Skip to main content

Advertisement

Log in

Mitochondria and neonatal epileptic encephalopathies with suppression burst

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The mitochondrion is a key cellular structure involved in many metabolic functions such as ATP synthesis by oxidative phosphorylation, tricarboxylic acid cycle or fatty acid oxidation. These pathways are fundamental for biological processes such as cell proliferation or death. In the central nervous system, mitochondria dysfunctions have been involved in many neurological diseases and age-related neurodegenerative disorders, including epilepsy, Alzheimer’s and Parkinson’s diseases. Mitochondrial diseases are frequently caused by a disruption of the respiratory chain. Nevertheless, other mitochondrial functions, including organellar dynamics or metabolite transport, could also be involved in such pathologies. Here we described mitochondrial dysfunctions in a very severe, intractable and relatively rare neonatal epileptic encephalopathy, the Ohtahara syndrome. This condition is characterized by neonatal onset of seizures, interictal electroencephalogram with suppression burst pattern and a very poor outcome with very severe psychomotor retardation or death. The etiology of this disease remains elusive but seems to be very heterogeneous including brain malformations, metabolic errors, transcription factor and synaptic vesicle release defects. In this review, we discuss first the Ohtahara syndrome caused by mitochondrial respiratory chain damages, suggesting that these defects could be more common than previously thought. Then, we will adress the importance of the mitochondrial glutamate carrier SLC25A22 in these pathologies, since mutations of this gene were described in two distinct families. These findings suggest that glutamate metabolism should also be considered as an important cause of the Ohtahara syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Absoud M, Parr JR, Halliday D, Pretorius P, Zaiwalla Z, Jayawant S (2010) Dev Med Child Neurol 52(3):305–307

    Article  Google Scholar 

  • Behar TN, Scott CA, Greene CL, Wen X, Smith SV, Maric D, Liu QY, Colton CA, Barker JL (1999) J Neurosci 19(11):4449–4461

    CAS  Google Scholar 

  • Berkich DA, Ola MS, Cole J, Sweatt AJ, Hutson SM, LaNoue KF (2007) J Neurosci Res 85:3367–3377

    Article  CAS  Google Scholar 

  • Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE (2006) J Biol Chem 281(43):32724–32727

    Article  CAS  Google Scholar 

  • Castro-Gago M, Blanco-Barca MO, Gómez-Lado C, Eirís-Puñal J, Campos-González Y, Arenas-Barbero J (2009) Brain Dev 31(4):322–325

    Article  Google Scholar 

  • Colombo E, Collombat P, Colasante G, Bianchi M, Long J, Mansouri A, Rubenstein JL, Broccoli V (2007) J Neurosci 27(17):4786–4798

    Article  CAS  Google Scholar 

  • Danbolt NC (2001) Prog Neurobiol 65(1):1–105

    Article  CAS  Google Scholar 

  • DiMauro S, Schon EA (2008) Annu Rev Neurosci 31:91–123

    Article  CAS  Google Scholar 

  • Fiermonte G, Palmieri L, Todisco S, Agrimi G, Palmieri F, Walker JE (2002) J Biol Chem 277(22):19289–19294

    Article  CAS  Google Scholar 

  • Friocourt G, Kanatani S, Tabata H, Yozu M, Takahashi T, Antypa M, Raguénès O, Chelly J, Férec C, Nakajima K, Parnavelas JG (2008) J Neurosci 28(22):5794–5805

    Article  CAS  Google Scholar 

  • Fullston T, Brueton L, Willis T, Philip S, MacPherson L, Finnis M, Gecz J, Morton J (2010) Eur J Hum Genet 18(2):157–162

    Article  Google Scholar 

  • Hardingham GE, Fukunaga Y, Bading H (2002) Nat Neurosci 5(5):405–414

    CAS  Google Scholar 

  • Ivanov A, Pellegrino C, Rama S, Dumalska I, Salyha Y, Ben-Ari Y, Medina I (2006) J Physiol 572(3):789–798

    CAS  Google Scholar 

  • Kato M, Saitoh S, Kamei A, Shiraishi H, Ueda Y, Akasaka M, Tohyama J, Akasaka N, Hayasaka K (2007) Am J Hum Genet 81(2):361–366

    Article  CAS  Google Scholar 

  • Kato M, Koyama N, Ohta M, Miura K, Hayasaka K (2010) Epilepsia

  • Khanna R, Li Q, Bewersdorf J, Stanley EF (2007) Eur J Neurosci 26(3):547–559

    Article  Google Scholar 

  • Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M, Omichi K, Suzuki R, Kato-Fukui Y, Kamiirisa K, Matsuo M, Kamijo S, Kasahara M, Yoshioka H, Ogata T, Fukuda T, Kondo I, Kato M, Dobyns WB, Yokoyama M, Morohashi K (2002) Nat Genet 32(3):359–369

    Article  CAS  Google Scholar 

  • LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR (1995) Neuron 15(6):1287–1298

    Article  CAS  Google Scholar 

  • Manent JB, Demarque M, Jorquera I, Pellegrino C, Ben-Ari Y, Aniksztejn L, Represa A (2005) J Neurosci 25(19):4755–4765

    Article  CAS  Google Scholar 

  • Molinari F, Raas-Rothschild A, Rio M, Fiermonte G, Encha-Razavi F, Palmieri L, Palmieri F, Ben-Neriah Z, Kadhom N, Vekemans M, Attie-Bitach T, Munnich A, Rustin P, Colleaux L (2005) Am J Hum Genet 76(2):334–339

    Article  CAS  Google Scholar 

  • Molinari F, Kaminska A, Fiermonte G, Boddaert N, Raas-Rothschild A, Plouin P, Palmieri L, Brunelle F, Palmieri F, Dulac O, Munnich A, Colleaux L (2009) Clin Genet 76(2):188–194

    Article  CAS  Google Scholar 

  • Ohtahara S, Ishida T, Oka E, Yamatogi Y, Inoue H (1976) No To Hattatsu (Tokyo) 8:270–280

    Google Scholar 

  • Ohtahara S, Yamatogi Y, Ohtsuka Y, Oka E, Kanda S (1977) Folia Psychiatr Neurol Jpn 31:301–313

    CAS  Google Scholar 

  • Ohtahara S, Ohtsuka Y, Yamatogi Y, Oka E, Inoue H (1992) In: Roger J, Bureau M, Dravet C, Dreifuss FE, Perret A, Wolf P (eds) Epileptic syndromes in infancy, childhood and adolescence. 2nd ed. London: John Libbey, 1992:25–34

  • Ohtahara S, Yamatogi Y (2003) J Clin Neurophysiol 20(6):398–407

    Article  Google Scholar 

  • Palmieri F (2004) Pflugers Arch 447(5):689–709

    Article  CAS  Google Scholar 

  • Palmieri F, Indiveri C, Bisaccia F, Iacobazzi V (1995) Methods Enzymol 260:349–369

    Article  CAS  Google Scholar 

  • Saitsu H, Kato M, Mizuguchi T, Hamada K, Osaka H, Tohyama J, Uruno K, Kumada S, Nishiyama K, Nishimura A, Okada I, Yoshimura Y, Hirai S, Kumada T, Hayasaka K, Fukuda A, Ogata K, Matsumoto N (2008) Nat Genet 40(6):782–788

    Article  CAS  Google Scholar 

  • Seo JH, Lee YM, Lee JS, Kim SH, Kim HD (2010) Brain Dev 32(3):253–257

    Article  Google Scholar 

  • Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, Vermeer H, Toonen RF, Hammer RE, van den Berg TK, Missler M, Geuze HJ, Südhof TC (2000) Science 287(5454):864–869

    Article  CAS  Google Scholar 

  • Vigevano F, Bartuli A (2002) J Child Neurol 17(Suppl 3):9–14

    Google Scholar 

  • Wan P, Zhang YP, Yan J, Xu YX, Wang HQ, Yang R, Zhu CQ (2010) Neurosci Bull 26(4):273–281

    Article  CAS  Google Scholar 

  • Williams AN, Gray RG, Poulton K, Ramani P, Whitehouse WP (1998) Dev Med Child Neurol 40(8):568–570

    Article  CAS  Google Scholar 

  • Yamatogi Y, Ohtahara S (1981) Folia Psychiatr Neurol Jpn 35:321–332

    CAS  Google Scholar 

  • Yang R, Puranam RS, Butler LS, Qian WH, He XP, Moyer MB, Blackburn K, Andrews PI, McNamara JO (2000) Neuron 28(2):375–383

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Molinari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molinari, F. Mitochondria and neonatal epileptic encephalopathies with suppression burst. J Bioenerg Biomembr 42, 467–471 (2010). https://doi.org/10.1007/s10863-010-9323-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-010-9323-6

Keywords

Navigation