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Abstract The scaling properties of human EEG have so far been analyzed predominantly

in the framework of detrended fluctuation analysis (DFA). In particular, these studies sug-

gested the existence of power-law correlations in EEG. In DFA, EEG time series are tacitly

assumed to be made up of fluctuations, whose scaling behavior reflects neurophysiologically

important information and polynomial trends. Even though these trends are physiologically

irrelevant, they must be eliminated (detrended) to reliably estimate such measures as Hurst

exponent or fractal dimension. Here, we employ the diffusion entropy method to study

the scaling behavior of EEG. Unlike DFA, this method does not rely on the assumption of

trends superposed on EEG fluctuations. We find that the growth of diffusion entropy of EEG

increments of awake subjects with closed eyes is arrested only after approximately 0.5 s.

We demonstrate that the salient features of diffusion entropy dynamics of EEG, such as

the existence of short-term scaling, asymptotic saturation, and alpha wave modulation, may

be faithfully reproduced using a dissipative, first-order, stochastic differential equation—an

extension of the Langevin equation. The structure of such a model is utterly different from
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the “noise+trend” paradigm of DFA. Consequently, we argue that the existence of scaling

properties for EEG dynamics is an open question that necessitates further studies.

Keywords EEG · Entropy · Statistical analysis

1 Introduction

A typical EEG time series appears to be a random superposition of waves with contributions

from every part of the spectrum, from 0.5 to 150 Hz, appearing with fluctuating phases

and variable amplitude. This impression was made mathematically rigorous by Norbert

Wiener who, in 1948 [1], proposed generalized harmonic analysis as the mathematical tool

necessary to capture the mysterious relations between EEG time series and the functioning

of the vast number of neurons within the human brain. Over the next half century, spectral

methods figured prominently in characterizing the properties of EEG time series. However,

a number of research groups [2–5], by means of detrended fluctuation analysis (DFA)

[6], have recently determined that EEG time series X(t) have scaling properties, with

the second moment of the integrated EEG signal Y(t), which increases as a non-trivial

power-law:

〈Y(t)2〉 ∝ tα. (1)

Here, the brackets denote a suitably defined averaging over the data. When the deviation

of the second moment scaling index from the classical diffusion value α = 1 is due to

correlations in the time series, the index can be related to the Hurst exponent by α = 2H.

However, anomalous diffusion (α �= 1) can also be the result of the statistics of the time

series and not the correlations; see, for example, West [7]. The spectrum S( f ) associated

with correlated time series falls into the category of 1/ f noise, that is, the Fourier transform

of the autocorrelation function is given by

S( f ) ∝ 1/ f β, (2)

with frequency f, and the spectral index is related to the Hurst exponent H by

β = 2H − 1. (3)

A word of caution is in order regarding the use of spectra. The spectral approach is

not a reliable method for determining the scaling index because the EEG time series are

non-stationary, and consequently, their direct Fourier transforms are ill-defined. To address

the non-stationarity of EEG time series nonlinear processing techniques, with their implicit

dependence on nonlinear dynamics, chaos and fractals have recently lead the parade of

methodologies hoping to accomplish the task of relating patterns in the time series to

functions of the brain; see, for example, West et al. [8] for a brief review. Finally, DFA

has been applied also to the EEG time series itself instead of its integration. Hwa et al. [9]

found a double scaling regime in which early times scale differently from later times, in the

case of resting EEG. The distribution of the values of the second scaling exponent peaks at

0.1 and has a slow tail up to a value of 0.5.
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Another technique pioneered by Wiener [10] and historically used extensively in

the analysis of EEG time series is the engineering model of signal plus noise, from

which we obtain such concepts as the signal-to-noise ratio. Over the past half cen-

tury, the single-channel EEG time series has been interpreted using this paradigm

as consisting of a message called signal, which is the integrated contribution of

the neurons in the vicinity of the channel electrical contact along with the “coherent”

influence of distant neurons, and the relatively erratic fluctuations called noise, which is

the “incoherent” contribution of the distal neurons in the brain [11]. The “signal” parts of

the EEG time series are often called waves or rhythms. For example, alpha rhythms (7–

12 Hz) have been shown to be typical of awake individuals when the brain is under no

visual stimulation and may act as a nonlinear clock in the manner suggested by Wiener

[12] to serve as a gating function to facilitate the association mechanisms within the

brain. The authors of [2–5, 9] invert this paradigm, considering the “noise” and its scaling

properties (long-range correlation) as containing the relevant information, and the “signal”

as a changing trend that must be eliminated (detrended) to accurately measure the scaling

properties of the noise. As a matter of fact, DFA requires the hypothesis (always assumed

but never tested) that an EEG record is the sum of two independent contributions: trend (or

signal) and noise. Recently, scaling analysis has been directed towards separating a more

subtle concept of signal, that being the amplitude modulation of the alpha rhythm, from the

incoherent fluctuations in the time series [13].

In the approach presented here, we seek to model EEG dynamics directly, not making

any a priori signal–noise separation. The entropy-based methodology we introduce explic-

itly demonstrates the failure of the signal-plus-noise model. Entropy-related measures have

already been used to quantify the level of order in EEG signals. Inouye et al. [14] employed

spectral entropy, as defined by the Fourier power spectrum, but the fact that EEG time series

are not stationary, in the sense that the autocorrelation function is not simply a function of

the difference between the data at two different times, obviates the use of Fourier transforms

as mentioned above. Schlögl et al. [15] measured the information entropy of 16-bit EEG

polysomnograhic records and found it to be in the range of 8–11 bits. Patel et al. [16], using

a combination of fMRI and entropy maximization, where the probability density in the

entropy definition is replaced with a scaled dipole strength, demonstrated that the generators

of alpha rhythm are mainly concentrated over the posterior regions of the cortex, consistent

with the theoretical speculations of others [17]. Subsequently, wavelet entropy, in which

the probability density is replaced with the relative wavelet energy, was used by Rosso

et al. [18, 19] to study the order/disorder dynamics in short-duration EEG signals including

evoked response potentials. In this manuscript, we make use of the diffusion entropy (DE)

method [20, 21] as a probe of the neural network dynamics that can reveal patterns that

are often obscured using other data processing techniques. The DE method [20, 21] has

been successfully used to discriminate between the influence of the seasons on the daily

number of teen births in Texas [22] and the effect of solar cycles on the statistics of solar

flares [23].

In Section 2.1, we introduce the DE method as a way of analyzing EEG time series data.

The DE analysis method suggests a number of interactive mechanisms present in the brain’s

neural network, including a form for a stochastic dynamic equation with which to model the

observed EEG properties. The stochastic model, called a Langevin equation in physics, is

developed and shown to reproduce the DE patterns observed in real EEG data, Section 2.2.

Finally, we draw some conclusions in Section 3.
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2 EEG analysis

2.1 DE method

Consider a stochastic process whose outcome is the real-valued dynamic variable X(t) or

“trajectory.” Each realization of the stochastic process will produce a different trajectory

X(t); thus, the necessity of describing the phenomenon by means of the probability density

function (pdf) p(x, t): the probability density of having the trajectory X(t) located in an

infinitesimal neighborhood dx centered in x at time t. The DE method [20, 21] is a way of

investigating the dynamics (stochastic rules) of the process generating the trajectory X(t)
monitoring the time evolution of the information entropy of the corresponding pdf:

S(t) = −
∫

p(x, t) log
2

p(x, t)dx. (4)

This entropy is the continuous form, introduced by Wiener for studying the problem of

noise and messages in electrical filters [1], and of the information entropy introduced by

Shannon [24]. The properties of the entropy S(t) of (4) and its usefulness in investigating the

dynamics guiding the time evolution of the variable X(t) have been assessed by a number

of investigators: e.g., [22] and [25] may constitute a good review. Here, we summarize

the properties that are relevant in this EEG study. In particular, we examine three different

dynamical systems responsible for the time evolution of the variable X(t):⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dX(t)
dt

= ξ(t)

dX(t)
dt

= Acos(ωt) + ξ(t)

dX(t)
dt

= − γ X(t) + Acos(ωt) + ξ(t)

(5)

(6)

(7)

In the case of (5), the variable X(t) is the integration of the noise ξ(t). If ξ is fractional

Gaussian noise, then X(t) is fractional Brownian motion, and the corresponding pdf p(x, t)
is Gaussian with a time-dependent standard deviation: σ(t) = σ tH

. The symbol σ indicates

the standard deviation of the noise ξ , while H is the Hurst exponent. In this case, the entropy

S(t) of (4) reduces to the exact form

S(t) = 1

2
log

2

(
4πσ 2e

) + H log
2

t, (8)

where e is the Neper number. The squares in Fig. 1 indicate the entropy S(t) for the

numerical integration of (5) in the case H = 1/2.

The dynamical system (6) is a prototype of the engineering model of signal plus noise:

a sinusoid of amplitude A and angular frequency ω is the signal, and ξ is the noise.

Conversely, using the DFA paradigm, the sinusoidal term in (6) is the trend (moving

average) which must be removed to correctly assess the scaling property of the noise ξ .

The dashed line in Fig. 1 shows the resulting information entropy S(t) for the numerical

integration of (6). We set ξ to be Gaussian white noise as for the numerical simulation

of (5). We see how the scaling behavior is deformed by the presence of the sinusoidal

term. The graph of S(t) can be described as a “bumpy” increase: the local minima of each

bump occur every T = 2π/ω (the period of the sinusoidal component) and coincide with the

expected behavior when only the noise ξ is present: the integral of the sinusoidal component
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Fig. 1 Application of the DE

method to the numerical

simulation of the variable X(t) of

(5) (squares), (6) (dashed line),

and (7) (solid line). The noise

amplitude is for all three cases

σ = 10, the amplitude of the

sinusoidal component is A = 10

and its frequency is 1/T = 8 Hz.

Finally, the sampling frequency

used in all three simulations is

250 Hz, the same as that of the

EEG data analyzed in this

manuscript

 5

 6

 7

 8

 9

 10

 11

 12

0.01 0.1 1 10

S
(t

)

t (seconds)

of (6) over an integer multiple of the period T is null. Moreover, the intensities of the

“bumps” decrease in time, and the entropy S(t) relative to (6) approaches the curve relative

to (5). The rationale is that the contribution of the noise ξ to the variance of the variable

X(t) increases linearly in time (2H = 1). As time increases, this contribution dwarfs the

contribution due to the sinusoidal term, which is periodic and of fixed intensity [22]. Finally,

we consider (7), which adds a feedback term, in the form a friction of intensity γ , to (6).

Due to the feedback term in (7), the variable X(t) cannot be decomposed into the sum of

two independent contributions (signal/trend plus noise). The solid line in Fig. 1 indicates

the resulting information entropy S(t) from the numerical integration of (7). The presence

of the feedback term suppresses the increase in entropy after a time of the order 1/γ ;

therefore, the ratio of the variance due to the noise and that due to the sinusoidal term

remains constant. This fixed ratio produces the oscillations of fixed amplitude and fixed

absolute level observed for times larger than 1/γ [26].

We now briefly discuss how the DE method is implemented numerically. Instead of the

continuous time function X(t), we have its digitized version Xj consisting of N + 1 data

points, and construct the differences

Xk+t − Xk =
k+t∑
j=k

ξ j k = 1, 2, .., N − t + 1. (9)

In this way, an ensemble of M = N − t + 1 trajectories is obtained from a single trajectory,

making it possible to estimate the pdf p(x, t) of finding X(t) in an infinitesimal neighbor-

hood of x at time t. The right-hand side of (9) indicates that the differences Xk+t − Xk
are obtained by summing t consecutive elements of the time series of the increments

ξ j = Xj+1 − Xj, which is the digitized version of dX(t)/dt for a unit time step.

2.2 Application to EEG records

ELMIKO DigiTrack setup was used to acquire EEG of 20 healthy individuals. The

measurements were performed according to the international 10–20 standard with the

average reference set-up. The data were sampled at 250 Hz and filtered with 0.1 Hz
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high-pass filter. The analysis was confined to channels O1, O2, C3, and C4. These channels

are traditionally used in sleep studies. EEG was visually inspected to mark any artifacts.

For each subject, we extracted an “eyes closed,” artifact-free segment of EEG. The mean

length of such segments was 128.1 s, ranging from 55 to 400 s. A low-pass, 50-Hz filter

was applied to the data prior to the DE analysis. The type of the filter used in preprocessing

(elliptic, Butterworth, etc.) did not affect the dynamics of DE.

Each channel of an EEG record is considered as a digitized version Xj of a continuous

variable X(t), and the corresponding pdf is estimated using the procedure described by (9).

Figure 2 shows the DE for the somnographic channels O1, O2, C3, and C4 of a single

individual. We see how, for each channel, the DE: (1) reaches a saturation level for each

channel, (2) has an “alpha” (∼7.6 Hz in the case of this individual) modulation which is

attenuated with time, and (3) has a small-amplitude residual asymptotic modulation. The

early-time modulation, with variable frequency in the alpha range and variable amplitude,

and the saturation effect are present in all channels for all subjects. Figure 3 shows the

average among all 20 subjects of the entropy S(t) of channel O1 (solid line). The dashed

lines indicate the variability (average plus/minus standard deviation) among all 20 subjects.

A similar figure can be obtained for the remaining somnographic channels. Moreover, it

should be pointed out that this saturation is neither a consequence of the finite length of

the time series, nor of the finite amplitude of the EEG signal. In fact, if surrogate (via

shuffling of EEG increments) data are used, the saturation disappears, as shown in Fig. 4.

Consequently, this saturation effect is due to brain dynamics and is not an artifact of the data

processing. Robinson [27] observed this saturation in the calculation of the EEG second

moment and interpreted it as being due to dendritic filtering. The inset in Fig. 2 depicts the

pdfs psat(x), after the entropy saturation is attained, with channels O1 and O2 having nearly

identical distributions, as do channels C3 and C4. The oscillations in Fig. 2 are consistent

with the interpretation that the EEG time series are (for subjects with closed eyes at rest)

modulated by alpha waves. Entropy saturation agrees with the notion that this relaxation

is induced by a fluctuation-dissipation process, which is defined in statistical physics as

a process in which both the dissipation and the random fluctuations are a consequence

of the system of interest interacting with the environment. These two processes can be

incorporated into a single equation of motion describing the EEG dynamics. The simplest

dynamic model, which includes fluctuations, modulation, and dissipation, in short, all the

Fig. 2 The DE S(t) calculated

using the increments of the

channels O1, O2, C3, and C4 for

one of the 20 subjects considered

in this study. The inset depicts

the pdfs psat(x) = p(x, t = 8s)
for each channel: squares (O1),

circles (O2), upward triangles
(C3), and downward triangles
(C4)
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Fig. 3 Group-averaged time

evolution of the DE S(t) (solid
line). Dashed lines correspond to

the mean square error
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properties displayed in Fig. 2, has the form of a Langevin equation. We assume a dissipative

linear dynamic process X(t), i.e., an Ornstein–Uhlenbeck process, with a periodic driver

having a random amplitude and frequency and an additive random force η (t), which is a

delta-correlated Gaussian process of strength σ ,

dX(t)
dt

= −λX(t) + η (t) +
∑
j=0

Ajχ
[
Ij,s

]
sin

[
2π fj t

]
. (10)

The coefficient λ is positive definite and defines a negative feedback, χ
[
Ij,s

] = 1 when its

argument, the time t, is in the interval Ij,s = [ jts, ( j+ 1)ts] and is zero otherwise, and ts is

the “stability” time after which a new frequency fj and a new amplitude Aj are selected.

The values of the frequencies fj and amplitudes Aj are calculated as follows. First, we

calculate the spectral density in the time-frequency domain of the time series of EEG

Fig. 4 The DE S(t) calculated

using the increments of the

channel O1 of Fig. 2 (solid line),

and using the increment of a

surrogated data of channel O1

(dashed line)
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increments with a time resolution ts and a frequency resolution Δ f by means of a windowed

Fourier transform. The spectral density, called the spectrogram (see, e.g., [28]), is a three-

dimensional plot of the spectrum of the EEG increments ξ j as it changes over time. Then, for

each time interval of duration ts, we consider the range of frequencies of the alpha waves,

7–12 Hz, and find for which frequency the maximum amplitude occurs in the spectrogram.

This procedure defines the frequency and the amplitude of the time interval considered.

Panel a of Fig. 5 shows the spectrogram relative to the increments ξ j of the channel

O1 for the same subject as in Fig. 2. Panels b and c of Fig. 5 show, respectively, the

sequence of amplitudes Aj (normalized to a maximum amplitude of 1) and of frequencies

fj calculated using the procedure described above. Without an a priori knowledge of the

typical duration of an alpha wave packet, we set the stability time ts of (10) equal to 0.5 s. A

time resolution of 0.5 s and a frequency resolution of ∼0.5 Hz in the spectrogram represent

a reasonable time-frequency localization for our purposes (ts > 0.5 s results in a better

frequency localization, e.g., 0.25 Hz, but an alpha wave packet may be not stable for time

intervals longer than 0.5 s; ts < 0.5 s produces an good time localization but results in a

poor frequency localization, e.g., 1 Hz).

Consider the model case where Aj = 0, for all j, no modulation is present, and (10)

is the Ornstein–Uhlenbeck–Langevin equation. In this case, the variable X(t) is Gaussian

distributed with standard deviation σ(t) = √
2σ 2(1 − e−2λt)/λ. Consequently, for t � 1/λ,

the entropy S(t)∝ 1

2
log

2
t and a linear-log plot yields the straight line of slope δ = 0.5

depicted by the squares in Fig. 1. For t � 1/λ, the entropy reaches the saturation level

S(t) = log
2

√
2πσ 2e

λ
[26], yielding an entropy structure similar to that of the EEG data

depicted in Figs. 1 and 2 without the modulation being present. This unmodulated saturation

is precisely the behavior observed by Robinson [27] in his DFA analysis of the second

moment behavior of the EEG time series. When the modulation is present Aj �= 0, (10) is

numerically integrated, and the dynamic variable X processed using the DE algorithm. In

Fig. 6, we compare the DE obtained via (10) with that of the channels O1 and C3, already

shown in Fig. 2. It is evident that the entropy constructed from the solution to (10) captures

the qualitative and many of the quantitative features of the DE of the EEG increments.

Moreover, the asymptotic pdfs recorded in the inset also agree with the empirical ones

depicted in Fig. 2. In Table 1, we average the phenomenological parameters λ and D for the

somnographic channels for the 20 subjects in this study.

The first notable property of the Langevin model is that it reaches a saturation level,

indicating that the EEG signal asymptotically carries a maximum amount of information.

The EEG entropy does not grow indefinitely, as would a random process with long-time

correlation. The second notable property of the Langevin model is related to the first and

is the dissipation, or negative feedback, produced locally within the channel of interest.

The fluctuation-dissipation relation of Einstein is what produces the maximum level of the

entropy in a closed physical network, and is given by the ratio of the strength of the additive

fluctuations to the dissipation rate. In the more general Langevin equation given here, the

saturation level is a more complicated function of the strength of the additive fluctuations,

Table 1 The average values

(avg.) and the standard

deviations (s.d.) of the

parameters λ and D of (10) for

all 20 subjects in this study

EEG channel λ (avg.±s.d.) D (avg.±s.d.)

O1 0.0461±0.0187 16.37±6.88

O2 0.0497±0.0182 16.35±6.72

C3 0.0362±0.0186 10.19±3.90

C4 0.0393±0.0200 10.60±3.72
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the dissipation rate, and the strength of the alpha rhythm. The third notable feature of the

Langevin model is the attenuated oscillation of the entropy in time. The attenuation occurs

in the EEG entropy because the alpha rhythm is not being generated at one source, but

is described as a collective property of the brain in that it is being generated at a number

of different locations [17]. Here, the influence of the distributed sources is modeled by

wave packets that persist for a stability time ts; one packet is replaced by another with a

slightly different carrier frequency and amplitude chosen from the empirical spectrogram

every time interval of length ts. The concatenation of these wave packets with fluctuating

frequencies and amplitudes produces a decoherence that attenuates the modulation of the

resulting EEG entropy in time. Consequently, this modulation of the EEG entropy indicates

that the channel is coupled coherently to the rest of the brain.

3 Conclusions

We used the DE method to investigate EEG dynamics under the “eyes closed” at rest

condition. The DE method does not require any a priori hypothesis on the nature of the

dynamics: e.g., the separation signal/trend and noise required by the DFA algorithm. The

results of the DE, Figs. 2 and 3, together with the spectrogram analysis, Fig. 5, suggest

the Ornstein–Uhlenbeck–Langevin equation (10) as a possible model for EEG dynamics.

The model and the analysis presented in this letter support the notion that alpha rhythms:

(1) are not generated by one but by a number of spatially distributed sources [17], whose

Fig. 5 a Spectrogram of the

increments of channel O1. We

plot the base-10 logarithm of the

spectral density. The time

resolution is ts = 0.5 s, the

frequency resolution is

Δ f = 0.5 Hz. b Sequence of the

maxima of the spectrogram

amplitude (normalized so that the

maximum amplitude is 1). This

sequence is the sequence of

coefficients Aj used in (10). c

Sequence of the frequencies

corresponding to the amplitude

maxima of the spectrogram. This

sequence is the sequence of

coefficients fj used in (10)
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relative incoherence produces the attenuated modulation observed in the EEG entropy;

(2) are near-periodic; and, therefore, (3) do not represent passive states, but may contain

information in the amplitude and frequency modulation.

Equation (10) is the simplest form of a fluctuation-dissipation process that implies the

presence of internal feedback to prevent the occurrence of large excursions of the electric

potential inside the brain. According to the proposed model for EEG dynamics, an EEG

record cannot be divided into two independent components: trend+noise. In the EEG

literature based on DFA, the trend+noise decomposition is a dynamical property assumed a

priori and not one derived from the results. In this manuscript, we invert the paradigm and

use the results of the DE method to propose particular dynamical properties. Ultimately, the

question of whether the DFA results, in light of (10), are indicative or not of genuine EEG

dynamical properties requires a considerable body of work that is beyond the scope of the

present manuscript and the topic of a forthcoming one [26].

As for the scaling property of the variable X(t) of (10) (EEG record), the arguments of

Section 2 prove that there is no scaling regime. In the case of the time-integrated version of

X(t), Y(t) (time integrated EEG record), we have an asymptotic (t � 1/λ) ordinary scaling:

parameter 0.5. The rationale is that, in the case of absence of alpha rhythm, (10) reduces

to the ordinary Ornstein–Uhlenbeck–Langevin equation for which exact solutions for X(t)
and Y(t) are available: for t � 1/λ, Y(t) becomes an ordinary Brownian motion. Hence, the

0.5 scaling. The eventual presence of the alpha rhythm induces fast decaying oscillations,

such as those illustrated by the dashed line in Fig. 1. DE application to the time-integrated

versions of EEG records (not shown here for brevity) confirm the above expected behavior.

Finally, the proposed Ornstein–Uhlenbeck–Langevin model suggests another consider-

ation related to eventual scaling properties of the EEG time series (or of its integral). The

issue is the presence of the modulated alpha rhythm as revealed by the spectrogram of Fig. 5.

Linkenkaer et al. [13] consider it as the “noise” and apply DFA to the rhythm amplitude time

series. Hwa et al. [9], and the great majority of authors using the DFA method, consider it

as a trend that should be eliminated. More generally, rhythms at different characteristic

frequencies are present in the EEG activity under a variety of conditions, including sleep.

It is reasonable to assume that EEG rhythms are not a periodic function of fixed amplitude

and frequency but rather are modulated in amplitude and frequency. It is not reasonable to

assume that this variability in the amplitude and frequency profile will be resolved by a

Fig. 6 Comparison between the

DE of the increments, solid lines,

of channel O1 and C3, and DE of

the increments, points, of the

variable X of (10). The

parameters used in (10) are

λ = 0.055, D = 40 for O1 and

λ = 0.055, D = 20 for C3. Inset
shows the comparison between

the pdfs at saturation

psat(X) = p(X, t = 2000):

channels O1 and C3, solid lines,

variable X of (10), squares
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linear trend. Yet, a linear trend is always assumed in almost all the applications of DFA to

EEG, while a much larger degree of polynomial trend should be considered if one hopes to

detrend the rhythm. The luck of complete removal of the modulated rhythm will appreciably

alter the value of an eventual scaling exponent (see, e.g., the discussion in [22]).

The authors thank the Army Research Office for support of this research and the

anonymous referee for his/her helpful comments, which helped us improve the quality of

the manuscript. The code for the programs used for the EEG analysis (DE and spectrogram)
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