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Abstract The global attraction to stationary states is established for solutions to 3D wave
equationswith concentrated nonlinearities: each finite energy solution converges as t → ±∞
to stationary states. The attraction is caused by nonlinear energy radiation.
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1 Introduction

The paper concerns a nonlinear interaction of the real wave field with a point oscillator.The
system is governed by the following equations{

ψ̈(x, t) = �ψ(x, t) + ζ(t)δ(x)
lim
x→0

(ψ(x, t) − ζ(t)G(x)) = F(ζ(t))

∣∣∣∣∣ x ∈ R
3, t ∈ R, (1.1)

where G is the Green’s function of operator −� in R
3, i.e.

G(x) = 1

4π |x | ,
All derivatives here and below are understood in the sense of distributions. The nonlinearity
admits a potential

F(ζ ) = U ′(ζ ), ζ ∈ R, U ∈ C2(R). (1.2)

We assume that
U (ζ ) → ∞, ζ → ±∞. (1.3)
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Furthermore, we assume that the set Q = {q ∈ R : F(q) = 0} is nonempty. Then the system
(1.1) admits stationary solutions qG(x), where q ∈ Q. We suppose that the set Q satisfies
the following condition

[a, b] �⊂ Q for any a < b. (1.4)

Let H̊1(R3) be the completion of the space C∞
0 (R3) in the norm ‖∇ψ(x)‖L2(R3). Equiva-

lently, using Sobolev’s embedding theorem, H̊1(R3) = { f ∈ L6(R3) : |∇ f | ∈ L2(R3)},
and

‖ f ‖L6(R3) ≤ C‖∇ f ‖L2(R3). (1.5)

Denote

H̊2(R3):= { f ∈ H̊1(R3), � f ∈ L2(R3)}, t ∈ R.

We consider Cauchy problem for system (1.1) with initial data�(x, 0) = (ψ(x, 0), ψ̇(x, 0))
which can be represented as the sum of regular component from H̊2(R3) ⊕ H̊1(R3) and
singular component proportional to G(x) (see Definition 2.1). Our main goal is the global
attraction of the solution �(x, t) = (ψ(x, t), ψ̇(x, t)) to stationary states:

�(x, t) → (q±G(x), 0), t → ±∞, q± ∈ Q,

where the asymptotics hold in local L2 ⊕ L2-seminorms.
Similar global attraction was established for the first time (i) in [6–8] for 1D wave and

Klein–Gordon equations coupled to nonlinear oscillators, (ii) in [9,10] for nD Klein-Gordon
and Dirac equations with mean field interaction, and (iii) in [5] for discrete in space and time
nD Klein–Gordon equation equations interacting with a nonlinear oscillator.

In the context of the Schrödinger and wave equations the point interaction of type (1.1)
was introduced in [1,2,4,11,12], where the well-posedness of the Cauchy problem and the
blow up solutions were studied. The orbital and asymptotic stability of soliton solutions for
the Schrödinger equation with the point interaction has been established in [3]. The global
attraction for 3D equations with the point interaction was not studied up to now. In the present
paper we prove for the first time the global attraction in the case of 3D wave equation.

Let us comment on our approach. First, similarly to [8–10], we represent the solution
as the sum of dispersive and singular components. The dispersive component is a solution
of the free wave equation with the same initial data �(x, 0). The singular component is a
solution of a coupled system of wave equation with zero initial data and a point source, and
of a nonlinear ODE.

We prove the long-time decay of the dispersive component in local H2 ⊕ H1-seminorms.
To establish the decay for regular part of the dispersive component, corresponding to regular
initial data from H2⊕H1, we apply the strongHuygens principle and the energy conservation
for the free wave equation. For the remaining singular part we apply the strong Huygens
principle. The dispersive decay is caused by the energy radiation to infinity.

Finally, we study the nonlinear ODE with a source. We prove that the source decays and
then the attractor of the ODE coincides with the set of zeros of the nonlinear function F , i.e.
with the set Q. This allows us to prove the convergence of the singular component of the
solution to one of the stationary solution in local L2 ⊕ L2-seminorms.
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2 Main Results

Model

We fix a nonlinear function F : R → R and define the domain

DF =
{
ψ ∈ L2(R3) : ψ(x)

= ψreg(x) + ζG(x), ψreg ∈ H̊2(R3), ζ ∈ R, lim
x→0

ψreg(x) = F(ζ )
}

(2.1)

which generally is not a linear space. The limit in (2.1) is well defined since H̊2(R3) ⊂
H2
loc(R

3) ⊂ C(R3) by the Sobolev embedding theorem.
Let HF be a nonlinear operator on the domain DF defined by

HFψ = �ψreg, ψ ∈ DF . (2.2)

The system (1.1) for ψ(t) ∈ DF reads

ψ̈(x, t) = HFψ(x, t), x ∈ R
3, t ∈ R. (2.3)

Let us introduce the phase space for Eq. (2.3). Denote the space

Ḋ = {π ∈ L2(R3) : π(x) = πreg(x) + ηG(x), πreg ∈ H̊1(R3), η ∈ R}.
Obviously, DF ⊂ Ḋ.

Definition 2.1 DF is the Hilbert space of the states � = (ψ(x), π(x)) ∈ DF ⊕ Ḋ equipped
with the finite norm

‖�‖2D : = ‖∇ψreg‖2L2(R3)
+ ‖�ψreg‖2L2(R3)

+ ‖∇πreg‖2L2(R3)
+ |ζ |2 + |η|2.

Well-Posedness

Theorem 2.2 Let conditions (1.2) and (1.3) hold. Then

(i) For every initial data �(0) = (ψ(0), ψ̇(0)) ∈ DF the Eq. (2.3) has a unique strong
solution ψ(t) such that

(ii) The energy is conserved:

HF (�(t)): = 1

2

(
‖ψ̇(t)‖2L2(R3)

+ ‖∇ψreg(t)‖2L2(R3)

)
+U (ζ(t)) = const, t ∈ R.

(iii) The following a priori bound holds

|ζ(t)| ≤ C(�(0)), t ∈ R. (2.4)

This result is proved in [12, Theorem 3.1]. For the convenience of readers, we sketch main
steps of the proof in Appendix in the case t ≥ 0 clarifying some details of [12]. As the result
the solution ψ(x, t) to (2.3) with initial data ψ(0) = ψ0 ∈ DF , ψ̇(0) = π0 ∈ Ḋ can be
represented as the sum

ψ(x, t): = ψ f (x, t) + ψS(x, t), t ≥ 0, (2.5)

where the dispersive component ψ f (x, t) is a unique solution of the Cauchy problem for the
free wave equation

ψ̈ f (x, t) = �ψ f (x, t), ψ f (x, 0) = ψ0(x), ψ̇ f (x, 0) = π0(x), (2.6)
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and the singular componentψS(x, t) is a unique solution of the Cauchy problem for the wave
equation with a point source

ψ̈S(x, t) = �ψS(x, t) + ζ(t)δ(x), ψS(x, 0) = 0, ψ̇S(x, 0) = 0. (2.7)

Here ζ(t) ∈ C1
b ([0,∞)) is a unique solution to the Cauchy problem for the following first-

order nonlinear ODE
1

4π
ζ̇ (t) + F(ζ(t)) = λ(t), ζ(0) = ζ0, (2.8)

where
λ(t): = lim

x→0
ψ f (x, t), t > 0, (2.9)

Next lemma implies that limit (2.9) is well defined, and there exists λ(0+) = lim
t→0+ λ(t).

Lemma 2.3 Let (ψ0, π0) ∈ DF . Then

(i) There exists a unique solution ψ f ∈ C([0;∞), L2
loc) to (2.6).

(ii) The limit in (2.9) exists and is continuous in t ∈ [0,∞).
(iii) λ̇ ∈ L2

loc([0,∞)).

Proof (i) We split ψ f (x, t) as

ψ f (x, t) = ψ f,reg(x, t) + g(x, t),

where ψ f,reg and g are the solutions to the free wave equation with initial data
(ψ0,reg, π0,reg) ∈ H̊2(R3) ⊕ H̊1(R3) and (ζ0G, ζ̇0G), respectively. By the energy con-
servation ψ f,reg ∈ C([0,∞), H̊2(R3)). Now we obtain an explicit formula for g(x, t). Note
that h(x, t) = g(x, t) − ξ(t)G(x), where ξ(t) = ζ0 + t ζ̇0, satisfies

ḧ(x, t) = �h(x, t) − ξ(t)δ(x) (2.10)

with zero initial data. The unique solution to (2.10) is the spherical wave

h(x, t) = −θ(t − |x |)
4π |x | ξ(t − |x |), t ≥ 0, (2.11)

where θ is the Heaviside function. This is well-known formula [14, Section 175] for the
retarded potential of the point particle. Hence,

g(x, t) = h(x, t) + ξ(t)G(x) = −θ(t − |x |)(ζ0 + (t − |x |)ζ̇0)
4π |x |

+ζ0 + t ζ̇0
4π |x | ∈ C([0,∞), L2

loc(R
3)).

(ii) We have
lim
x→0

g(x, t) = ζ̇0/(4π), t > 0. (2.12)

Moreover, for any t ≥ 0 the lim
x→0

ψ f,reg(x, t) exists because H̊2(R3) ⊂ C(R3).

(iii) Due to (2.12) it remains to show that ψ̇ f,reg(0, t) ∈ L2
loc([0,∞)). This follows imme-

diately from [12, Lemma 3.4]. �
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Stationary Solutions and the Main Theorem

The stationary solutions of Eq. (2.3) are solutions of the form

ψq(x) = qG(x) ∈ L2
loc(R

3), q ∈ R. (2.13)

Lemma 2.4 (Existence of stationary solutions). Function (2.13) is a stationary soliton to
(2.3) if and only if

F(q) = 0. (2.14)

Proof Evidently,ψq(x) admits the splittingψq(x) = ψreg(x, t)+ ζ(t)G(x), ψreg(x, t) ≡ 0
and ζ(t) ≡ q . Hence, the second equation of (1.1) is equivalent to (2.14). �
Our main result is the following theorem.

Theorem 2.5 (Main Theorem) Let assumptions (1.2), (1.3) and (1.4) hold and let ψ(x, t)
be a solution to eq. (2.3) with initial data �(0) = (ψ(0), ψ̇(0)) ∈ DF . Then

(ψ(t), ψ̇(t)) → (ψq± , 0), t → ±∞, q± ∈ Q,

where the convergence hold in L2
loc(R

3) ⊕ L2
loc(R

3).

It suffices to prove Theorem 2.5 for t → +∞.

3 Dispersion Component

We will only consider the solution ψ(x, t) restricted to t ≥ 0. In this section we extract
regular and singular parts from the dispersion component ψ f (x, t) and establish their local
decay. First, we represent the initial data (ψ(0), ψ̇(0)) = (ψ0, π0) ∈ DF as

(ψ0, π0) = (ψ0,reg, π0,reg) + (ζ0G, ζ̇0G) = (ϕ0, η0) + (ζ0χG, ζ̇0χG),

where a cut-of function χ ∈ C∞
0 (R3) satisfies

χ(x) =
{
1, |x | ≤ 1
0, |x | ≥ 2

(3.1)

Let us show that
(ϕ0, η0) ∈ H2(R3) ⊕ H1(R3). (3.2)

Indeed,

(ϕ0, η0) = (ψ0 − ζ0χG, π0 − ζ̇0χG) ∈ L2(R3) ⊕ L2(R3),

On the other hand,

(ϕ0, η0) = (ψ0,reg + ζ0(1 − χ)G, π0,reg + ζ̇0(1 − χ)G) ∈ H̊2(R3) ⊕ H̊1(R3).

Now we split the dispersion component ψ f (x, t) as

ψ f (x, t) = ϕ(x, t) + ψG(x, t), t ≥ 0, (3.3)

where ϕ and ψG are defined as solutions to the following Cauchy problems:

ϕ̈(x, t) = �ϕ(x, t), (ϕ, ϕ̇)|t=0 = (ϕ0, η0), (3.4)

ψ̈G(x, t) = �ψG(x, t), (ψG , ψ̇G)|t=0 = (ζ0χG, ζ̇0χG), (3.5)
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and study the decay properties of ψG and ϕ.

Lemma 3.1 For the solution ψG(x, t) to (3.5) the strong Huygens principle holds:

ψG(x, t) = 0 for t ≥ |x | + 2. (3.6)

Proof The solution ϕG(x, t) to the free wave equation with initial data (0, χG) ∈ H1(R3)⊕
L2(R3) satisfies the strong Huygens principle due to [13, Theorem XI.87]. Further,

ψG(x, t) = ζ0ϕ̇G(x, t) + ζ̇0ϕG(x, t).

Then (3.6) follows. �
The following lemma states a local decay of solutions to the free wave equation with

regular initial data from H2(R3) ⊕ H1(R3).

Lemma 3.2 Let ϕ(t) be a solution to (3.4) with initial data φ0 = (ϕ0, η0) ∈ H2(R3) ⊕
H1(R3). Then

‖(ϕ(t), ϕ̇(t))‖H2(BR)⊕H1(BR) → 0, t → ∞, ∀R > 0, (3.7)

where BR is the ball of radius R.

Proof For any r ≥ 1 denote χr = χ(x/r), where χ(x) is a cut-off function defined in (3.1).
Let ur (t) and vr (t) be the solutions to the free wave equations with the initial data χrφ0 and
(1 − χr )φ0, respectively, so that u(t) = ur (t) + vr (t). By the strong Huygens principle

ur (x, t) = 0 for t ≥ |x | + 2r.

To conclude (3.7), it remains to note that

‖(vr (t), v̇r (t))‖H2(BR)⊕H1(BR) ≤ C(R)‖(vr (t), v̇r (t))‖H̊2(R3)⊕H1(R3)

= C(R)‖(1 − χr )φ0‖H̊2(R3)⊕H1(R3)

≤ C(R)‖(1 − χr )φ0‖H2(R3)⊕H1(R3) (3.8)

due to the energy conservation for the free wave equation. We also use the embedding
H̊1(R3) ⊂ L6(R3). The right-hand side of (3.8) could be made arbitrarily small if r ≥ 1 is
sufficiently large. �

Finally, (3.3) , (3.6) , (3.2) and Lemma 3.2 imply∥∥(ψ f (t), ψ̇ f (t))
∥∥
H2(BR)⊕H1(BR)

→ 0, t → ∞, ∀R > 0. (3.9)

4 Singular Component

Due to (3.9) to prove Theorem 2.5 it suffices to deduce the convergence to stationary states
for the singular component ψS(x, t) of the solution.

Proposition 4.1 Let assumptions of Theorem 2.5 hold, and let ψS(t) be a solution to (2.7).
Then

(ψS(t), ψ̇S(t)) → (ψq± , 0), t → ∞,

where the convergence holds in L2
loc(R

3) ⊕ L2
loc(R

3).
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Proof The unique solution to (2.7) is the spherical wave

ψS(x, t) = θ(t − |x |)
4π |x | ζ(t − |x |), t ≥ 0, (4.1)

cf. (2.10–2.11). Then a priori bound (2.4) and Eq. (2.8) imply that

(ψS(t), ψ̇S(t)) ∈ L2(BR) ⊕ L2(BR), 0 ≤ R < t.

First, we obtain a convergence of ζ(t). �
Lemma 4.2 There exists the limit

ζ(t) → q+, t → ∞, (4.2)

where q+ ∈ Q.

Proof From (2.4) it follows that ζ(t) has the upper and lower limits:

limt→∞ζ(t) = a, limt→∞ζ(t) = b.

Suppose that a < b. Then the trajectory ζ(t) oscillates between a and b. Assumption (1.4)
implies that F(ζ0) �= 0 for some ζ0 ∈ (a, b). For the concreteness, let us assume that
F(ζ0) > 0. The convergence (3.9) implies that

λ(t) = ψ f (0, t) → 0, t → ∞. (4.3)

Hence, for sufficiently large T we have

−F(ζ0) + λ(t) < 0, t ≥ T .

Then for t ≥ T the transition of the trajectory from left to right through the point ζ0 is
impossible by (2.8). Therefore, a = b = q+. Finally F(q+) = 0 by (2.8). �

Further,
θ(t − |x |) → 1, t → ∞ (4.4)

uniformly in |x | ≤ R. Then (4.1) and (4.2) imply that

ψS(t) → q+G, t → ∞,

where the convergence holds in L2
loc(R

3). It remains to deduce the convergence of ψ̇S(t).
We have

ψ̇S(x, t) = θ(t − |x |)
4π |x | ζ̇ (t − |x |), t > |x |.

From (4.2), (2.8) and (4.3) it follows that ζ̇ (t) → 0 as t → ∞. Then

ψ̇S(t) → 0, t → ∞
in L2

loc(R
3) by (4.4). This completes the proof of Proposition 4.1 and Theorem 2.5. �
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Appendix

Here we sketch main steps of the proof [12, Theorem 3.1]. First we adjust the nonlinearity
F so that it becomes Lipschitz-continuous. Define

�(�0) = sup{|ζ | : ζ ∈ R, U (ζ ) ≤ HF (�0)}, (5.1)

where �0 = �(0) ∈ DF is the initial data from Theorem 2.2. Then we may pick a modified
potential function Ũ (ζ ) ∈ C2(R), so that{

Ũ (ζ ) = U (ζ ), |ζ | ≤ �(�0)

Ũ (ζ ) > HF (�0), |ζ | > �(�0),
(5.2)

and the function F̃(ζ ) = Ũ ′(ζ ) is Lipschitz continuous:

|F̃(ζ1) − F̃(ζ2)| ≤ C |ζ1 − ζ2|, ζ1, ζ2 ∈ R. (5.3)

We consider the Cauchy problem for (2.3)) with the modified nonlinearity F̃ . According
to Lemma 2.3 there exist the unique solution ψ f (x, t) ∈ C([0,∞), L2

loc(R
3)) to (2.6) and

λ(t) = lim
x→0

ψ f (x, t) ∈ C([0,∞)). The following lemma follows by the contractionmapping

principle.

Lemma 5.1 Let conditions (5.2–5.3) be satisfies. Then there exists τ > 0 such that the
Cauchy problem

1

4π
ζ̇ (t) + F̃(ζ(t)) = λ(t), ζ(0) = ζ0 (5.4)

has a unique solution ζ ∈ C1([0, τ ]).
Denote

ψS(t, x): =θ(t − |x |)
4π |x | ζ(t − |x |), t ∈ [0, τ ],

with ζ from Lemma 5.1. Now we establish the local well-posedness.

Proposition 5.2 Let the conditions (5.2)–(5.3) hold. Then the functionψ(x, t) := ψ f (x, t)+
ψS(x, t) is a unique strong solution to the system⎧⎪⎨

⎪⎩
ψ̈(x, t) = �ψ(x, t) + ζ(t)δ(x)

lim
x→0

(ψ(x, t) − ζ(t)G(x)) = F̃(ζ(t))

∣∣∣∣∣∣∣ x ∈ R
3, t ∈ [0, τ ]. (5.5)

with initial data

ψ(0) = ψ0 ∈ DF̃ , ψ̇(0) = π0 ∈ Ḋ,

and satisfies
(ψ(t), ψ̇(t)) ∈ DF̃ , t ∈ [0, τ ]. (5.6)

Proof Since ζ(t) solves (5.4) one has

lim
x→0

(ψ(t, x) − zeta(t)G(x)) = λ(t) + lim
x→0

(θ(t − |x |)ζ(t − |x |)
4π |x | − ζ(t)

4π |x |
)

= λ(t) − 1

4π
ζ̇ (t) = F̃(ζ(t)). (5.7)
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Therefore, the second equation of (5.5) is satisfied. Further,

ψ̈ = ψ̈ f + ψ̈S = �ψ f + �ψS + ζ δ = �ψ + ζ δ

and ψ solves the first equation of (5.5) then. Let us check (5.6). Note that the function
ψreg,1(x, t) = ψ(x, t) − ζ(t)G1(x), where G1(x) = G(x)e−|x |, is a solution to

ψ̈reg,1(x, t) = �ψreg,1(x, t) + (ζ(t) − ζ̈ (t))G1(x)

with initial data from H2 ⊕ H1. Lemma 2.3-(iii) and Eq. (5.4) imply that ζ̈ ∈ L2([0, τ ]).
Hence,

(ψreg,1(x, t), ψ̇reg,1(x, t)) ∈ H2 ⊕ H1, t ∈ [0, τ ]
by [12, Lemma 3.2]. Therefore,

ψreg(x, t) = ψ(x, t) − ζ(t)G(x) = ψreg,1(x, t) + ζ(t)(G1(x) − G(x))

satisfies (ψreg(t), ψ̇reg(t)) ∈ H̊2(R3) ⊕ H̊1(R3), t ∈ [0, τ ], and (5.6) holds then.
Suppose now that ψ̃ = ψ̃reg + ζ̃G, such that (ψ̃,

˙̃
ψ) ∈ DF̃ , is another strong solution

of (5.5). Then, by reversing the above argument, the second equation of (5.5) implies that ζ̃
solves the Cauchy problem (5.4). The uniqueness of the solution of (5.4) implies that ζ̃ = ζ .
Then, defining

ψS(t, x) := θ(t − |x |)
4π |x | ζ(t − |x |), t ∈ [0, τ ],

for ψ̃ f = ψ̃ − ψS one obtains

¨̃
ψ f = ¨̃

ψ − ψ̈S = �ψ̃reg − (�ψS + ζ δ) = �(ψ̃reg − (ψS − ζG)) = �ψ̃ f ,

i.e ψ̃ f solves the Cauchy problem (2.6). Hence, ψ̃ f = ψ f by the uniqueness of the solution
to (2.6), and then ψ̃ = ψ . �

According to [12, Lemma 3.7]

HF̃ (�(t)) = ‖ψ̇(t)‖2 + ‖∇ψreg(t)‖2 + Ũ (ζ(t)) = const, t ∈ [0, τ ]. (5.8)

Lemma 5.3 The following identity holds

Ũ (ζ(t)) = U (ζ(t)), t ∈ [0, τ ]. (5.9)

Proof First note that

HF (�0) ≥ U (ζ0).

Therefore, |ζ0| ≤ �(�0), and then Ũ (ζ0) = U (ζ0), HF̃ (�0) = HF (�0). Further,

HF (�0) = HF̃ (�(t)) ≥ Ũ (ζ(t)), t ∈ [0, τ ].
Hence (5.8) implies that

|ζ(t)| ≤ �(�0), t ∈ [0, τ ]. (5.10)

�
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From the identity (5.9) it follows that we can replace F̃ by F in Proposition 5.2 and in (5.8).
The solution �(t) = (ψ(t), ψ̇(t)) ∈ D constructed in Proposition 5.2 exists for 0 ≤ t ≤ τ ,
where the time span τ in Lemma 5.1 depends only on �(�0). Hence, the bound (5.10) at
t = τ allows us to extend the solution� to the time interval [τ, 2τ ]. We proceed by induction
to obtain the solution for all t ≥ 0.
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