes in the
bulk of the gas are adiabatic. Furthermore the pressure p in these spaces is practically
homogeneous. Finally, at not too low temperatures and not too high pressures, the gas
can be considered to be an ideal gas. Under these conditions a very useful relation
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Fig. 4 Gas flows with varying
pressure: (a) inlet and outlet;
(b) inlet and piston; (c) fixed
volume with valve with flow
conductance C

can be derived (Appendix B) which reads as follows

V

γp

dp

dt
=

∑ ∗
V k −

∑ dVk

dt
. (29)

Here V is the volume of the system,
∗
V k are the volume flows at various positions k,

given by

∗
V k = ∗

nkVmk, (30)

the dVk/dt are the rates of change of the volume due to moving boundaries at position
k (usually a piston), and dp/dt is the rate of change of the pressure.

If, in addition to the conditions mentioned above, the system is closed all
∗
V k = 0

so, with (181), Equation (29) reduces to

V

γp

dp

dt
= −dV

dt
(adiabatic, closed). (31)

From this relation we find

pV γ = constant (adiabatic, closed). (32)

Equation (32) has the same form as the well-known Poisson relation but it has a
much wider validity since it includes systems with an inhomogeneous temperature
distribution. The Poisson relation is just a special case of (32).

In Fig. 4 three situations are depicted. For the case of Fig. 4a, in which gas flows
into and out of a control volume with fixed volume V and with a varying pressure
p(t), (29) reads

∗
V 1 = ∗

V 2 + V

γp

dp

dt
. (33)

This relation holds, in particular, for the pulse tube in a pulse-tube refrigerator (PTR).
For the case of Fig. 4b gas flows into a control volume with, on the other side, a
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Fig. 5 Heat conduction. The
dotted line represents the
system. A heat flow Q̇1 enters at
T1 and Q̇2 leaves at T2

moving piston with area A and velocity v. Now (29) reads

∗
V 1 = vA + V

γp

dp

dt
. (34)

For the case of Fig. 4c, where gas flows out of a container through a valve with flow
conductance C (as in the buffer volume of a PTR),

0 = C(p − p0) + V

γp

dp

dt
. (35)

2.4 Entropy Production Rates

Now we will derive the expressions for the entropy production rates due to flows of
heat and matter.

2.4.1 Heat Conduction

Consider the heat conduction through an adiabatic bar in the steady state (see Fig. 5).
It is a closed system with fixed boundaries and no external work is done, so the first
law reduces to

Q̇1 = Q̇2 = Q̇. (36)

The second law gives

0 = Q̇1

T1
− Q̇2

T2
+ Ṡi with Ṡi ≥ 0 (37)

or, with (36),

Ṡi = Q̇

(
1

T2
− 1

T1

)
≥ 0. (38)

Relation (38) is the expression of the entropy production rate due to transport of heat
over a temperature difference. As Q̇ > 0, Equation (38) demands that T1 ≥ T2. In
other words: heat flows from a high temperature to a low temperature. This is again
the Clausius formulation of the second law.

The heat flow in a bar of length L and cross-sectional area A can, for small tem-
perature differences, be written as

Q̇ = κ
A

L
(T1 − T2) (39)
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with κ the thermal conductivity. The entropy production rate is now

Ṡi = κ
A

L

(T1 − T2)
2

T1T2
. (40)

The dependence of Ṡi on the “driving force” (T1 − T2) is quadratic, which is charac-
teristic for expressions of the entropy production rates in general [2].

2.4.2 Throttling

Now we derive an expression for the entropy production in the throttling process as
shown in Fig. 6. The process is adiabatic by definition. In the steady state

∗
n1 = ∗

n2 = ∗
n (41)

The first law demands that

0 = ∗
n1Hm1 − ∗

n2Hm2 (42)

so, in a throttling process, the molar enthalpy is constant

Hm1 = Hm2. (43)

The second law gives

0 = ∗
n1Sm1 − ∗

n2Sm2 + Ṡi. (44)

With (43) and (163) we get
(

∂Sm

∂p

)

Hm

= −Vm

T
(45)

so, with (44),

Ṡi = −∗
n

∫ 2

1

Vm

T
dp. (46)

Introducing the volume flow rate

∗
V = ∗

nVm (47)

Fig. 6 Schematic diagram of the throttling process. The dotted line represents the (adiabatic) system.

A molar flow
∗
n1 enters at position 1 and

∗
n2 leaves at 2
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this may also be written as

Ṡi = −
∫ 2

1

∗
V

T
dp. (48)

For small pressure drops, or in cases where
∗
V /T is practically constant (as in liquid

flow through a valve),

Ṡi =
∗
V

T
(p1 − p2). (49)

With the flow conductance C

∗
V = C(p1 − p2) (50)

we get

Ṡi = C(p1 − p2)
2

T
. (51)

3 Ideal Regenerators and Heat Exchangers

In this section we will discuss ideal regenerators and ideal heat exchangers.

3.1 Ideal Regenerator

An important component of refrigerators, operating with oscillatory flows, is the re-
generator. A regenerator consists of a matrix of a solid porous material, such as spher-
ical particles or metal sieves, through which gas flows, as shown in Fig. 7. The matrix
must have a high heat capacity and a good heat contact with the gas. At the same time
it should have a low flow resistance. These are conflicting requirements.

The thermodynamic and hydrodynamic properties of regenerators are extremely
complicated, so one must make simplifying assumptions. The degree of idealization
differs from case to case. In its most extreme form an ideal regenerator has the fol-
lowing properties:

1. the heat capacity of the matrix per unit volume is much larger than of the gas;
2. the heat contact between the gas and the matrix is perfect;
3. the flow resistance of the matrix is zero;

Fig. 7 Schematic picture of a
regenerator
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4. the porosity g, this is the fraction of the volume taken by the matrix material, is
zero;

5. the thermal conductivity in the flow direction is zero;
6. the gas in the regenerator is ideal.

In an ideal regenerator the entropy production rate is zero. The average enthalpy
flow in the regenerator is

∗
H r = 1

tc

∫ tc

0

∗
nrHm(T )dt = ∗

nrHm, (52)

where tc is the cycle time. The bar indicates time average. If the working fluid is an
ideal gas then, with (175),

∗
H r = Cp

∗
nrT . (53)

If conditions 1 and 2 are satisfied then the gas temperature varies with position but at
a certain point it is constant in time so

∗
H r = CpT

∗
nr. (54)

In the steady state the time-average molar flow
∗
nr in the regenerator is zero (in fact

everywhere in the system) so

∗
nr = 0. (55)

As a result of (54) and (55) the average enthalpy flow in an ideal regenerator is zero

∗
H r = 0. (56)

The fact that the average enthalpy flow in an ideal regenerator with an ideal gas is zero
implies that it has no cooling power. Any heat load on the regenerator has nowhere
to go and can only lead to an increase of the local temperature. As we will see later,
this differs for an ideal regenerator with a nonideal gas.

Depending on the situation one or more assumptions, which model the ideal re-
generator, may be dropped. Usually they are replaced by other assumptions of a less
rigorous nature. They will lead to nonzero enthalpy flow and entropy generation in
the regenerator. This will be the topic of later sections.

The development of regenerator materials with a large heat capacity per m3 around
10 K [3] is one of the main reasons why the performance of cryocoolers is improved
so much in recent times. A collection of specific heat data is found in Fig. 8 [4].

3.2 Ideal Heat Exchanger

An ideal heat exchanger has zero flow resistance and the temperature of the gas,
leaving the heat exchanger, is equal to the (fixed) body temperature TX of the heat
exchanger. However, even a perfect heat exchanger cannot affect the temperature Ti
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Fig. 8 Heat capacities per unit volume, cV, of various important regenerator materials as functions of
temperature. (GAP is Gd2AlO3; SS is stainless steel)

of the incoming gas. This leads to a fundamental form of entropy production, which
we now will calculate.

The heat transfer rate from the gas, with flow rate
∗
n > 0 and with gas tempera-

ture T , to the heat-exchanger body, over a small section of the exchanger, is

δQ̇ = −∗
nCpδT , (57)

with the associated entropy production rate, according to (38),

δṠX = δQ̇

(
1

TX
− 1

T

)
. (58)

The total entropy production rate when the gas is cooled from Ti to TX is

ṠX = ∗
n

∫ i

X

(
1

TX
− 1

T

)
CpdT . (59)

If Ti ≈ TX this reduces to

ṠX = ∗
nCp

(Ti − TX)2

2T 2
X

. (60)

Since both Ti − TX and
∗
n are first-order terms the entropy production rate in the heat

exchanger ṠX is of third-order and can be neglected in low-amplitude considerations.
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Fig. 9 Schematic diagram of a Stirling cooler. The system has one piston at ambient temperature Ta and
one piston at low temperature TL. The upper half shows the entropy flows and the lower half the energy
flows

4 Stirling Refrigerators

We will now turn to the treatment of the most important types of cryocoolers and
related thermal machines. We will start with the Stirling-type refrigerators. The basic
type of Stirling-type cooler is depicted in Fig. 9. At the left it consists of a piston,
compression space, and heat exchanger, all at ambient temperature Ta. Next comes a
regenerator. At the right there are a heat exchanger, the expansion space, and a piston,
all at the low temperature TL. The gas is compressed at ambient temperature and ex-
panded at low temperature. The thermal contact with the surroundings, left and right,
at the temperatures Ta and TL is supposed to be so good that the compression and
expansion are isothermal. The work, performed during the expansion, is recovered.
The working fluid is helium.

The cooling cycle is divided in four steps as depicted in Fig. 10. We start a cycle
when the two pistons are in their most left positions, the cold piston touches the cold
heat exchanger:

1. From a to b. The warm piston moves to the right over a certain distance while the
position of the cold piston is fixed. The compression at the hot end is isothermal
by definition, so a certain amount of heat Qa is given off to the surroundings at
temperature Ta.

2. From b to c. Both pistons move to the right so that the volume between the two
pistons remains constant. The gas enters the regenerator at the left with temper-
ature Ta and leaves it at the right with temperature TL. During this part of the
cycle heat is given off by the gas to the regenerator material. During this process
the pressure drops and heat has to be supplied to the compression and expansion
spaces to keep the temperatures constant.

3. From c to d. The cold piston moves to the right while the position of the warm
piston is fixed. The expansion is isothermal so heat QL is taken up from the appli-
cation.
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Fig. 10 (Color online) Four
states in the Stirling cycle

Fig. 11 pV -diagram of the
ideal Stirling cycle

4. From d to a. Both pistons move to the left so that the total volume remains con-
stant. The gas enters the regenerator at the right with temperature TL and leaves
it at the left with Ta so heat is taken up from the regenerator material. During this
process the pressure increases and heat has to be extracted from the compression
and expansion spaces to keep the temperatures constant. In the end of this step the
state of the cooler is the same as at the start.

In the pV diagram (Fig. 11) the cycle consists of the well-known form of two
isotherms and two isochores. The volume V in this diagram is the volume between
the two pistons. At each point of the cycle the pressure in the system and the volume
are well-defined. However, during the steps 2 and 4 the temperature of part of the gas
is Ta and of the other part it is TL.

In practice the cycle is not divided in discrete steps as described above. Usually
the motion of both pistons are driven by a common rotary axes which makes the
motions of the two pistons harmonic. It is typical for the Stirling cycle that the phase
difference between the motion of the two pistons is about 90◦.

The cycle is reversible and, with the surroundings of the cooler, heat is exchanged
only at two fixed temperatures, so the COP is the Carnot COP given by (24). This
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can also be seen as follows. In Fig. 9 the entropy and energy flows are indicated.
Based on the first law the power PH, supplied to the warm piston, is equal to the
heat flow Q̇a to the surroundings, so PH = Q̇a. The power PL, recovered at the cold
piston, is equal to the cooling power Q̇L, so PL = Q̇L. The second law, applied to the
regenerator and the two heat exchangers, gives

Q̇a

Ta
= Q̇L

TL
. (61)

If the power PL, released by the expansion, is used to reduce the net power P , sup-
plied to the system, so P = PH − PL, this results in a COP of

ξ = Q̇L

PH − PL
= TL

Ta − TL
. (62)

The cold piston, as described above, is rather impractical, so, in many cases, the
cold expander is avoided by using a displacer. A displacer is a solid body which
moves back and forth and drives the gas back and forth between the warm and the
cold end of the system through the regenerator. Ideally the pressure over the displacer
is zero, so no work is required to move it. Its motion is synchronized with the mo-
tion of the piston. Typically it is ninety degrees out of phase. Also in this case the
cycle is reversible and heat is exchanged, with the surroundings, only at two fixed
temperatures, so the efficiency is also the Carnot efficiency given by (24).

Another type of Stirling cooler is the split-pair type [5] as shown in Fig. 12. It con-
sists of a compressor, a split pipe, and a cold finger. Usually the compressor is a linear
compressor where the piston is driven by an AC magnetic field as in loudspeakers.
There are often two pistons which move in opposite directions to reduce mechanical
vibrations. The pistons are suspended by so-called flexure bearings which provide

Fig. 12 Schematic diagram of a split-pair Stirling refrigerator. The cooling power is supplied to the heat
exchanger of the cold finger. Usually the heat flows are so small that there is no need for physical heat
exchangers around the split pipe
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stiffness in the radial direction and flexibility in the axial directions. The piston and
the compressor casing don’t touch so no lubricants are needed.

In the cold finger the moving part is the regenerator which works as the displacer
at the same time. It is suspended by a spring which can also be a flexure bearing.
The motion of the displacer/regenerator is driven by the pressure drop between the
upper space (expansion space) and the lower space and by the pressure difference
between the bouncing volume and the cold-finger volume. Hence, the area of the
cross section of the guiding rod is an important design parameter. The cooler operates
at a frequency near the resonance frequency of the mass-spring system inside the
cold finger. The motions of the piston and the displacer/regenerator are similar to the
motions of the displacer-type Stirling cooler.

5 GM-Refrigerators

We will now describe the workhorse of many low-temperature systems: the Gifford-
McMahon (GM) cooler [6]. GM coolers are robust machines that find wide-spread
application e.g. in MRI and cryopumping. Figure 13 is a schematic diagram. The
working fluid is helium at pressures in the 10 to 30 bar range. The cold head contains
a regenerator and a displacer which usually are combined in one body. The varying
pressure is obtained by connecting the cold head periodically to the high- and low-
pressure sides of a compressor through a rotating valve which is synchronized with
the motion of the displacer.

During the opening and closing of the valves irreversible processes take place, so
GM-coolers are intrinsically irreversible. This is a clear disadvantage of this type of
machine. On the other hand the cycle frequencies of the compressor and the displacer
are uncoupled. E.g. the compressor runs at power-line frequency while the cycle of
the cold head is 1 Hz. This means that the swept volume of the compressor can be
50(60) times smaller than of the cooler. Basically cheap compressors of domestic
refrigerators can be used, but special precautions have to be taken to prevent over-
heating of the compressor since they are not designed for helium. In addition very
high quality purification traps have to be installed to prevent oil vapor from entering
the regenerator.

The cycle can be divided in four steps, with Fig. 14, as follows: The starting po-
sition is with the low-pressure valve closed, the high-pressure valve open, and the

Fig. 13 Schematic diagram of a
GM-cooler. Vl and Vh are buffer
volumes of the compressor. The
compression heat is removed by
the cooling water of the
compressor via a heat
exchanger. The rotary valves
alternatingly connect the cooler
to the high- and the low-pressure
sides of the compressor and runs
synchronous with the displacer
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Fig. 14 The four stages in the
cooling cycle of the GM cooler

displacer all the way to the right (so in the cold region). All the gas is at room tem-
perature.

1. From a to b. The displacer moves to the left while the cold head is connected to
the high-pressure side of the compressor. The gas is forced to pass the regenerator.
It enters the regenerator at ambient temperature Ta and leaves it with temperature
TL so heat is given off by the gas to the regenerator material. Due to the high
density of the low-temperature gas some additional gas will flow from the high-
pressure side of the compressor through the regenerator to the low-temperature
space.

2. From b to c. The cold head is connected to the low-pressure side of the com-
pressor with fixed position of the displacer. Part of the gas flows through the re-
generator to the low-pressure side of the compressor. Expansion of the gas takes
place. The expansion in the cold space is isothermal so heat is taken up from
the application. During this phase of the cycle the useful cooling power is pro-
duced.

3. From c to d. The displacer moves to the right while the cold head is still con-
nected to the low-pressure side of the compressor forcing the cold gas to pass the
regenerator, while taking up heat from the regenerator.

4. From d to a. The cold head is connected to the high-pressure side of the com-
pressor with fixed position of the displacer. In the end of this step the cycle is
closed.

The ideal cooling power can be obtained immediately from the first law, applied
to the expansion space with volume Ve and pressure pe

Q̇L = pe
dVe

dt
. (63)

We have seen before that the average enthalpy flow, in an ideal regenerator, is zero.
The energy Q̇L leaves the cold end of the system as enthalpy transported by the
displacer.

The flow distribution in regenerators is homogeneous. As a result the cooling
power tends to be proportional to the area of the cross section of the regenerator.
This is illustrated in Fig. 15 where the length of GM coolers and the external di-
ameter of their heat exchangers are plotted as functions of the square root of the
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Fig. 15 Length L and diameter
D of the GM-coolers of
Cryomech plotted as functions
of

√
Q̇ at 80 K [7]

cooling power at 80 K, Q̇1/2 [7]. The length is practically constant and the di-
ameter (minus 13 mm) is nicely proportional to, Q̇1/2. So, increasing the cooling
power is simply a matter of increasing the diameters of the cooler components.
However, instabilities were found in regenerators with a large diameter/length ra-
tio [8].

6 Pulse-Tube Refrigerators

6.1 Components of PTR’s

This section gives a description of the basic operation of a Pulse-Tube Refrigerator
(PTR) in the steady state.2 This type of cooler was invented by Mikulin [11]. At the
moment there are many variants of PTR’s. A so-called Stirling-type single-orifice
PTR is represented schematically in Fig. 16. From left to right it consists of:

1. A piston which moves back and forth.
2. A heat exchanger X1 (after cooler) where heat is released at room temperature

(Ta) to cooling water or to the surroundings.
3. A regenerator.
4. A heat exchanger XL at low temperature (TL) where heat is absorbed from the

application.
5. A tube, often called the pulse tube.
6. A heat exchanger X3 to room temperature (Ta).
7. A flow resistance (orifice).
8. A buffer volume, in which the pressure pB is practically constant.

In this section all flow resistances are neglected except from the orifice. The flow
conductance C of the orifice is adjusted for optimum performance. Typically the

2The operation of this system should not be confused with the operation of the so-called basic pulse tube
whose operation is based on a heat shuttle interaction with the tube wall [9, 10].
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Fig. 16 (Color online) Schematic diagram of a Stirling-type single-orifice PTR. From left to right: piston,
after cooler (X1), regenerator, low-temperature heat exchanger (XL), tube (pulse tube), second room-tem-
perature heat exchanger (X3), orifice (O), buffer. The dotted rectangle represents thermal (vacuum) insu-
lation

dimensionless flow resistance of the orifice α, defined by

α = ωVt

Cγp0
, (64)

is of order one. Here ω is the angular frequency and p0 the average pressure. The
system is filled with helium at p0 of typically 20 bar. The part in between the heat
exchangers X1 and X3 is below room temperature.

6.2 Cooling Principle

Driven by the piston, the gas moves back and forth and the pressure pt in the pulse
tube varies. The operation frequency is typically 1 to 50 Hz and the working fluid
is helium at, say, 10 to 30 bar. The pressure varies smoothly. Acoustic effects, such
as traveling pressure waves, or fast pressure changes, are absent. In the regenerator
and in heat exchangers the gas is in good thermal contact with its surroundings while
in the pulse tube the gas is thermally isolated. In the pulse tube compression of gas
leads to heating and expansion to cooling.

In and around the pulse tube we can distinguish three types of gas parcels. There
are gas parcels that, during a cycle, move in and out the pulse tube via the cold heat
exchanger XL, gas parcels that move in and out via the hot heat exchanger X3, and
gas parcels that never leave the pulse tube. Together the latter form the so-called gas
piston. Schematic drawings of the temperature-position curves of these three types of
gas parcels are given in Fig. 17. At the hot end gas flows from the buffer via the orifice
into the tube with a temperature Ta if pt < pB. If pt = pB the gas at the hot end stops
and if pt > pB the gas moves back towards the hot end of the tube and, eventually,
through the heat exchanger X3 and the orifice into the buffer. So gas elements enter
the pulse tube if pt < pB and leave it if pt > pB. Consequently, at the hot end, the
gas leaves the tube with a temperature higher than the inlet temperature Ta and heat
is released via the heat exchanger X3 to the surroundings.

At the cold end the analysis is a bit more complicated due to the fact that the
velocity vL at the cold end is determined by the velocity vH of the gas at the hot end
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Fig. 17 Left side: a gas element
enters the tube at temperature
TL and leaves it at a lower
temperature hence producing
cooling. Right side: a gas
element enters the tube at
temperature Ta and leaves it at a
higher temperature hence
producing heating. Middle: this
gas element is in the gas piston
and never leaves the pulse tube.
It moves to the right with high T

and to the left with low T

and by the elasticity of the gas column in the tube, according to (33),

vL = vH + Vt

γAtpt

dpt

dt
(65)

with Vt and At the volume and area of the pulse tube respectively. Still the situation
at the cold end is basically the same as at the hot end. At the cold end the gas enters
the tube with temperature TL when the pressure is high. It returns to XL when the
pressure is low and the temperature is below TL. Hence producing cooling.

Also gas parcels in the gas piston move to the right with a high temperature and
back with a low temperature. As we will see in the next section this is reason why
there is a net enthalpy flow in the pulse tube.

6.3 Thermodynamics of PTR’s

In this Subsection we will analyze the PTR based on the first and second law of ther-
modynamics. In the ideal case entropy is produced only in the orifice. In all the other
subsystems Ṡi = 0. The heat flows Q̇ with the surroundings are nonzero only in the
heat exchangers. Flows to the right are counted positive. The signs of the power and
the heat flows are defined in Fig. 18. We split up the PTR in subsystems going from
right to left. First we consider the simple system represented in Fig. 19a, containing
only the orifice. At the reservoir side the pressure p = pB and the temperature T = Ta

are constant. As a result the molar entropy Sm and the molar enthalpy Hm are con-
stant as well. Similar to (55) it follows that the average enthalpy and entropy flows in
the tube, connecting the orifice with the buffer, are zero. In the tube, connecting the
orifice and the heat exchanger X3, the temperature is constant as well so the average
enthalpy flow here is also zero. The first law for the orifice shows that the heat flow
into the orifice, needed to keep its temperature constant, is zero as well.
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Fig. 18 Schematic diagram of a single-orifice PTR. In the upper half of the figure the entropy flows are
indicated. The lower half gives the energy flows. If a particular flow is zero in a certain region this is
indicated by ‘0’. It is assumed that the PTR is ideal so that dissipation only takes place in the orifice

Fig. 19 Thermodynamic systems containing the orifice (a), the heat the exchanger X3 (b), the pulse tube
and its heat exchangers (c), and the regenerator and its heat exchangers (d)

The average entropy flow in the tube between the heat exchanger X3 and the orifice
∗
S3 is nonzero due to the pressure variations. With (173) we may write it as

∗
S3 = −R

∗
n ln

pt

p0
. (66)

Since the heat flow to the orifice is zero the entropy production rate in the orifice is

ṠO = −∗
S3. (67)
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So the entropy, which is produced in the orifice, flows towards X3 as shown in
Fig. 19a.

Next we consider the exchanger X3 as a thermodynamic system (Fig. 19b). In the
pulse tube the gas moves back and forth isentropically, so the average entropy flow
here is zero3

∗
St = 0. (68)

The second law with (67) gives that the average heat flow, extracted at X3, is given
by

Q̇H = TaṠO. (69)

So heat has to be extracted at X3. From the first law this must be equal to the average
enthalpy flow in the pulse tube

∗
H t = Q̇H. (70)

It is interesting to note that the entropy flow to system b comes from the right and the
enthalpy flow from the left.

Now we consider the system containing the tube and its two heat exchangers
(Fig. 19c). The average enthalpy flow in the pulse tube is given by

∗
H t = Cp

∗
nT . (71)

The gas moves to the right with a high temperature and to the left with a low tem-
perature (see the gas parcel in the gas piston in Fig. 17). As a result the net enthalpy

transport in the pulse tube
∗
H t is nonzero. However, the enthalpy flows at the left and

right of system c are zero (see (56)). The first law then gives that

Q̇L = Q̇H. (72)

This important relation shows that the cooling power is equal to the heat released
at the warm heat exchanger X3. It seems to contradict the Clausius formulation of
the second law applied to the system Fig. 19c. However, the Clausius principle only
applies to closed systems.

The second law, applied to XL, with (68) gives

Q̇L = −TL
∗
Sr, (73)

where
∗
Sr is the entropy flow in the regenerator. The negative sign means that the

average entropy flow in the regenerator is directed from the cold to the warm end.

3That the entropy flow is zero is not obvious for surfaces in the neighborhood of one of the heat exchangers
since gas parcels can exchange heat with the heat exchanger when they move back and forth. This problem
can be solved by starting to make up the balance of the entropy, transported through the surface in a cycle,
when the first parcel moves into the pulse tube. All parcels passing the surface will return with the same
entropy.
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This is logical since the gas moves to the right when the pressure is high (low en-
tropy, see (173)) and to the left when the pressure is low (entropy high). In the
ideal case there is no entropy production in the regenerator so the average entropy
flow

∗
Sr = constant. (74)

Now consider a system consisting of the regenerator and its two adjacent heat
exchangers X1 and XL as in Fig. 19d. The gas in the (adiabatic) compression space
moves back and forth isentropically, so the average entropy flow left of the after
cooler X1 is zero. Combining (73) and (74) gives

Q̇L

TL
= Q̇c

Ta
. (75)

The first law requires that the average heat release at the aftercooler

Q̇c = P. (76)

Here P is the power input in the compressor. The COP (see (22)) is found by com-
bining (75) and (76) which gives the well known [12] result

ξ = TL

Ta
. (77)

Comparing this value with the Carnot COP, given by (24), shows that the efficiency
of an ideal PTR is less than of an ideal cooler. This is due to the dissipation in the
orifice. Close to room temperature the difference between ξ and ξC is big, but at
temperatures in the range of liquid nitrogen (77 K) and lower the difference in COP
is insignificant for most applications.

Combining (69) and (72) shows that

Q̇L = TaṠO. (78)

So the cooling power is determined by the dissipation at the hot end of the tube which,
in turn, is determined by the component of the oscillating flow which is in phase with
the pressure. The flow at the cold end contains a term which is not in phase with the
pressure variations (see (65)). This component is bad for the efficiency as it adds to
the dissipation in the regenerator but not to the cooling power. Furthermore the out-
of-phase component of the gas flow is a load on the regenerator. Most of the research
and development work in PTS’s aimed at suppressing the out-of-phase flow at the
cold end of the pulse tube. The phase difference between the pressure and the flow
at the cold end can be controlled with proper devices such as: double inlet, inertance,
four-valve, active buffer, and warm expander [13–16].

6.4 The Various Types of PTR

So far we have discussed the Stirling-type single-orifice PTR (Fig. 16). The pres-
sure variations are generated by a compressor which is directly connected to the
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Fig. 20 Schematic diagram of a GM-type PTR. The compressor delivers constant pressure levels pl
and ph. The varying pressure in the cooler unit is obtained through a rotating valve which alternatingly
connects the regenerator to the low- and high-pressure sides of the compressor

cold head. Typical operation frequencies are 20 to 50 Hz and the temperature range
50 K and higher. However, for getting cooling, the source of the pressure varia-
tions is unimportant. PTR’s for lower temperatures (20 K and below) usually oper-
ate at low frequencies (1 to 2 Hz) and with pressure variations from 10 to 25 bar
(pressure ratio 2.5). At room temperature the swept volume per cycle would be
very high (up to one liter and more). Therefore the compressor is uncoupled from
the cooler just like in the GM-coolers. A schematic diagram is given in Fig. 20.
A system of valves is needed, which alternatingly connects the high pressure and
the low pressure to the hot end of the regenerator. Usually this is a rotating valve.
The high-temperature part at the compressor side is the same as in GM-coolers
(see Fig. 13). Therefore, this type of PTR is called a GM-type PTR. The gas flows
through the valves are accompanied by losses which are absent in the Stirling-type
PTR.

PTR’s can be classified according to their shape. If the regenerator and the tube
are in line (as in Figs. 16 and 20) we talk about a linear PTR. The disadvantage of the
linear PTR is that the cold spot is in the middle of the cooler. For many applications it
is preferable that the cooling is produced at the end of the cooler. By bending the PTR
we get a U-shaped cooler as shown in Fig. 21. Both hot ends can be mounted on the
flange of the vacuum chamber at room temperature. This is the most common shape
of PTR’s. For some applications it is preferable to have a cylindrical geometry. In that
case the PTR can be constructed in a coaxial way so that the regenerator becomes a
ring-shaped space surrounding the tube.

The lowest temperature, reached with single stage PTR’s, is just above 10 K [17].
However, one PTR can be used to precool the other as in Fig. 21. Note that the hot
end of the second tube is connected to room temperature and not to the cold end of the
first stage. In this clever way it is avoided that the heat, released at the hot end of the
second tube, is a load on the first stage. In applications the first stage also operates as
a temperature-anchoring platform for e.g. shield cooling of superconducting-magnet
cryostats. Matsubara and Gao were the first to cool below 4 K with a three-stage
PTR [18]. With two-stage PTR’s temperatures of 2.1 K, so close to the λ-point of
helium, have been obtained. With a three-stage PTR 1.73 K has been reached using
3He as the working fluid [19].

It is also possible to couple two independent PTR’s where one precools the other.
In these systems there can be no uncontrolled internal circulations (DC-flow) of the
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Fig. 21 Two-stage, U-shaped,
GM-type, double-orifice PTR.
The first stage precools the
second one. Note that the hot
end of the second stage is
connected to room temperature
and not to the cold end of the
first stage. The so-called minor
orifices, which suppress a
possible DC flow, are not shown

gas and each of the PTR’s can be optimized separately. In this kind of system the
world record of low temperature in PTR’s (1.27 K) is reached while the second sys-
tem was operated with 3He as the working fluid [20]. With a superfluid vortex cooler,
precooled by this system, the temperature has been lowered to 1.19 K with the po-
tential of obtaining 0.7 K in this way [21]. For lower temperatures one needs 3He
cryostats or dilution refrigerators which will be discussed later.

7 Real Regenerators

Cryocoolers can reach temperatures below 20 K where helium is not an ideal gas.
Furthermore ideal regenerators, as described above, do not exist in practice. For the
most general case numerical models must be used [22–24]. In this Section we will
discuss rather realistic regenerators, but there will be still some idealizations. We will
limit the discussion to the linear approximation, using the harmonic model. In the
harmonic approximation regenerators can be mathematically described by the trans-
fer matrix. This takes into account the viscosity of the working fluid, the porosity of
the matrix, the ratio of the two end temperatures, the hydraulic diameter of the pores,
the length and cross section of the regenerator, the frequency of the oscillations, and
the gas pressure as in (211) and following [25].

7.1 Temperature Variations

An expression for the temperature variation of the gas is derived in Ref. [26]. Ne-
glecting the heat conduction term (this can be treated separately) Equation (31) in
Ref. [26] reads

gCp

Vm

∂Tg

∂t
= −

∗
nr

Ar

(
Cp

∂Tg

∂l
+ Hp

∂p

∂l

)
+ gTgαV

∂p

∂t
+ β(Tr − Tg). (79)
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Here g is the porosity (void fraction) of the matrix, Hp is defined by (165), β is the
heat-exchange coefficient per unit volume, and αV the volumetric expansion coeffi-
cient (see (167)). The first term in the right-hand side is the convective contribution,
the second term is due to the compression of the gas (see (162)), and the last term due
to heat flow from the matrix to the gas. In complex form, using that the ∂p/∂l-term
would give a second-order contribution,

iω
gCp

Vm0
T̂g = − n̂rCp

Ar

dT0

dl
+ iωgT0αV0p̂ − β

(
T̂g − T̂r

)
. (80)

The index 0 indicates time-averaged values.
For the matrix temperature, again neglecting heat conduction,

(1 − g)cV
∂Tr

∂t
= β(Tg − Tr) (81)

where cV the heat capacity per unit volume of the bulk regenerator matrix material as
given in Fig. 8. Equation (81), in complex form, gives

T̂r = β

iω(1 − g)cV0 + β
T̂g. (82)

Equations (80) and (82) can be used to calculate the enthalpy flow in the regenerator.
Together with the heat conduction, and requiring that the total average energy flow is
constant, the temperature profile of the regenerator can be calculated.

7.2 Nonideal-Gas Effects in PTR’s

7.2.1 Introduction

In Sect. 3 it was shown that an ideal regenerator, with an ideal gas, has no cooling
power i.e. heat, applied somewhere to the regenerator, will lead to an unlimited in-
crease of the local temperature. This is different if the working fluid is a real gas. In
this Section, we will consider the situation that heat Q̇r(l) is supplied externally to
the regenerator as shown in Fig. 22.

In the nonideal-gas effect the pressure dependent contribution of the enthalpy, Hp
in (164), plays a key role. The Hp values for 4He can be obtained from Ref. [27]
and for 3He from Refs. [28, 29]. Examples at 15 bar are given in Fig. 23. For a Van

Fig. 22 Schematic drawing of
the regenerator with a heat load
dQ̇r/dl per unit length,
distributed along the matrix, and
a cooling power Q̇L at the cold
end
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Fig. 23 Plots of Hp at 15 bar

for 4He and 3He as functions of
temperature

der Waals gas the values of Hp at T = 0 and T = ∞ are the same and equal to the
parameter b, the total volume of the atoms. Figure 23 also shows that helium is not
an ideal gas (Hp �= 0) even at the high temperatures.

Since nonideal-gas effects are most relevant in the second stage of a PTR we will
consider the regenerator of the second stage of a PTR. It will be treated as ideal.
However, it cannot be assumed that the thermal conductivity in the flow direction
is zero since without heat flow energy conservation cannot be satisfied. But we will
assume that the flow resistance and the void volume are zero, that the thermal contact
between the gas and the matrix is perfect, and that the heat capacity of the matrix is
very big. Furthermore we assume that the pressure variations are harmonic

p = p0 + pA cosωt (83)

with pA 	 p0. As the flow resistance is neglected pA is constant. Finally we assume
that the molar flow is in phase with the pressure and given by

∗
nr = nA cosωt. (84)

As the void volume of the regenerator is zero nA is constant. That the flow is in phase
with the pressure can be achieved by proper flow-controlling devices at the hot end
of the second-stage pulse tube. The expressions, in the following subsections, will be
treated to lowest relevant order. This means that pressure and temperature changes
will be treated in first order, and energy-related quantities such as enthalpy flow and
cooling powers to second order. The discussion in this section regards PTR’s, but can
also be applied to other types of coolers.

7.2.2 Cooling Power

The index L will be used to indicate values at the cold end of the regenerator. The
cooling power of the second stage can be calculated from the first law, applied to XL,

0 = Q̇cL + Q̇L + ∗
H rL − ∗

H t. (85)
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Here Q̇cL is the heat flow on XL by conduction via the regenerator, Q̇L the applied

heating power,
∗
H rL the average enthalpy flow from the regenerator, and

∗
H t the aver-

age enthalpy flow in the pulse tube. At the regenerator side of XL the temperature is
constant so, using (164),

∗
H rL = HpL

∗
nδp. (86)

At the pulse-tube side the entropy is constant so (163) gives

∗
H t = VmL

∗
nδp. (87)

Combining (85), (86), and (87) gives

Q̇L = (VmL − HpL)
∗
nδp − Q̇cL. (88)

With (83), (84), and (166) we get

Q̇L = 1

2
nApAVmLTLαVL − Q̇cL. (89)

With the volume-flow amplitude

UA = VmLnA (90)

we get

Q̇L = 1

2
UApATLαVL − Q̇cL. (91)

So the cooling power depends on αVL. Even if Q̇cL = 0 the cooling power Q̇L is
zero if αVL = 0. So the lowest temperature, that can be reached with PTR’s, is the
temperature where αV = 0. For 4He this is just above the lambda point and for 3He
at 15 bar it is 1.04 K [29]. The lowest temperature, reached in experiment, is 1.27 K,
[20] so very close to the theoretical minimum.

In Ref. [30] it is derived that the COP of an ideal PTR, for TL below about 7 K, is
given by

ξ = VmLαVL

VmH
TL. (92)

Equation (92) shows that the COP is determined by VmLαVL, which is larger for 3He
than for 4He (see Fig. 24). Also the difference in thermal conductivity and viscosity
of 3He and 4He plays a role.

So far we focused on the regenerator. One may wonder how the real-gas effect
affects the energy flow in the pulse tube. The answer is in (87) which can also be
written as

∗
H t = ∗

V Lδp. (93)
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Fig. 24 The product VmαV at
15 bar for 3He and 4He as
functions of T

The values of
∗
V δp at the cold and the hot end of the pulse tube are the same, so the

enthalpy flow in the pulse tube is unaffected by the fact that we are dealing with a
nonideal gas.

7.2.3 Temperature Profile in the Regenerator

In the previous subsection we have seen that the cooling power of PTR’s is reduced
due to real-gas effects. Fortunately some of this cooling power can be recovered by
using the cooling power of the regenerator which is nonzero in the case of real gases.
This can be understood as follows: the average total energy flow Er in the regenerator
is the sum of the heat flow

Q̇c = −Arκr
dT

dl
, (94)

(with κr the thermal conductivity of the regenerator) and the average enthalpy flow,
so

Er = Q̇c + ∗
H r. (95)

If Q̇r(l) is the total amount of heat, supplied externally to the regenerator between 0
and l, energy conservation requires that

Er (l) = Er (0) + Q̇r (l) . (96)

With (164) isothermal enthalpy changes, as in our ideal regenerator, are equal to
δHm = Hpδp, so, with (83) and (84) the time average enthalpy flow in the regenerator
is given by

∗
H r = 1

2
nApAHp. (97)
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Fig. 25 Temperature profiles in
case heat is supplied at the
middle of the regenerator. The
heating powers are indicated in
watt at the corresponding curves

Due to our assumptions of zero flow resistance and zero void volume, nApA does not
depend on l. These relations result in

Arκr
dT

dl
= 1

2
nApAHp(T ) − Er(0) − Q̇r(l). (98)

The heat input per unit length dQ̇r(l)/dl can be distributed evenly e.g. if the re-
generator is used to precool an incoming flow of 4He (as in Ref. [31]) or 3He (as
in Fig. 36). The heat input can also be discrete (as in Refs. [32, 33]). We will con-
sider here the case where heat is supplied only in the middle of the regenerator (so at
l = Lr/2). Integration of (98) is performed numerically. The values of TL and TH are
fixed (here at 4 and 50 K respectively) and, by iteration, the value of Er(0), which sat-
isfies this boundary condition, is determined. Next the temperature profile is obtained
from (98). In our calculations we take Lr = 0.15 m, Ar = 20 cm2, and the operating
frequency ν = 2 Hz in a PTR with p0 = 15 bar. The effective thermal conductivity is
taken as κr = 2.5 W/Km and 1

2nApA = 0.13 mol MPa/s.
Figure 25 gives the temperature profiles in the regenerator for four values of the

heating power Q̇r supplied in the middle of the regenerator. For zero Q̇r the tem-
perature profile is rather flat at the low-temperature end. So Q̇cL is practically zero
and the load on the XL from the regenerator side is mainly due to enthalpy flow. The
temperature Ti of the point where the heat is supplied increases with Q̇r and a kink in
the T -profile appears. Figure 26 gives plots of Q̇L and Ti as functions of Q̇r. At low
Q̇r values the Q̇L remains fairly constant (hence “free” cooling power) at a value of
about 0.42 W. For Q̇r > 2.7 W Q̇L is negative, which means that the temperature of
4 K cannot be maintained without external cooling.

8 Thermoacoustics

The field of thermoacoustics is pioneered by Rott [34] and by Swift [35] and his co-
workers. See Ref. [36] and the references therein. In order to thoroughly understand
thermoacoustic machines it is important to understand sound in terms of temperature-
position variations rather than the usual pressure-velocity variations. Therefore this
Section starts with a description of sound in these terms. In ordinary speech the sound
intensity is 65 dB which corresponds with pressure variations of 51 mPa, displace-
ments of 0.2 µm, and temperature variations of 43 µK. In thermoacoustic systems,
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Fig. 26 The cooling power Q̇L
and the temperature Ti as
functions of Q̇r. The dotted
lines represent the temperatures
of the hot and the cold ends

with sound levels of 180 dB, the pressure variations are 0.3 bar, displacements more
than 10 cm, and the temperature variations 24 K. Although a pressure ratio of 30%
is very big for acoustic systems, this is still much smaller than the pressure ratios
obtained e.g. in GM-type refrigerators, where pressure variations of a factor 3 are
common.

8.1 Sound

The wave equation in one dimension reads

∂2v

∂x2
− ∂2v

c2∂t2
= 0 (99)

with v the gas velocity and c the sound velocity satisfying

c2 = γ
p0

ρ0
. (100)

For an ideal gas

c2 = γ
RT0

M
, (101)

with M the molar mass. In these expressions p0, T0, and ρ0 are the average pressure,
temperature, and density respectively. Important special cases of solutions of (99) are
monochromatic plane waves which are superpositions of traveling waves to the right
and to the left

v = vAr cos(ϕr − k(x − ct)) + vAl cos(ϕl + k(x + ct)). (102)

By proper shifts in the t- and x-axis and with

ω = kc (103)

this can be put in a simpler form

v = vAr cos(ωt − kx) + vAl cos(ωt + kx). (104)
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The pressure variations are given by

δp = cρ0[vAr cos(ωt − kx) − vAl cos(ωt + kx)]. (105)

The deviation δx of the gas-particle position from its equilibrium position x can be
obtained by integration of (104) and is given by

δx = vAr

ω
sin(ωt − kx) + vAl

ω
sin(ωt + kx). (106)

With (105) and (169) the temperature variations are

δT = cM

Cp
[vAr cos(ωt − kx) − vAl cos(ωt + kx)]. (107)

Equations (106) and (107) form a parametric representation of a tilted ellipse in
the δT –δx plane with t as the parameter. If vAr = vAl we have a pure standing wave
and the ellipse of the δT –δx plot is reduced to a straight line with slope

dδT

dδx
= ωcM

Cp
tan(kx). (108)

Figure 27a is a graph of the position and the velocity amplitude of a pure standing
wave in a half-wavelength tube together with the plot of the pressure and temperature
amplitudes. At the tube ends the displacement is zero while the temperature variation
is maximal, so the δT –δx plot is a vertical line here. All points, representing the δT –
δx in time, move back and forth over the lines, as shown in Fig. 27b, so the average
enthalpy transport, by a standing wave, is zero.

If we would put a thin horizontal metal plate (with negligible longitudinal heat
conduction) in the sound field the thermal interaction of the moving gas with the
plate leads to the thermoacoustic effects. The interaction with the gas would lead to
a temperature profile in the plate which exactly matches the lines in Fig. 27b which
have the so-called critical temperature gradients. If we would force (by heat exchang-
ers) the actual temperature gradient in the plate to be smaller than the local slopes of

Fig. 27 a: Plot of the
amplitudes of the velocity and
displacements, and the pressure
and temperature variations in a
half-wavelength tube of a pure
standing wave. b: corresponding
δT –δx plots of a standing wave.
c: δT –δx plots of a pure
traveling wave
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the δT –δx plots, due to heat exchange with the surroundings, we have a cooler (or
heat pump). If the temperature gradient in the plate is forced to be larger then we have
an engine.

If vAl = 0 or vAr = 0 we have pure traveling waves. With the proper scales of the
axis, (106) and (107) represent circles in the δT –δx diagram. Figure 27c represents
the δT –δx plots of a pure traveling wave to the right. The gas elements move to
the right with high temperature and back with a low temperature, so there is a net
transport of enthalpy. It is interesting to compare the δT –δx plots with similar plots
in the pulse tube of a PTR (Fig. 17).

8.2 Energy Transport by Sound

Sound can transport energy. In general the enthalpy flow is given by (2). With the
molar flow

∗
n =

∗
V

Vm0
= p0

RT0

∗
V (109)

and the volume flow
∗
V = Av (110)

with A the tube cross section, and (175) we get for the average enthalpy flow

∗
H = p0Cp

RT0
AvδT . (111)

As the expansion and compression are isentropic we use (169) to get the well-known
relation of the enthalpy flow, which is also the acoustic energy flow

∗
H = Avδp. (112)

Note that this relation only holds for small amplitudes. Therefore, in general, (112)
cannot be used to calculate the energy transport in the pulse tube of a PTR.

The velocity is given by (104) and the temperature by (107) so substitution in
(111) gives

∗
H = γ

p0

2c
A(v2

Ar − v2
Al). (113)

This elegant relation shows that the enthalpy flow is independent of the x-coordinate
(which is a consequence of energy conservation) and proportional to the difference
in the velocity amplitudes squared of the positive and the negative sound wave.

8.3 Thermoacoustic Systems

Perhaps the simplest type of thermoacoustic device (from the point of view of con-
struction) is depicted in Fig. 28a. It represents a so-called thermoacoustic prime
mover. Typically it is 20 cm long with two cm diameter. Another important com-
ponent is the so-called stack. Usually this is a stack of metal plates (stainless steel) at



J Low Temp Phys (2011) 164:179–236 213

Fig. 28 a: Schematic diagram
of a thermoacoustic prime
mover; b: schematic diagram of
a thermoacoustic refrigerator

a mutual distance 2y0 which is several times the thermal penetration depth δκ of the
gas. The stack can also be a plug of loosely packed stainless steel wool or screens.
There is also a heat exchanger to ambient temperature and a resonator tube. It is
heated at the left e.g. by a propane flame. If the temperature at the hot side is high
enough the system produces a loud sound.

Figure 28b represents a thermoacoustic refrigerator. It is similar to the prime
mover, but it has a driver (loudspeaker) at the left. The systems of Fig. 28a and b
are so-called quarter-wavelength tubes which means that they resonate at a frequency
so that the length of the tube is equal to a quarter of the wavelength of the sound. The
quarter wavelength corresponds with the left half of Fig. 28a,b where the slopes of
the δT –δx lines of the standing wave are negative. In other words: the left side of a
horizontal plate in the sound field is hotter than the right side. Although the conus of
the loudspeaker in Fig. 28b is moving it is close to a velocity node, so its amplitude
is small.

The operation of standing-wave systems relies on the time delay between gas
transport and heat transport. They are in essence irreversible machines, so they have
an inherently reduced efficiency. The mathematical description of the operation of
these so-called standing-wave systems is more complicated than of traveling-wave
systems. Therefore we will start with the discussion of traveling-wave systems.

8.3.1 Traveling-Wave Systems

This subsection treats the basics of so-called traveling-wave thermoacoustic engines
in general terms. The engine, described in the paper by Backhaus and Swift [38], can
serve as a model system. Figure 29a is a schematic drawing. It consists of a resonator
tube and a loop which contains a regenerator, several heat exchangers, a compliance,
a connecting tube, a pulse tube (also called thermal buffer tube), and a section, with a
smaller diameter, called the inertance. As the energy flow in the regenerator is small
(ideally it is zero), the main energy flow in the loop is from the hot heat exchanger via
the pulse tube, the inertance, and to the main heat exchanger. This can be considered
as energy transport via a traveling wave as in Fig. 27c. Hence the name traveling-
wave systems.

One of the fascinating properties of thermoacoustic systems is that they produce
sound if the hot side is hot enough. Reference [39] describes transient effects theo-
retically. The set of first-order differential equations, which describes the dynamics
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Fig. 29 (a) Active end of the thermoacoustic engine. The symbols are explained in the text. (b) Model
system. a, b, c, d, e, and f are position indicators. The arrows define the directions of positive flow

of the individual components, is combined to a single high-order (fourth-order) dif-
ferential equation which determines the time dependences of all dynamic variables.
It is subsequently solved analytically. Unfortunately the full mathematical treatment
is rather elaborate, even for a simplified model, and beyond the scope of this paper.
Here only a description will be given of the basic principles.

The gas in the system starts to oscillate “spontaneously” with a certain angular
frequency ω if the temperature Tt of the hot heat exchanger is above an onset tem-
perature TO. If Tt < TO oscillations in the system die out with a certain decay time. If
Tt is increased the decay time becomes longer and longer. If Tt > TO the oscillations
grow. Only if Tt = TO there are steady oscillations. The amplitude is determined by
the heating power Q̇t applied to the hot heat exchanger (minus the heat loss due to
conduction to the surroundings). In principle Tt = TO, independent of Q̇t if Q̇t is
high enough. On the way to the steady state spectacular transient effects are possi-
ble, with temperature overshoots and bursts of high-intensity sound, which are not
systematically studied so far.

As thermoacoustic systems tend to oscillate at their resonance frequency they have
to be big to keep the frequency low. There are several interesting idea’s to reduce the
frequency by introducing solid [40] or liquid masses [41]. By doing so thermoacous-
tic systems merge with the more classical type of Stirling systems as the free-piston
Stirling machines discussed above.

Now we turn to the steady-state operation and apply the harmonic model to de-
rive the onset temperature and operation frequency. Our model system is depicted in
Fig. 29b and consists of an open resonator tube R and a loop containing a bypass tube
B, a regenerator r, and a pulse-tube section t. It is assumed that all tubes have the same
cross sectional area A. So there is no section in the loop with a smaller diameter (in-
ertance) nor sections with a large diameter (compliance) [42]. The temperatures are
assumed to be close to ambient temperature Ta except for inside and near the regen-
erator. Dissipative effects are neglected everywhere except in the regenerator.
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For the bypass channel B, with length LB, holds (225)
(

p̂c

Ûc

)
= T B

(
p̂d

Ûd

)
(114)

with

T B =
(

cB i cρ0
A

sB

i A
cρ0

sB cB

)
(115)

with c the sound velocity and ρ0 the gas density at Ta. In order to get compact ex-
pressions cB is used for cos(kLB) and sB for sin(kLB) (with k given by (103)) and
a similar notation for the pulse tube (label t) and the resonator tube (label R). By
replacing the index B by t or R the transfer matrices of the pulse tube T t and the
resonator tube T R are obtained respectively. For the regenerator, with assumed (real)
flow resistance Rr and zero porosity, holds (207)

(
p̂d

Ûd

)
= T r

(
p̂e

Ûe

)
(116)

with

T r =
(

1 Rr

0 Ta
Tt

)
. (117)

For the loop c, d, e, f we write
(

p̂c

Ûc

)
= T lp

(
p̂f

Ûf

)
(118)

with T lp given by

T lp = T BT rT t. (119)

Matrix multiplication with (115), a similar relations for T t, and (117) results in

T lp =
⎛

⎝
cBct − Ta

Tt
sBst + iA

cρ0
cBRrst cBRrct + i

cρ0
A

cBst + i Ta
Tt

cρ0
A

sBct

iA
cρ0

sBct − A2

c2ρ2
0
RrsBst + iA

cρ0

Ta
Tt

cBst
Ta
Tt

cBct − sBst + iA
cρ0

RrsBct

⎞

⎠ .

(120)
Furthermore

detT lp = detT B detT r detT t = Ta

Tt
. (121)

At the intersection point

p̂b = p̂c = p̂f ≡ p̂ (122)

gives, with (118),

p̂ = T11lpp̂ + T12lpÛf (123)
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Ûc = T21lpp̂ + T22lpÛf. (124)

So

p̂ = T12lp

1 − T11lp
Ûf (125)

and, with (121),

Ûc = −Ta
Tt

+ T22lp

1 − T11lp
Ûf. (126)

For the resonator tube

p̂b = cRp̂a + i
cρ0

A
sRÛa, (127)

Ûb = i
A

cρ0
sRp̂a + cRÛa. (128)

For an open resonator tube, as discussed here,

p̂a = 0. (129)

With (127), (128), and (125) this gives

Ûb = cR

icρ0sR

T12lp

1 − T11lp
Ûf. (130)

Mass conservation at the intersection gives

Ûf = Ûb + Ûc. (131)

With (126) and (130) we see that nonzero solutions can be found only if

0 = −1 + T11lp + AcR

icρ0sR
T12lp − Ta

Tt
+ T22lp. (132)

Substituting the matrix elements from (120) gives

0 = cBct − sBst + cB
cR

sR
st − 1 + Ta

Tt

(
cBct − sBst + cR

sB

sR
ct − 1

)

+ iARr

cρ0

(
cBst + sBct − cB

cR

sR
ct

)
. (133)

This relation leads to rather simple expressions for the oscillation frequency and the
onset temperature as follows: from the real part we get

Ta

Tt
= cBct − sBst + cR

sR
cBst − 1

1 − cBct + sBst − cR
sR

sBct
(134)
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and from the imaginary part

st

ct
+ sB

cB
= cR

sR
. (135)

So the oscillation frequency is given by

tan(kLR)[tan(kLt) + tan(kLB)] = 1. (136)

Substitution of (135) in (134) results in

Ta

Tt
= cB

ct
. (137)

In other words the onset temperature is given by

Tt = Ta
cos(kLt)

cos(kLB)
. (138)

Equation (138) shows how Tt depends on the position of the regenerator in the loop.
For the system of [38] with Lt = 24 cm, LB = 93 cm, and LR = 2 m (136) gives
ν = 82 Hz and (138) gives and onset temperature of 334 K. In practice the onset
temperature will be higher due to dissipative effects, which have been neglected in
this treatment.

8.3.2 Standing-Wave Systems

In this section we will derive expressions for the onset temperature and the oscilla-
tion frequency of the prime mover represented in Fig. 28a. Figure 30 represents the
thermoacoustic prime mover, divided in three subsystems. The transfer matrix T ad,
relating the pressure variations and the volume flows at the ends, a and d, is equal to
the product of the transfer matrices of the three subsystems

T ad = T abT bcT cd. (139)

Here T ab, T bc, and T cd are the transfer matrices for the back side (system ab), of the
stack (system bc), and of the resonator tube (system cd) respectively. In particular

Ûa = T21adp̂d + T22adÛd. (140)

Fig. 30 The thermoacoustic
prime mover, divided in three
subsystems: ab, bc, and cd
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The volume flow at the left and the pressure variation at the tube exit are zero, so
Ûa = 0 and p̂d = 0. Nonzero oscillations are possible only if

T22ad = 0. (141)

With (139) Equation (141) gives

0 = T21ab(T11bcT12cd + T12bcT22cd) + T22ab(T21bcT12cd + T22bcT22cd). (142)

The transfer matrices T ab and T cd are given by (225), and T bc by (200). Note that Ta

and Tb (the temperatures at position a and b) of (200) in this case have to be identified
with TH (the hot-end temperature) and Ta (ambient temperature) respectively, so that
here �τ = (Ta − TH) /Ta. For simplicity it is assumed that the density and the speed
of sound at the hot side are equal to the values at ambient temperature. Substituting
the expressions for the matrix elements in (142), using (100) and (103), results in

0 = tan(kLH)

(
AH

AR
tan(kLR) + AH

AS

kLS

1 − fν

)

+ [1 + (γ − 1)fκ ]AS

AR
kLS tan(kLR) −

(
1 + gS

TH − Ta

Ta

)
. (143)

Here LH, AH are the length and area of the hot side, LS, AS are the length and the
free-flow area of the stack, and LR, AR are the length and area of the resonator. The
equations for the real and imaginary parts of (143) result in expressions for ω and
the onset temperature. They depend only on the ratios of the areas. Equation (143) is
quite complicated but, with algebraic software, it is quite easy to evaluate. A typical
result is given in Fig. 31 where the frequency ν = ω/2π and the onset temperature
are given as functions of the relative half plate distance

r = y0

δκ

. (144)

Equation (143) also has solutions with higher harmonics at higher onset temperatures.
These are not shown in Fig. 31. The pressure amplitude is determined by the heat
input at the hot end.

Fig. 31 Onset temperature and
oscillation frequency as
functions of the relative plate
distance r . In this particular case
nitrogen is used as the working
fluid and AH = AS = AR,
LH = LS = 5 cm, LR = 20 cm,
p0 = 1 bar, Ta = 300 K
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8.3.3 The Thermoacoustic Cooler

An example of a thermoacoustic cooler is represented in Fig. 28b. The cooling results
from heat shuttling by the gas parcels moving back and forth in the stack as long as
the temperature gradient in the stack is smaller than the critical temperature gradient.
The enthalpy flow in the stack is essentially nonzero. For the cooling power Q̇L and
the power P , applied to the speaker, Equation (20) holds. The power P flows from
the speaker to the left heat exchanger, transmitted by the sound wave. So the system
operates due to a traveling wave at the left of the stack. Although these systems are
often called standing-wave systems, a traveling waves play an essential role in the
operation of the cooler. The enthalpy and entropy flows in the stack are negative
(so from the cold to the warm side). This type of cooler is studied extensively by
Tijani [37]. In particular he has shown that the COP can be improved by using gas
mixtures.

9 JT Refrigerators

So far we have treated coolers which use oscillating flows and a regenerator or a
stack. In the remaining part of this paper we will treat two important coolers which
use a steady flow of the working fluid and counterflow heat exchangers to produce
cooling. The first is the Joule-Thomson cooler.

9.1 System Description

The Joule-Thomson (JT) cooler is invented by Carl von Linde and William Hampson
so this cooler is also called the Linde-Hampson cooler. Basically it is a very simple
type of cooler which is widely applied as the (final stage) of liquefaction machines
and cryocoolers. It can easily be miniaturized, but it is also used on a very large scale
in the liquefaction of natural gas. A schematic diagram of a JT liquefier, is given
in Fig. 32. Basically it consists of a compressor, a counterflow heat exchanger, a JT
valve, and a reservoir. In this discussion we assume that the heat exchanger is ideal.
This means that it has no flow resistance and that the gas at the low-pressure side
leaves the heat exchanger with room temperature. In Fig. 32 the pressures and tem-
peratures refer to the case of a nitrogen liquefier. At the inlet of the compressor the gas
is at room temperature (300 K) and a pressure of 1 bar (point a). After compression
it is at 300 K and a pressure of 200 bar (point b). Next it enters the heat exchanger
where it is precooled. It leaves the exchanger at point c. After the JT expansion, at
point d, it has a temperature of 77.36 K and a pressure of 1 bar. The liquid fraction
is x. The liquid leaves the system at the bottom of the reservoir (point e) and the
remaining gas flows into the counterflow heat exchanger at the cold side (point f). As
said before, it leaves the heat exchanger with a temperature which is equal to room
temperature (point a).
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Fig. 32 Schematic diagram of a
JT liquefier. A fraction x of the
compressed gas is removed as
liquid. At room temperature it is
supplied as gas at 1 bar, so that
the system is in the steady state.
The symbols a–f refer to points
in the Ts-diagram of Fig. 33

9.2 Thermodynamic Analysis

Now we will calculate the liquid fraction x. For this we need the thermodynamic
properties of nitrogen which can be obtained from the Ts-diagram in Fig. 33 [43].
The calculation of x becomes surprisingly simple if we consider the system indicated
by the dotted rectangle in Fig. 32. This is an adiabatic system (no heat exchange with
its surroundings) with rigid walls and it is in the steady state. For such a system the
first law (see (1)) reduces to a conservation law for the enthalpy. This reads as follows

hb = xhe + (1 − x)ha (145)

so

x = ha − hb

ha − he
. (146)

The labels a, b, c, d, e, and f correspond with the points in Figs. 32 and 33. Clearly
there can only be liquefaction if x > 0. As ha > he this means

ha > hb. (147)

This is true for nitrogen at room temperature. For every substance there is a certain
temperature Ti, the so-called inversion temperature, where (∂h/∂p)T changes sign.
For a starting temperature below the inversion temperature liquefaction is possible
via a JT expansion.

With the enthalpy values, obtained from Fig. 33, we get with (146) x = 0.07. Now
the value of the enthalpy in point d can be calculated with hd = xhe + (1 − x)hf =
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Fig. 33 (Color online) Ts-diagram of nitrogen with isobars, isenthalps, and the lines of coexistence. The
pressures are given in bar, the specific enthalpy in J/g. The dots, labeled a–f, correspond with the points in
Fig. 32

307 J/g. Similarly sd = xse + (1−x)sf = 5.2 J/g K. The enthalpy of point d is equal to
the enthalpy in point c. Following the isenthalp of 307 J/g (which runs “parallel” with
the isenthalp of 300 J/g) we find the starting temperature of the expansion at point c.
It is about Tc = 165 K. The corresponding entropy can be read from the diagram
sc = 4.2 J/g K.

There are several irreversible processes in this cooler. The entropy per gram, pro-
duced at the JT expansion, is

siJT = sd − sc = 5.2 − 4.2 = 1.0 J/g K. (148)

The total entropy production, per gram, is

sitot = xse + (1 − x)sa − sb = 1.33 J/g K. (149)

The difference between sitot and siJT is due to the irreversible processes in the heat
exchanger. On the low-temperature side of the heat exchanger the high-pressure gas
leaves the heat exchanger with temperature Tc = 165 K while the temperature of
the gas entering the heat exchanger is Te = 77.36 K. This difference in temperatures
between the two sides is fundamental and cannot be avoided even in the case of an
ideal heat exchanger.

If the JT-cooler is used as a cooler (and not as a liquefier) irreversible processes
can be reduced by using gas mixtures instead of pure fluids. Also the high pressures,
which are 200 bar in the case of pure nitrogen, can be reduced significantly [44].
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10 Dilution Refrigerators

Dilution refrigerators are fantastic machines: starting from 4.2 K they provide con-
tinuous cooling to temperatures as low as 2 mK without moving parts in the low-
temperature region. Also from the thermodynamic and hydrodynamic point of view
they are interesting since they are based on a unique combination of a Fermi liquid
(3He) and a superfluid (4He). The 4He component is at rest, but it is superfluid so it
allows easy flow of 3He through the 4He (up to a certain critical velocity). The flow
of 3He in the dilute side is driven by a pressure gradient, balancing the viscous forces,
just like any other normal fluid. In the superfluid 4He, which is at rest, the pressure
gradient is balanced by an osmotic pressure gradient. The latter is possible thanks
to the fact that, at T = 0, a mixture of 3He and 4He separates in one phase, which
is pure 3He (the concentrated phase), and another phase (the dilute phase) which is
not pure 4He but contains only 93.4% 4He and the rest (6.6%) is 3He. Due to the
Fermi character of the 3He the concentration of 6.6% results in an osmotic pressure
(which is a property of the superfluid 4He) of Π0 = 2209 Pa even at absolute zero.
This allows a pressure drop, to a maximum of Π0, for driving the 3He through the
dilute channel.

In this section the essence of the operation of dilution refrigerators will be given
from a thermodynamical point of view. For details we refer to Refs. [45, 46] and the
references therein.

10.1 Main Components

Figure 34 is a schematic diagram of the dilution unit of a dilution refrigerator. The
working fluid is 3He which is circulated by pumps at room temperature. These pumps
(not shown in Fig. 34) bring the pressure of the 3He to a value pc which usually is a
few hundred millibar. The 3He enters the cryostat and is precooled by a helium bath

Fig. 34 (Color online)
Schematic diagram of the
low-temperature part of a
dilution refrigerator (the dilution
unit). The components are
described in the text
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at 4.2 K. Next, the 3He enters the vacuum chamber where it is further cooled down to
a temperature of 1.2–1.5 K by the so-called 1 K bath, which is a pumped 4He bath.
The pressure of the incoming 3He, pc, is larger than the 3He vapor pressure pv at
the temperature of the 1 K bath, so the 3He condenses (goes to the liquid phase).
The heat of condensation is removed by the 1 K bath. Next the 3He enters the main
impedance. This is a capillary with a very large flow resistance that ensures that pc

is large enough to guarantee condensation on the 1 K bath for the design 3He flow

rate
∗
n3. Next the 3He exchanges heat with the still (to be explained later) which is

at a temperature TS of around 500 to 700 mK. At 700 mK the 3He vapor pressure
is about 100 Pa. This is a low pressure, but yet large enough that there is a risk that
the liquid 3He starts to boil again. So, the 3He enters a secondary impedance which
has a flow resistance so that the pressure in the still heat exchanger is larger than
the vapor pressure at TS. Next the 3He enters a set of counterflow heat exchangers
flowing down where it is cooled by a cold flow of 3He in the other side which flows
up. Usually the heat exchangers in the high-temperature range of above 50 mK are
of the tube-in-tube type. In the colder regions they are more complicated since they
need a large surface area to reduce the Kapitza resistance. After leaving the coldest
heat exchanger the 3He enters the mixing chamber.

In the mixing chamber the 3He passes the so-called phase boundary. The phase
boundary separates the concentrated phase (practically 100% 3He) and the dilute
phase (6.6% 3He and 93.6% superfluid 4He) which are in equilibrium. In passing
the phase boundary the 3He is diluted. The heat, needed for the dilution, will be
calculated later on and is the cooling power of the refrigerator. The 3He leaves the
mixing chamber in the dilute phase. On its way up the cold 3He in the dilute phase
cools the warm flow of 3He in the concentrated phase flowing down through the heat
exchangers until it enters the still. On its way up the 3He concentration is gradually
reduced from 6.6% in the mixing chamber to only 0.7% in the still. Yet the vapor in
the still is practically (96%) pure 3He. A heating power Q̇S (to be calculated below) is
supplied to the still to maintain a steady flow of 3He through the system. The pressure
in the still is reduced by pumps at room temperature to pressures of about 10 Pa and
pressurized again to a pressure pc so the cycle is closed.

In the next sections the basic thermodynamics of the dilution unit will discussed.
For a more detailed treatment the reader is referred to Ref. [46].

10.2 The 1 K Bath

We can understand the function of the 1 K bath and the still surprisingly well from the
thermodynamic properties of pure 3He. Therefore we give here the Hm–T diagram
of 3He (Fig. 35) [47]. In this section we will first show why a precooling stage, such
as the 1 K bath, is necessary. In order to do this we look at what would happen if
it would not be there. Consider the system inside the dashed contour indicated as
system 1 in Fig. 34. The essence of this system is that only pure 3He passes the
system boundaries. In the steady state the first law reads

0 = Q̇ + ∗
n3(Hm1 − Hm2) (150)
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Fig. 35 (Color online) Hm–T

diagram of 3He. Lines of
constant pressure are given
together with the phase diagram.
The blue dots refer to points
discussed in the text

where the index 1 (2) applies to the entrance (exit) of the 3He flow at a molar flow rate

of
∗
n3 and Q̇ is a heating power, supplied somewhere to the system. If there would be

no 1 K bath the temperature of the incoming 3He would be 4.2 K. With a pressure of
0.5 bar the molar enthalpy can be obtained from Fig. 35 to be Hm1 (0.5 bar, 4.2 K) =
99 J/mol. If the vapor from the still leaves the system at a temperature of 0.7 K Hm2
(0 bar, 0.7 K)= 35 J/mol. With these numbers (150) gives

Q̇ = ∗
n3(35 − 99) = −64

J

mol
∗
n3. (151)

Equation (151) shows that a positive
∗
n3 is only possible if the applied heat is negative,

in other words: if there is some form of external cooling. This is provided by the 1 K
bath.

Due to the presence of the 1 K bath 3He enters system 1 as liquid at 1.2 K instead
of as gas at 4.2 K. Now Fig. 35 shows that Hm1 = 6 J/mol. Substituting this value in
(150) gives

Q̇S = ∗
n3(35 − 6) = 29

J

mol
∗
n3. (152)

This heat usually is supplied at the still, hence the label S.
Note that the heating power at the still (see (152)) is calculated without using

the mixture properties. The reason is that only pure 3He is passing the boundaries
of system 1. However, if we consider system 2 in Fig. 34 pure 3He enters at the
left, but 3He leaves the system in the dilute phase. In this case the enthalpy has to
be replaced by the so-called osmotic enthalpy. In this way it can be shown that the
temperature at the dilute side is typically half the value of the concentrated side [45].
This illustrates the high cooling power of the dilute phase which can be used e.g. for
thermal grounding of electrical wiring and for cooling radiations shields.

Figure 35 shows that the enthalpy of 3He at 4.2 K can be reduced by increasing the
pressure from 0.5 bar to 2 to 3 bar. At 4.2 K the minimum Hm ≈ 42 J/mol, which is
just above the enthalpy of the vapor at 0.7 K (35 J/mol). Hence it is possible to reach
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Fig. 36 Schematic drawing of a
dry dilution refrigerator. In the
left corner is the two-stage PTR
cooling the radiation shields and
the incoming 3He (also via the
regenerator of the PTR)

a steady state, with a nonzero 3He circulation, if the incoming pressure is a few bar
and a fairly simple heat exchanger is used between the incoming and outgoing 3He
[47, 48].

The so-called dry systems, shown in Fig. 36, use a cryocooler instead of liquid
helium and liquid nitrogen to precool the 3He and cool the radiation shields. The
precooling temperature of the 3He is around 3 K [49]. In that case the enthalpy of the
incoming 3He is already low enough and hardly any heat exchanger between vapor
and gas is needed at the warm end of the dilution unit.

10.3 The Mixing Chamber

In this Subsection the origin of the cooling power of the mixing chamber will be ex-
plained. The left part of Fig. 37 represents the mixing chamber. The dark-gray area
is the concentrated phase and the light-gray area the dilute phase. The right part rep-
resents the temperature profile. The 3He enters the mixing chamber with temperature
Ti and the temperature of the phase boundary, which separates the concentrated and
the dilute phase, is TM. On its way from the inlet (at l = Lc) to the phase boundary
(at l = 0) the temperature of the 3He is reduced from Ti to TM. In this section we will
neglect viscous heating. In the concentrated phase the total energy flow

E = Q̇c(l) + ∗
n3H3 (153)
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Fig. 37 Left: schematic
drawing of the mixing chamber.
The dark area is the
concentrated phase and the
lighter area the dilute phase.
The systems a and b are
explained in the text. The right
part represents the temperature
profile inside the mixing
chamber

is constant as can be derived from applying the first law to system a of Fig. 37. In
(153) Q̇c is the heat flow due to heat conduction and H3 is the molar enthalpy of
3He in the concentrated phase (at very low temperatures this is pure 3He, xc = 1).
In a well-designed dilution refrigerator the heat flow at the inlet is practically zero
Q̇c(Lc) ≈ 0. In that case the heat flow to the phase boundary (l = 0, system a in
Fig. 37) is given by

Q̇c(0) = ∗
n3[H3(Ti) − H3(TM)]. (154)

The total heat flow Q̇t to the phase boundary is the sum of Q̇c(0) and the
externally-applied heating power Q̇M

Q̇t = Q̇c(0) + Q̇M. (155)

In order to express Q̇t in terms of the thermodynamic 3He properties we consider
system b. Its upper border is just above the phase boundary and the lower system
border just below the phase boundary. The mixing is reversible so Q̇t can be derived
from the second law of thermodynamics, applied to system b, with Ṡi = 0

0 = Q̇t

TM
+ ∗

n3(S3 − Sd). (156)

In (156) S3(TM) is the molar entropy of pure 3He and Sd(TM, xs) is the entropy of one
mol 3He in the dilute phase, and xs is the saturated 3He concentration of the dilute
phase (which is also a function of T ).

In the concentrated and the dilute phase the 3He behaves as an ideal Fermi gas
with the molar entropy given by

SF = π2

2
R

T

TF(x)
(157)

with TF the Fermi temperature. For the concentrated phase

S3(T ) = π2

2
R

T

TF(1)
(158)
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where TF(1) is the Fermi temperature of pure 3He. For the entropy of the dilute phase
we can write

Sd(T , xs) = SF(T , xs) = π2

2
R

T

TF(xs)
(159)

where TF(xs) is the Fermi temperature of the dilute phase. So with (156)

Q̇t = ∗
n3

π2

2
RT 2

M

(
1

TF(xs)
− 1

TF(1)

)
. (160)

Equation (160) shows that the cooling power of the mixing chamber is due to the
difference in the Fermi temperatures of the dilute and the concentrated phase. Now
the Fermi temperature is given by

TF = 1

8

(
3

π

)2
h2

m∗
3kB

[
NA

Vm(x)

]2/3

(161)

with kB Boltzmann’s constant, Vm the volume (of the mixture) containing one mol
of 3He, and m∗

3 an effective mass. In the dilute phase m∗
3 = 2.46m3 and in the con-

centrated phase m∗
3 = 2.8m3, with m3 the mass of the bare 3He atom. The factors

2.46 and 2.8 are about the same, so the main difference between TF(xs) and TF(1) is
due to the difference in molar volume. At low temperatures Vm(xs) = 426 cm3 and
Vm(1) = 37 cm3, leading to TF(xs) = 393 mK and TF(1) = 1.8 K respectively. So
the cooling power of a dilution refrigerator is really based on the increase of molar
volume (dilution) of the 3He!

11 Conclusion

The combination of the first and second law of thermodynamics for open, inhomoge-
neous, systems with the concepts enthalpy flow, entropy flow, and entropy production,
provides a powerful tool for analyzing a large variety of thermal machines such as
cryocoolers and heat engines. A deep understanding of the system operation can be
obtained, usually with simple mathematics, which leads to elegant expressions with
general validity.
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Appendix A: Some Useful Formulae

A.1 General Relations

The molar entropy satisfies

dSm = Cp

T
dT −

(
∂Vm

∂T

)

p
dp. (162)

The molar enthalpy

dHm = T dSm + Vmdp (163)

and also

dHm = CpdT + Hpdp (164)

with Cp the molar heat capacity at constant pressure and

Hp =
(

∂Hm

∂p

)

T
= Vm −

(
∂Vm

∂T

)

p
T , (165)

where Vm the molar volume. We can also write

Hp = Vm (1 − T αV) (166)

with the volumetric expansion coefficient

αV = 1

Vm

(
∂Vm

∂T

)

p
. (167)

A.2 Ideal Gas Relations

In most cryocoolers helium is used as the working fluid. At temperatures above 20 K
and pressures below 30 bar helium behaves as an ideal gas. In that case

pVm = RT . (168)

In (168) R is the molar ideal gas constant.4 The relation for the entropy change be-
comes

dSm = Cp
dT

T
− R

dp

p
. (169)

Other useful expression are

dSm = CV
dT

T
+ R

dVm

Vm
(170)

4Here R = 8.314510 J/mol K is the molar ideal gas constant, not to be confused with the specific ideal gas
constant which depends on the molar mass of the gas and is expressed in J/kg K.
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and

dSm = Cp
dVm

Vm
+ CV

dp

p
, (171)

γ = Cp

CV
. (172)

An analytical expression for Sm of an ideal gas is

Sm(p,T ) = Cp ln
T

T0
− R ln

p

p0
. (173)

For the enthalpy

dHm = CpdT . (174)

As Cp is constant for an ideal gas we may write

Hm(p,T ) = CpT . (175)

Similarly we have for the molar internal energy

Um(p,T ) = CVT . (176)

Appendix B: The Volume-Flow Equation

In this appendix the so-called volume-flow equation is derived. The internal energy
of the gas in a volume V can be expressed as

U =
∫

V

Um

Vm
dV. (177)

If the pressure is homogeneous and the gas is ideal then Um = CVT and Vm = RT/p

so, (177) gives

U = CV

R
pV. (178)

Note that (178) holds even though the temperature in V is not homogeneous. Since

Hm = CpT the enthalpy flows into the control volume are given by
∗
Hk = ∗

nkCpTk .

With
∗
nk = p

∗
V k/RTk we get

∗
Hk = Cp

R
p

∗
V k. (179)

The system is adiabatic so
∑

Q̇k = 0 and also P = 0, so (1), with (178) and (179),
reads

CV

R
V

dp

dt
+ CV

R
p

dV

dt
= Cp

R
p

∑ ∗
V k − p

∑ dVk

dt
. (180)
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With
dV

dt
=

∑ dVk

dt
(181)

and CV + R = Cp and γ = Cp/CV we get our final result

V

γp

dp

dt
=

∑ ∗
V k −

∑ dVk

dt
. (182)

Appendix C: The Harmonic Model

In many thermal machines the variation of the system parameters, such as pressure,
temperature, and flow, is periodic with angular frequency ω. For small amplitudes,
the variations can be well approximated in the linear regime. In these cases the vari-
ations can be described in terms of sinωt and cosωt which is called the harmonic
approximation. The harmonic approximation treats systems in the steady state as the
amplitudes are considered time independent. Before discussing the harmonic model
in more detail we have to pay attention to some delicate aspects of temperature vari-
ations and the volume flow (or velocity).

Consider the temperature T of the gas, just left of the heat exchanger X3 of the

PTR in Fig. 16. As long as gas flows to the left (
∗
n < 0) the temperature at this point is

constant and equal to Ta. However, if the gas flows to the right, back into X3 (
∗
n > 0),

the temperature is higher (see Fig. 17). The T –t dependence is given by the curve,
labeled Treal in Fig. 38. If the molar flow rate at the hot end is given by

∗
n = nA cosωt (183)

then the time dependence of the temperature is of the form

T = Ta + TA(cosωt − | cosωt |). (184)

This is clearly not harmonic. In the harmonic model a temperature–time dependence
is used which is represented by the dotted line, labeled Tharm in Fig. 38, and is of the
form

T = Ta + TA cosωt. (185)

Yet, using (185) instead of (184) gives the correct value for the enthalpy flow in the
pulse tube. The reason is that the average enthalpy flow is given by

∗
H = Cp

∗
nδT (186)

and that | cosx| cosx = 0, so (184) and (185), with (183), give the same result. So the
harmonic expression for the temperature (185) may be used even though the actual
T –t dependence deviates from the harmonic dependence.

In the steady state the average velocity of all gas particles is zero: i.e. after one
cycle they are at the same position as before. However, the volume flow through a



J Low Temp Phys (2011) 164:179–236 231

Fig. 38 The full line, labeled
Treal, represents the actual
temperature-time dependence of
the gas in the pulse tube close to
the hot heat exchanger. The
dotted curve, labeled Tharm,
gives the temperature
dependence as used in the
harmonic model. The curve,

labeled
∗
n, represents the flow

fixed surface, or velocity of the gas particles passing a fixed surface, contains a DC
contribution even if the mass (molar) flow through that surface is zero. Starting from
∗
n = ∗

V /Vm = 0 with Vm = Vm0 + δVm gives, for small δVm,

∗
V =

∗
V δVm

Vm0
. (187)

Usually
∗
V and δVm both are of first order (e.g. in the pressure variation), so the

average volume flow is of second-order. This means that it plays an important role
e.g. in the enthalpy flow since this is also of second-order. With the volume flow

given by
∗
V = vA, with v the velocity and A the surface area, we see that the average

velocity is also nonzero in second order.
Instead of using sinωt and cosωt it is advantages to use the complex formalism

since this reduces the number of variables and equations by a factor of two. In the
complex formalism of e.g. a pressure variation δp the complex amplitude p̂ is intro-
duced defined by

δp = Re(p̂eiωt ). (188)

The time average of second-order quantities, such as enthalpy flow,

∗
H = ∗

nδHm (189)

become

∗
H = ∗

nδHm = Re(n̂eiωt )Re(Ĥmeiωt ) (190)

or

∗
H = 1

2
(Re n̂Re Ĥm + Im n̂Im Ĥm) = 1

2
Re (n̂Ĥ ∗

m) (191)

where Ĥ ∗
m is the complex conjugate of Ĥm.
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The complex formalism allows the use of transfer functions which relate the pres-
sure variation p̂a and volume flow Ûa at position a with p̂b and Ûb at position b of a
certain control volume via the linear relations

p̂a = T11p̂b + T12Ûb, (192)

Ûa = T21p̂b + T22Ûb. (193)

The transfer relations (192) and (193) can also be written in terms of the transfer
matrix

T =
(

T11 T12
T21 T22

)
(194)

so that
(

p̂

Û

)

a
= T

(
p̂

Û

)

b
. (195)

The transfer-matrix elements have different dimensions. The T11 and T22 are dimen-
sionless, while T12 is in Pa s/m3 and T21 in m3/Pa s.5

Components is series can be expressed in products of transfer matrices. A use-
ful property is that the determinant of the product matrix is equal to the product of
the determinants of each of the individual matrices. Below expressions will be given
for some important components of thermal machines. The derivations are beyond the
scope of this paper. The expressions can be very complicated, containing unfamil-
iar functions like Bessel functions and tanh-functions of complex parameters. This
makes it hard to grasp quickly the essence of what is going on. But we start with a
simple example.

For an adiabatic volume V, in which gas flows in at position a and out at position b
(Fig. 4a), we get from (33) that the transfer matrix is given by

T V =
(

1 0

iω V
γp0

1

)
(196)

and

detT V = 1. (197)

The transfer matrix for stacks can be derived from expressions in Ref. [35]. The
relationships tend to be very complicated. Here we give the relations for an ideal gas
as the working fluid, and stack plates with very large heat capacity. The differential
equations for the pressure and volume flow variations are as follows

dp̂

dx
= − iωρ0

1 − fν

1

AS
Û , (198)

5In some important cases simpler relations between the dynamic properties at the two ends of the system
can be obtained if not the pressure and volume flow are related, but the pressure and molar flux (or mass
flux).
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dÛ

dx
= −[1 + (γ − 1)fκ ] iωAS

γp0
p̂ + (fκ − fν)

(1 − fν)(1 − Pr)T0

dT0

dx
Û . (199)

For a short stack of length LS and small temperature difference these correspond with
a transfer matrix

T S =
(

1 iωρ0
1−fν

LS
AS

[1 + (γ − 1)fκ ]iω VS
γp0

1 − gS
Tb−Ta

Tb

)
. (200)

Here AS is the free-flow surface area of the stack and

VS = LSAS. (201)

The function gS is defined by

gS = fκ − fν

(1 − fν)(1 − Pr)
, (202)

where fκ and fν are the so-called Rott functions given by

fκ,ν = tanh zκ,ν

zκ,ν

with zκ,ν = (1 + i)
y0

δκ,ν

(203)

with 2y0 the plate distance. The functions f (z) are even functions of z so they are
functions of

z2 = i
2y2

0

δ2
. (204)

Due to (25) and (26) the Rott functions are not functions of
√

ω but of ω. For
y0/δ 	 1 Equation (200) reduces to

T S =
⎛

⎝
1 3 η

y2
0

LS
AS

iωVS
p0

Ta
Tb

⎞

⎠ . (205)

This is the same as for a slit with Poiseuille flow, isothermal compression, and zero
porosity. For y0/δ � 1 (200) becomes

T S =
(

1 iωρ0
LS
AS

iω VS
γp0

1

)
. (206)

This is the same as from a sound duct for L → 0 (see (225)).
Equation (200) holds for small temperature differences. For large temperature dif-

ferences, assuming a linear temperature profile, and taking effective values for the
Rott functions, (198) and (199) can be integrated. This results in expressions con-
taining Bessel functions, similar to the expressions for the regenerator, which we will
describe now.
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For a very simple regenerator with flow conductance Rr and zero porosity the
transfer matrix is

T r =
(

1 Rr

0 Ta/Tb

)
(207)

and

detT r = Ta

Tb
. (208)

For a regenerator with nonzero flow resistance but with constant specific flow
resistance zr, defined by

dp

dl
= −ηzrv, (209)

with the viscosity η given by

η = ηa

√
T

Ta
(210)

(with ηa the viscosity at the temperature Ta), nonzero porosity, an ideal gas, and a
linear temperature profile with slope dT0/dx, the derivation is given in Ref. [25]. The
result is

T r =
(

T11 T12

T21 T22

)

r

(211)

with elements

T11r = F2(ub)F3(ua) + F1(ub)F4(ua), (212)

T12r = [−F4(ub)F3(ua) + F3(ub)F4(ua)] 1

krTb
, (213)

T21r = [−F1(ua)F2(ub) + F1(ub)F2(ua)]krTa, (214)

T22r = [F4(ub)F1(ua) + F3(ub)F2(ua)]Ta

Tb
(215)

the parameter kr given by

kr = iωgAr

p0dT0/dx
(216)

and the functions F1 to F4 defined as

F1(u) = BesselI(0, u), (217)

F2(u) = BesselK(0, u), (218)

F3(u) = uBesselI(1, u), (219)

F4(u) = uBesselK(1, u). (220)
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BesselI and BesselK are the Bessel functions of the first and second kind respectively.
The four functions (217)–(220) satisfy

F1F4 + F2F3 = 1. (221)

By substitution of (212)–(215) it can be found that, due to (221), also in this case
holds

detT r = Ta

Tb
. (222)

The transfer matrix elements are functions of u2
a and u2

b with

u2
a = 16

25

iωgη0zr

(dT0/dx)2p0
T

5/2
a (223)

and

u2
b = τ 5/2u2

a (224)

with

τ = Tb

Ta
.

The transfer matrix for a traveling-wave duct with length L and cross sectional
area A with a monochromatic plane wave with wave number k can be derived from
(104) and (105). The result is

T D =
(

cos(kL) i cρ0
A

sin(kL)

i A
cρ0

sin(kL) cos(kL)

)
. (225)

Note that

detT D = 1. (226)

For a short (kL 	 1) tube with volume V = AL Equation (225) reduces to (196).

References

1. R. Radebaugh, J. Phys., Condens. Matter 21, 164219 (2009)
2. S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1969)
3. T. Kuriyama, R. Hakamada, H. Nakagome, Y. Tokai, M. Sahashi, R. Li, O. Yoshida, K. Matsumoto,

T. Hashimoto, Adv. Cryog. Eng. 35B, 1261 (1990)
4. Volumetric Heat Capacities for Regenerator Materials. NIST, Physical and Chemical Properties Divi-

sion
5. A.T.A.M. de Waele, W. Liang, Cryogenics 48, 417 (2008)
6. H.O. McMahon, W.E. Gifford, Advances in Cryogenic. Engineering 5, 354 (1960)
7. http://www.cryomech.com/
8. J.H. So, G.W. Swift, S. Backhaus, J. Acoust. Soc. Am. 120, 1898 (2006)
9. W.E. Gifford, R.C. Longsworth, Adv. Cryog. Eng. 11, 171 (1966)

10. W.E. Gifford, R.C. Longsworth, Trans. ASME 264 (1964)
11. E.I. Mikulin, A.A. Tarasov, M.P. Shkrebyonock, Adv. Cryog. Eng. 31, 629 (1984)

http://www.cryomech.com/


236 J Low Temp Phys (2011) 164:179–236

12. P. Kittel, Adv. Cryog. Eng. 43, 1927 (1998)
13. J. Zhu, P. Wu, Z. Chen, Cryogenics 30, 514 (1990)
14. S.W. Zhu, S.L. Zhou, N. Yoshimura, Y. Matsubara, Cryocoolers 9, 269 (1997)
15. Y. Matsubara, Proc. 17th Int. Cryogenic Eng. Conf., Inst. Phys. (1998), p. 11
16. S.W. Zhu, Y. Kakimi, K. Fujioka, Y. Matsubara, Cryogenics 37, 461 (1997)
17. Z.H. Gan, W.Q. Dong, L.M. Qiu, X.B. Zhang, H. Sun, Y.L. He, R. Radebaugh, Cryogenics 49, 198

(2009)
18. Y. Matsubara, J.L. Gao, Cryogenics 34, 259 (1994)
19. M.Y. Xu, A.T.A.M. de Waele, Y.L. Ju, Cryogenics 39, 865 (1999)
20. N. Jiang, U. Lindemann, F. Giebeler, G. Thummes, Cryogenics 44, 809 (2004)
21. I.A. Tanaeva, U. Lindemann, N. Jiang, A.T.A.M. de Waele, G. Thummes, Adv. Cryog. Eng. 49B,

1906 (2004)
22. D. Gedeon, Sage: object orientated software for Stirling-type machine design, in Proc. of the 29th In-

tersociety Energy Conversion and Engineering Conference, vol. 4 (American Institute for Aeronautics
and Astronautics, Monterey, 1994), pp. 1902–1907

23. J. Gary, A. O’Gallagher, R. Radebaugh, E. Marquardt, REGEN3.2 Regenerator Model: User Manual.
NIST Technical Note (2001)

24. G.W. Swift, Thermoacoustics: A unifying perspective for some engines and refrigerators. The Acous-
tical Society of America. ISBN 0-7354-0065-2 (2002)

25. A.T.A.M. de Waele, H.W.G. Hooijkaas, P.P. Steijaert, A.A.J. Benschop, Cryogenics 38, 995 (1997)
26. A.T.A.M. de Waele, P.P. Steijaert, J. Gijzen, Cryogenics 37, 313 (1997)
27. V.D. Arp, R.D. McCarty, Thermophysical properties of helium-4 from 0.8 to 1500 K with pressures

to 1500 MPa. NBS Technical Note 1334 (1989)
28. Y. Huang, C. Guobang Chen, V. Arp, J. Chem. Phys. 125, 054505 (2006)
29. R.H. Sherman, F.J. Edeskuty, Ann. Phys. 9, 522 (1960)
30. M.E. Will, A.T.A.M. de Waele, J. Appl. Phys. 98, 044911 (2005)
31. G. Thummes, C. Wang, C. Heiden, Cryogenics 38, 337 (1998)
32. A. Ravex, T. Trollier, J. Tanchon, T. Prouvé, Cryocoolers 14, 157 (2006)
33. R. Radebaugh, E.D. Marquardt, J. Gary, A. O’Gallagher, Cryocoolers 11, 409 (2001)
34. N. Rott, Adv. Appl. Mech. 20, 135 (1980)
35. G.W. Swift, J. Acoust. Soc. Am. 84, 1145 (1988)
36. S.L. Garrett, Resource letter: TA-1. Am. J. Phys. 72, 11 (2004)
37. M.E.H. Tijani, Loudspeaker-driven thermo-acoustic refrigeration. Ph.D. dissertation, Eindhoven Uni-

versity of Technology (2001)
38. S. Backhaus, G.W. Swift, J. Acoust. Soc. Am. 107, 3148 (2000)
39. A.T.A.M. de Waele, J. Sound Vib. 325, 974 (2009)
40. M. Poese, R. Smith, S. Garrett, R. van Gerwen, P. Gosselin, International Institute of Refrigeration,

6th Gustav Lorentzen Conference–Natural Working Fluids, Glasgow UK (2004)
41. K. Tang, T. Lei, T. Jin, G.G. Lin, Z.Z. Xu, Appl. Phys. Lett. 94, 254101 (2009)
42. Y. Li, PhD thesis, Eindhoven University of Technology (2011)
43. NBS Tech Note 648 (1973)
44. G. Venkatarathnam, in Cryogenic Mixed Refrigerant Processes, ed. by K.D. Timmerhaus C. Rizzuto.

Int. Cryogenic Monograph Series (Springer, Berlin, 2008)
45. O.V. Lounasmaa, Experimental Principles and Methods Below 1 K (Academic Press, London, 1974)
46. F. Pobell, Matter and Methods at Low Temperatures (Springer, Berlin, 2007)
47. J. Kraus, Cryogenics 17, 173 (1977)
48. A.Th.A.M. de Waele, A.B. Reekers, H.M. Gijsman, Cryogenics 17, 175 (1977)
49. K. Uhlig, Cryogenics 48, 138 (2008)


	Basic Operation of Cryocoolers and Related Thermal Machines
	Abstract
	Introduction
	The First and Second Law of Thermodynamics
	First Law
	Second Law
	Consequences of the First and Second Law
	Heat Engines
	Refrigerators
	The Volume-Flow Equation

	Entropy Production Rates
	Heat Conduction
	Throttling


	Ideal Regenerators and Heat Exchangers
	Ideal Regenerator
	Ideal Heat Exchanger

	Stirling Refrigerators
	GM-Refrigerators
	Pulse-Tube Refrigerators
	Components of PTR's
	Cooling Principle
	Thermodynamics of PTR's
	The Various Types of PTR

	Real Regenerators
	Temperature Variations
	Nonideal-Gas Effects in PTR's
	Introduction
	Cooling Power
	Temperature Profile in the Regenerator


	Thermoacoustics
	Sound
	Energy Transport by Sound
	Thermoacoustic Systems
	Traveling-Wave Systems
	Standing-Wave Systems
	The Thermoacoustic Cooler


	JT Refrigerators
	System Description
	Thermodynamic Analysis

	Dilution Refrigerators
	Main Components
	The 1 K Bath
	The Mixing Chamber

	Conclusion
	Acknowledgements
	Open Access
	Appendix A: Some Useful Formulae
	General Relations
	Ideal Gas Relations

	Appendix B: The Volume-Flow Equation
	Appendix C: The Harmonic Model
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


