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Abstract

The present work proposes a solution to the challenging problem of registering two partial point sets of the same object with
very limited overlap. We leverage the fact that most objects found in man-made environments contain a plane of symmetry. By
reflecting the points of each set with respect to the plane of symmetry, we can largely increase the overlap between the sets and
therefore boost the registration process. However, prior knowledge about the plane of symmetry is generally unavailable or at
least very hard to find, especially with limited partial views. Finding this plane could strongly benefit from a prior alignment
of the partial point sets. We solve this chicken-and-egg problem by jointly optimizing the relative pose and symmetry plane
parameters. We present a globally optimal solver by employing the branch-and-bound paradigm and thereby demonstrate
that joint symmetry plane fitting leads to a great improvement over the current state of the art in globally optimal point set
registration for common objects. We conclude with an interesting application of our method to dense 3D reconstruction of

scenes with repetitive objects.

Keywords Shape registration - Symmetry plane estimation - Global optimization

1 Introduction

The alignment of two point sets is a fundamental geometric
problem that occurs in many computer vision and robotics
applications. In computer vision, the technique is used to
stitch together partial 3D reconstructions in order to form
a more complete model of an object or environment [30].
In robotics, point set registration is an essential ingredient
to simultaneous localization and mapping with affordable
consumer depth cameras [29] or powerful 3D laser range
scanners [11]. The general approach for aligning two point
sets does not require initial correspondences. It is given by
the iterative closest point (ICP) algorithm [47], a local search
strategy that alternates between geometric correspondence
establishment (i.e. by simple nearest neighbour search) and
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Procrustes alignment. The iterative procedure depends on a
sufficiently accurate initial guess about the relative trans-
formation (e.g. an identity transformation in the case of
incremental ego-motion estimation).

The present work is motivated by a common problem
that occurs when performing a dense reconstruction of an
environment which contains multiple instances of the same
object. An example of the latter is given by a room in which
the same type of chair occurs more than once. Let us assume
that the front end of our reconstruction framework encom-
passes semantic recognition capabilities which are used to
segment out partial point sets of objects of the same class and
type [24]. There is a general interest in aligning those partial
object point sets towards exploiting their mutual information
and completing or even improving the reconstruction of each
instance. The difficulty of this partial point set registration
problem arises from two factors:

— The relative pose between different objects is arbitrary
and unknown.

— Since the objects are observed under an arbitrary pose
and with potential occlusions, the measured partial point
sets potentially have very little overlap.
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Our contribution focuses on the registration of two partial
point sets with limited overlap. The plain ICP algorithm is
only a local search strategy that depends on a sufficiently
accurate initial guess, which is why it may not serve as a
valid solution to our problem. A potential remedy is given
by the globally optimal ICP algorithm presented by Yang et
al. [42]. However, the algorithm still depends on sufficient
overlap in the partial point sets, which is not necessarily a
given (50% is reported as a requirement for high success
rate).

The core idea of the present work consists of exploiting the
fact that the majority of commonly observed objects contain
a plane of symmetry. By reflecting the points of each partial
point set with respect to the plane of symmetry, we may
effectively increase the overlap between the two sets and
vastly improve the success rate of the registration process.
However, given that each point set only observes part of the
object, the identification of the plane of symmetry in each
individual point set appears to be an equally difficult and ill-
posed problem than the partial point set registration itself. Itis
only after the aligning transformation is found that symmetry
plane detection would become a less challenging problem.
In conclusion, the solution of each problem strongly depends
on a prior solution to the other. We therefore present the
following contributions:

— We solve this chicken-and-egg problem by a joint solu-
tion of the aligning transformation as well as the symme-
try plane parameters. To the best of our knowledge, our
work is the first to address those two problems jointly,
thus leading to a vast improvement over the existing
state-of-the-art in globally optimal point set registration,
especially in situations in which the two point sets contain
very limited overlap.

— We devise a globally optimal solution to this prob-
lem by employing the branch-and-bound optimization
paradigm. Our work implicitly provides the first solu-
tion to globally optimal symmetry plane estimation in a
single point set, or—more generally—symmetry plane
detection across two point sets.

— We test our algorithm on synthetic 2d and 3d data, as
well as open model and real data. We furthermore show
a meaningful application of our algorithm to a dense 3D
reconstruction scenario in which multiple instances of
the same object occur.

2 Related Work

Despite strong mutual dependency, our method is the first to
perform joint point set alignment and symmetry plane esti-
mation. Our literature review therefore cites prior art on those
two topics individually.
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2.1 Point-Set Registration

The iterative closest point (ICP) [5,12,47] algorithm is a pop-
ular method for aligning two point sets. It does not depend
on a prior derivation of point-to-point correspondences and
simply aligns the two sets by iteratively alternating between
the two steps of finding nearest neighbours (e.g. by evalu-
ating point-to-point distances) and computing the alignment
(e.g. using Arun’s method [2]). To improve robustness of
the algorithm against occlusions and reduced overlap, the
method has been extended by outlier rejection [19,47] or
data trimming [13] techniques. However, the classical ICP
algorithm remains a local search algorithm for which the
convergence depends on a good initial guess and sufficient
overlap between both point sets.

The approach to global ICP registration is based on the
branch-and-bound framework [16,18,21,43]. Those algo-
rithms avoid local minima by searching the entire space of
relative transformations. Yang et al. [42,43] propose the Go-
ICP algorithm, which applies branch and bound to the ICP
problem to find the globally optimal minimum of the sum of
L2 distances between nearest neighbours from two aligned
point sets. The method is accelerated by using local ICP in
the loop. However, missing robustness of the cost-function
causes the method to remain sensitive with respect to occlu-
sions and partial overlaps. Campbell et al. [8] finally devise
GOGMA, a branch-and-bound variant in which the objec-
tive of minimizing point-to-point errors is again replaced by
Gaussian mixture alignment.

An entire family of alternative approaches [41,45,48]
relies on the idea of feature matching. Some pipelines use
point-to-point matches based on local geometric descriptors
[20,33,37]. Once candidate correspondences are collected,
the alignment is estimated iteratively from sparse subsets of
correspondences and then validated on the entire surface.
This iterative process is typically based on variants of the
RANdom SAmple Consensus (RANSAC) scheme [7,10,17].
However, when the surfaces only partially overlap, existing
pipelines often require many iterations to sample a good cor-
respondence set and find a reasonable alignment. In contrast
with RANSAC-based algorithms, another line of work com-
bines non-convex optimization algorithms [40,41,48] with
data truncation [26] or robust kernels and iterative reweight-
ing [4,19]. Limited overlap ratios nonetheless render the
problem ill-conditioned and very challenging to be solved.

Limited overlap ratios cause lots of mismatches in the
point-pair establishment. Most existing techniques aim at
rejecting such mismatches by robust registration. In con-
trast, the idea of the present work is to decrease the number
of mismatches by increasing the overlap ratio through joint
symmetry plane fitting. This leads to a large improvement
in partial scan alignment for common symmetric objects.
Inspired by recent advances [8,42], we also employ the nested
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branch-and-bound strategy integrated with local ICP to find
globally optimal alignments and thus verify our formulation.

2.2 Symmetry Plane Estimation

In recent years, the exploitation of symmetry in shapes
has become a popular topic in the fields of 3D vision and
deep learning. It has been used in various works on 3D
object completion [32,35,36], shape correspondence pre-
diction [3,28,46] and 3D object detection [1,6,31]. For a
comprehensive review of symmetry detection, we kindly
refer the reader to Liu et al.’s review [23] and its applications
[27]. Here we only focus on the problem of symmetry plane
fitting with missing data. The most straightforward solution
is given by employing the RANSAC algorithm proposed by
Fischler and Bolles [17], a well-known algorithm for robust
model fitting for outlier affected data. In the context of shape
matching, the basic idea is to extract sparse characteristic
points and match them between both sets. We then choose a
random subset of correspondences and derive a hypothesis
for the global transformation induced by these samples. The
alignment quality is finally evaluated by the matching error
between the two shapes. The method can be easily applied for
detecting a plane of symmetry in a single point set by employ-
ing symmetry invariant point descriptors and hypothesizing
the plane of symmetry to be orthogonal to the axis connect-
ing a correspondence. For example, Cohen et al. [15] detect
symmetries in sparse point clouds by using appearance-based
3D-3D point correspondences in a RANSAC scheme. The
detected symmetries are subsequently explored to eliminate
noise from the point-clouds. Xu et al. [39] present a vot-
ing algorithm to detect the intrinsic reflectional symmetry
axis. Using the axis as a hint, a completion algorithm for
missing geometry is again shown. Jiang et al. [22] on the
other hand propose an algorithm to find intrinsic symmetries
in point clouds by using a curve skeleton. A set of filters
then produces a candidate set of symmetric correspondences
which are finally verified via spectral analysis. Although
these works show results on partial data, the amount of miss-
ing data is typically small. Inspired by the work of [14] which
detects symmetry by registration, we propose to detect the
symmetry plane alongside partial point set registration, thus
leading to improved performance in situations with limited
overlap.

3 Preliminaries

We start by introducing the notation used throughout the
paper and review the basic formulation of the ICP problem
as well as planar reflections.

3.1 Notations and Assumptions

Let us denote the two partial object point sets by X' = {x;}
and ) = {y; }1N= | (sometimes called the model and data point
sets, respectively). The goal pursued in this paper is the iden-
tification of a Euclidean transformation given by the rotation
R and the translation t that transforms the points of ) such
that they align with the points of X'. If X and ) contain
points in the 2D plane, R and t form an element of the group
SE(2).If X and ) contain 3D points, R and t will be an ele-
ment of SE(3). Note that alignment denotes a more general
idea rather than just the minimization of the sum of distances
between each point of ) and its closest point within X'. The
point sets have different cardinality and potentially observe
very different parts of the object with only very little over-
lap. This motivates our approach that takes object symmetries
into account.

M
i=1

3.2 Registration of Two Point Sets

The standard solution to the point set registration problem
is given by the ICP algorithm [47], which minimizes the
alignment error given by

N N
ER. =) R tly) =) IRy +t—x;[% (1)

i=1 i=1

where e/ (R, t|y;) is the per-point residual error for y;, and
X; is the closest point to y; within X', i.e.

X; = argmin||Ry; +t — x]|. )
xeX

Given an initial transformation R and t, the ICP algorithm
iteratively solves the above minimization problem by alter-
nating between updating the aligning transformation with
fixed x; (i.e. using (1)) and updating the closest point matches
X; themselves using (2). It is intuitively clear that the ICP
algorithm only converges to a local minimum.

3.3 Modelling and Identifying Symmetry

Symmetry is modelled by a reflection by the symmetry plane.
Let us define the symmetry plane by the normal n and depth
of plane d such that any point x on the plane satisfies the
relation x'm +d = 0. Let x now be a (2D or 3D) point from
X. The reflection plane reflects x to a single reflected point
X given by

X =x-2n(x"n+d). (3)

The term in parentheses is the signed distance between x
and the reflection plane. The subtraction of 2n times this
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distance reflects the point to the other side of the plane. The
problem of symmetry identification may now be formulated
as a minimization of the symmetry distance defined by

M

M
Em,d) =Y elmdx)’ =) [% — x| “)
i=1

i=1

where eis (m, d|x;) is the per-point residual error for x;, and
X; is the nearest point to X; in X, i.e.

X; = argmin||X; — x]|. 5)
xeX

It is intuitively clear that the symmetry plane fitting problem
may also be solved via ICP, the only difference being the
parameters over which the problem is solved (i.e. n and d).

3.4 Transformed Symmetry Plane Parameters

Letus still assume that n and d are the symmetry plane param-
eters of a point set X', and R and t are the parameters that
align a point set ) with X. Each transformed point Ry + t
and its transformed, symmetric equivalent Ry + t must still
fulfill the original reflection equation (3):

Ry +t=Ry+t—2n(Ry+t)'n+d). (6)

Cancelling t and multiplying by RT on either side, we easily
obtain

y=y—2R"ny"R™n + t'n + d). (7

By comparing to (3), it is obvious that i = RTn and d =
tTn 4 d must represent the symmetry plane parameters for
the original, untransformed set ).

4 Alignment and Symmetry as a Joint
Optimization Problem

We now introduce our novel optimization objective which
jointly optimizes an aligning point set transformation as well
as the plane of symmetry. The objective is then solved in
a branch-and-bound optimization paradigm, for which we
introduce both the domain parameterization and the deriva-
tion of upper and lower bounds.

4.1 Objective Function
We still assume that our two partial object point sets are given
by X = {x,-}i"i1 and ) = {y,-}lNzl, and that the symmetry

plane is represented by the normal n and depth d. We define
X = {x{x! =x; —2n(xn+d),i = 1,..., M} to be

@ Springer

the corresponding reflected point set of X'. We, furthermore,
define X" = {x/|x/ = RT(x;, —t),i =1,...,M}and Y =
(¥ ly; =Ry; +t,i =1,..., N} to be the aligned sets in
either direction. The symmetry fitting objective of X employs

es(n,d|x;) = |Ix; —2n(x/n +d) — x/], 8)

where the difference to (4) is given by the fact that x; is now
the nearest neighbour from the set X' | J ). Similarly, using
Eq. (7), the symmetry objective function for ) employs

e, dly) = lyi — 26(y7 i+ d) — y;l, )

where y; is now chosen as the nearest neighbour from the
set X" | J .

The registration error adopts the formulation

IRy; +t — x|
wi||Ry; +t— xj.|| else

if [Ry; +t — x| <¢

¢/ (R.tly) = (10)

where x; and x* are chosen as the nearest neighbours from
the sets X and X', respectively. We give priority to align
points to the directly registered points from X and transfer
to the alignment with a point from X’ if the former is larger
than a chosen design parameter c. Lastly, residual errors that
are very large are simply truncated from the problem.

The overall objective function becomes

N M
ER,t,n,d) =) ¢ R, tly)’ +w> {Zef(n,dm)z

i=1 i=l1

N
+Zef(ﬁ,é|yi>2}, (1

i=1

where w, balances the registration and symmetry objectives.
Direct optimization over R, t, n, and d using traditional ICP
would easily get trapped in the nearest local minimum. We
therefore propose to minimize the energy objective using
the globally optimal branch-and-bound paradigm, an exhaus-
tive search strategy that branches over the entire parameter
space. In order to speed up the execution, the method derives
upper and lower bounds for the minimal energy on each
branch (i.e. sub-volume of the optimization space) and dis-
cards branches for which the lower bound remains higher
than the upper bound in another branch. We use the axis-
angle vector parametrization given by r and « to represent
the relative rotation R and the symmetry normal n, respec-
tively. In particular, n(e) = Ry[1 0 0]7. In the remainder of
this section, we will discuss how to find concrete values for
the upper and lower bounds.
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4.2 Derivation of the Upper and Lower Bounds

The basic idea of BnB is to partition the feasible set into con-
vex sets on which we derive upper and lower bounds for the
objective L2-energy. Given that our objective (11) consists
of a sum of many squared and positive sub-energies, lower
and upper bounds on the overall objective energy can be
derived by calculating individual upper and lower bounds on
the alignment and symmetry residuals. Using the above intro-
duced parametrizations, the upper bound E and the lower
bound E of the optimal, joint L, registration and symmetry
cost E* on a given interval of variables are therefore given
as

N M
E =) el(r,tly)” +wy {Zef(a, d|x;)?

i=1 i=1

N
+) e, t,a,d|yi)2}

i=1

N M
E =) el (r,tly)’ +w {Ze_ﬁ‘(a, d|x;)’

i=1 i=1

N
+Z§(r,t,a,dlyi)2}-

i=1

Upper bounds on an interval are easily given by the energy of
an arbitrary point within the interval. The remainder of this
section discusses the derivation of the lower bounds.

Lower bound for the alignment error e; (r, t|y;): For a rota-
tion interval of half-length o with centre r(, we have

IRry — Reoyll < 2sin(min(or/2, 7 /2) Nyl = yellyll. (12)

y, is also called the rotation uncertainty radius.

Proof Using Lemmas 3.1 and 3.2 of [21], we have

L(Rry, Ryyy) =d; Ry, Ryy) < |Ir —xo| (13)
and
IRry — Reoyll = 2sin(£(Rry, R, y)/2) [l |l

< 2sin(min(d/ (R, Ry,), ) /2) [ly |l (14)

= 2sin(min(|[r — roll, 7)/2)[|y||
< 2sin(min(oy/2, /2))|lyll. (end of proof)

We can similarly derive a translation uncertainty radius
;. For a translation volume with half side length oy centred
at ty, we have

[x+1 — x+to)ll =t —toll < lloell = n. 15)

The registration term in Eq. (10) becomes

e; (r, tlyi) = e; (ro, tolyi) — w) (ellyill + 10,

where w(x) = 1 if correspondence x € X, or w(x) = wy if
x € X*. The final lower bound of the registration term is

e; (r, tly;) = max{ej (ro, tolyi) — (e llyill + 0,0} (16)

For more details, we kindly refer the reader to [21,42]. O

Lower bound of symmetry term e} (a, d|X;): Assuming that
the normal is defined by an a-interval of half-length o and
with centre ot¢, we have

Ix"(m — )| < [In —nol[IX]l = Ry — Reg)[1 001" [[]1x]

=< 2sin(min(og /2, 7/2) Xl < velx|. (17)

For the depth d € [dy — 04, dy + 04], we simply have

|d —do| < 04 = ya. (18)

Nowletx; € XUY" be the closest point to (x; —2n(xl.Tn+d))
,andletx;, € XUY" be the closest point to (X; —2ng (Xl-Tno +
dp)). The lower bound is derived as follows:
e; (a, d|x;)

= |Ix; — 2n(x; n +d) — x;||

= lIxi — 2no(x"ng + do) — x; — 2 (n(x,.Tn +d)

—ny(x/ g + do)) l (19)

> |Ix; — 2ng(x; ng + do) — x|

—2In(x/n +d) — ng(x; ng + do) ||
> el (@, dolx;) — 2[Ix; nn — X nong|| — 2|Ind — nodo |
We, furthermore, have

T

i

||xl-Tnn — X nong|| = ||xl-Tnn — xl-Tnon + X,-Tnon — xiTnon0||

T T T
< |x;n—x;nol - |[nf| + [x;ng| - [[n — ng||
= 2[Ixill - Im —mo | = 2yu x|l

(20)
and

Ind —nodo|l = [[nd — ndop + ndp — nodo| o)
= |d —dp| + |dolllm —mo|l < ya + |dolVa-

Substituting (20) and (21) in (19), we finally obtain

e} (a, d|x;) =max{e; (o, do|x;) — 22 yullxil

(22)
+ va + 1dol|ve), 0}.
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Lower Bound of symmetry term ¢; (r, t, a, d|y;): By

using i = RTn and d=tTn+d, we analogously derive

el(r,t,a,dly;) >e(ro, to, @, doly:) — 2|y i — y oo |
—2|lid — fodo||
(23)

By substituting i = RTn, similar to (20), the first term
gives
IlyFR™nRn — yTRInoRy ng |
< 2lly;lllIRgno — Rn]|
= 2/ly; lIRgng — R™ng + RTng — R™n|
< 2[lyill(Ya + ¥r)-

(24)

By also substituting d = t"n + d, the second term gives

ll(tino + do)Ryng — (t'n + )R n|

< |ting +dol - [Rfng — R™n||

(25)
+ IR™n|lItfng — t™n|| + [R™n|||dy — d|
< (Yo + yo)ltino + dol + Itollve + vt + va>
where we have used [[tTng — t™n|| = [tJng — tIn + tIn —

t'n|| < [toll[lno — n|| + [[n]/[|to — t|. Substituting (24) and
(25) in (23), we finally obtain

e (r. ta, dly)
= max{e; (ro, to, &g, doly:) — 2(vt + vu (26)
+ (Ve + 700 (2131l + 1610 + dol ) + oI, 0}

Here, the lower bound has been obtained by inserting (10),
(22) and (26) into (12).

5 Implementation

Similar to prior art [42], we improve the algorithm’s ability
to handle the dimensionality of the problem by installing a
nested BnB paradigm.

5.1 Nested BnB

Detailed descriptions are given in Algorithm 1 (the Outer
Algorithm) and Algorithm 2 (the Inner BnB). We install a
nested BnB scheme in which the outer layer searches through
the space Crq of all angular parameters (Algorithm 1), the
inner layer optimizes over the space Cyy of translation and
depth (Algorithm 2). While finding the bounds in a sub-
volume of the angle space, the algorithm calls the inner BnB
algorithm to identify the optimal translation and depth. One

@ Springer

Algorithm 1 Main Algorithm: BnB search for optimal reg-
istration and symmetry parameters

Input: Data and model point set; threshold 71; initial intervals Cyr and
Ctq.
Output: Globally minimal error E* and the optimal r*, t*, a*, d*
Put Cyy into priority queue Qpq. Set E* = 4-o00.
loop
Read out interval with lowest E,, from Qpq.
Quit the loop if E* — E ., < 1.
Divide interval into sub-intervals.
for each sub-interval Cyq do
Compute the corresponding optimal t’ and d’ by calling Algo-
rithm 2 with Ry, and ng(ecp).
Compute Erq and E,, for Cry with the estimated t', d'(zero
translation and depth uncertainty).
if Erq < E* then
Run ICP with initialization of (rg, t', oo, d’)
Update E*, r*, a*, t*, and d* with the results of ICP.
end if
Discard Cyy if E., > E*; otherwise put it into Qe
end for
end loop

Algorithm 2 BnB search for optimal translation and depth
given rotation and normal

Input: Data and model point set; threshold 17; initial intervals Cig;
Currently lowest error E*
Output: Minimal error E* and the optimal t*, d*
Put Cyy into priority queue Qyg.
loop
Read out interval with lowest E;; from Qyy.
Quit the loop if E* — Ey; < 1.
Divide interval into sub-intervals.
for each sub-interval C¢; do
Compute Eg and E, 1 for Ctq with the ry, ao(zero rotation and
normal uncertainty).
if Eqq < E* then
Update E* and t*, d*.
end if
Discard Cyq if Eq; > E*; otherwise put it into Qg
end for
end loop

important approximation that accelerates the execution is that
when we estimate the bounds in the outer BnB search, the
uncertainties y¢ and y, are set to zero. When we estimate the
bounds in the inner BnB, the uncertainties y, and y; are set
to zero. Nested BnB implementations are commonly used to
speed up the execution. For more details, please refer to [42].

5.2 Integration with Local ICP

Within the outer layer, whenever BnB identifies an interval
Crq with an improved upper bound, we will execute a con-
ventional local ICP algorithm starting from the centre of the
Crq and taking t* and d* as an initial value. Once ICP con-
verges to a local minimum with a lower function value, the
new value is used to further reduce the upper bound. The
technique is inspired by Yang et al. [43].
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Fig. 1 Example of 2D point set registration with an overlap ratio of 0.3302

5.3 Trimming for Outlier Handling

A general problem with partially overlapping point sets is
that—even at the global optimum—some points may simply
not have a correspondence, and should hence be treated as
outliers. Although the addition of symmetry and point reflec-
tions already greatly alleviates this problem, we still add the
strategy proposed in Trimmed ICP [13] for robust point-set
registration. More specifically, in each iteration, only a sub-
set of the matched data points with smallest point-to-point
distances are used for motion computation. In this work,
we choose a 90%-subset for both symmetry and registration
residuals.

6 Experiments

We now report our experimental results on both synthetic and
real data. In all experiments, we pre-normalize the pointsets
such that all points are within the volume [—1, 1]3. The space
of possible axis-angle rotation vectors r; and translation vec-
tors t; can therefore be limited to the intervals [—7, 4+ ] and
[—0.5, 0.5] in each dimension, respectively. For the symme-
try plane, the angles of the normal vector and the scale d can
be constrained to the intervals [—7%, +7%] and [-0.5, +0.5],
respectively. The threshold ¢ and penalty parameter w; in
(10) are set to 0.02 and 2. The weight w, balancing the regis-
tration and symmetry costs in (11)is 0.1. We run experiments
on both 2D and 3D data. For the stopping criteria, parameter
71 in the outer-BnB of both our and reference implementa-
tions are set to 0.01, and the threshold 15 of the inner-BnB
is set to 0.03. Note that these values are too small to have
any noticeable impact on the convergence of the algorithm.
Theoretically, making 7; and 7, smaller would merely make
the results more accurate by trading computational efficiency
versus higher solution space resolution and thus accuracy.
The parameters used in our experiments simply strike a good
balance between runtime and accuracy.

6.1 Performance on 2D Synthetic Data

We compare our algorithm against a sequential combina-
tion of the 2D version of Go-ICP [42] for registration and
the ransac-based algorithm presented in [15] for symmetry
detection over the aligned point sets. In the case of 2D data,
there are 5 degrees of freedom (DoF) to estimate. One is
given by the relative rotation angle, two by the translational
displacement, one by the symmetry normal angle, and one
by the corresponding scale. Note that in this case, the axis-
angle representations of normal « and rotation r become a
1-dimensional vector (i.e. a scalar).

Description of experiments Each experiment is generated
by taking an image that contains a symmetrical object and
using the Sobel edge detector to extract the object’s contour
points. To evaluate the performance, we randomly divide the
contour points into two subsets with a defined and structured
overlap. To conclude, ) is transformed by a random rotation
and translation drawn from the intervals +180 degrees and
+0.5.

Handling of limited overlap The overlap between both point
sets is varied from 10 to 83%. For each overlap ratio, we
repeat 50 experiments each time choosing a random object,
rotation and translation. Figure 1 shows an example result,
where the left is the result of our proposed method, the centre
shows the result of the 2D version of Go-ICP, and the right
one shows the ground truth alignment. Table 1 shows the
rotation and symmetry plane normal errors. As demonstrated
by vastly reduced mean errors, our method has a substantially
better ability to deal with limited partial overlaps compared
to Go-ICP. Note that results for translation and depth behave
analogously.

QOutlier handling To test resilience against outliers, we
repeat the same experiment but add up to 30% outliers with a
zero mean and standard deviation 0.05 to both & and ). Fig-
ure 2 indicates an example result, and Table 2 again illustrates
the evaluated errors over all experiments. While the registra-
tion error starts to increase earlier (starting from an overlap
ratio within the interval [0.4, 0.6]) and average angular errors
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Table 1 Rotation symmetry

normal errors on 2D synthetic Overlap ratio [0, 0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8] [0.8, 1]
data with no outliers Rotation (ours) 21.78/4.64 15.69/12.96 1.86/0.40 0.70/0.31 0.35/0.23
Rotation (Go-ICP) 70.32/51.73 42.93/13.75 3.57/0.45 0.69/0.20 0.34/0.14
Symmetry normal (ours) 26.84/20.29 12.62/11.70 1.82/0.86 0.90/0.49 0.54/0.34
Symmetry normal (Go-ICP) 60.81/78.46 30.62/2.00 5.02/0.37 1.79/0.37 0.41/0.22
Indicated errors are the mean/median in unit degrees
our result 2D Go-ICP ground truth
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Fig.2 Example of 2D point set registration with an overlap ratio of 0.3288 and 30% outliers
Table 2 Rotation symmetry ]
normal errors on 2D synthetic Overlap ratio [0, 0.2] [0.2,0.4] [0.4,0.6] [0.6, 0.8] [0.8, 1]
data with 30% outliers Rotation error (ours) 17.33/13.33 23.61/19.73 5.37/1.07 1.90/0.65 1.32/0.43
Rotation error (Go-ICP) 82.72/61.39 64.04/42.70 21.63/0.76 1.49/0.17 0.54/0.17
Symmetry normal (ours) 37.91/23.73 15.46/12.89 4.07/1.11 2.26/0.85 1.31/0.70
Symmetry normal (Go-ICP) 62.38/78.48 35.43/7.62 21.17/1.39 5.14/0.48 0.83/0.32

Indicated errors are the mean/median in unit degrees

tend to be higher, it can still be concluded that our method
significantly outperforms the combination of Go-ICP and the
symmetry plane detection method in [15].

6.2 Performance on Open 3D Shape Data

The disadvantage of BnB is that its complexity grows expo-
nentially in the dimensionality of the problem. We therefore
take prior information about the 3D point sets into account
that helps to reduce the dimensionality. We make the assump-
tion that most objects are standing upright on the ground
plane. The rotation between different partial point sets is
therefore still constrained to be a 1D rotation about the ver-
tical axis. We, furthermore, make the assumption that the
symmetry plane is vertical; thus, the normal vector n remains
a 1D variable and in the horizontal plane. Finally, given zero
vertical displacements, the translation remains a 2D vector
over the interval [—0.5, +0.5]2. In summary, the 3D case is
still solved as a 5-dimensional estimation problem by using
the assumption of upright placement on the ground plane.
Hence, the axis-angle representations of normal & and rota-
tion r are also reduced to 1-degree of freedom variables. In
all object registration visualizations here, the red points are
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the model (or target) points, and the green points are the data
(or source) points. The symmetry plane is indicated in yel-
low. Note that the assumption that the ground plane is known
is a very common assumption in object-level SLAM systems
such as SLAM++ [34] and CubeSLAM [44]. The ground
plane could be detected algorithmically, and its extraction
could be supported by an IMU sensor.

Description of experiments We use open 3D shape data to test
our algorithm. The point-sets are generated by different scan-
ners with differing noise levels. We use the bunny, dragon
and Buddha models from the Standford 3D dataset. The chef,
dinosaur and chicken models are from [25]. While the latter
three models are practically symmetric, the bunny, dragon
and Buddha models are only partially symmetric shapes.
Each model contains multiple scans, and we do the align-
ment for each pair of two scans.

Parameter Analysis Before illustrating further comparative
results, we first analyse the influence of some of the param-
eters used in the objective (11). [8,43] already analyse many
details about branch and bound for point set registration. Here
we focus on further analysing how the quality depends on
the adjustment of the weighting factor w; and the threshold
parameter c. Figure 3 indicates the intersection-over-union
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Fig. 3 Parameter analysis: Each column shows one individual example registered using different choices for wy and c. Results in red indicate a

high IoU with ground truth, and darker colours inferior results

(IoU) with the ground truth bounding box resulting from dif-
ferent parameter combinations, a measure that encapsulates
both the quality of the registration and the accuracy of the fit-
ted symmetry plane. The IoU is each time indicated relatively
through a colour code. Red means a high IoU, whereas darker
colours down to black indicate decreasing IoU results. The
second row gives a qualitative impression of the correctly
registered point-sets of each corresponding model. Each col-
umn in the figure illustrates a different case:

— The first column represents the most common situation
in which the two point sets have a large overlap ratio
and are distributed mostly on one side of the symmetry
plane. The symmetry parameter wy disturbs the accuracy
of the registration if it is set to a larger value. In order
to maintain correct functionality for non-symmetric or
at least largely overlapping examples, the parameter w;
should be chosen smaller than 0.15.

The second column illustrates a constellation in which
the point sets are distributed on different sides of the
symmetry plane. It is the case our algorithm is designed
for; thus, the sensitivity with respect to a proper choice
of the weight w» is lower compared to the first example.
The third example is a case in which one point set is
symmetric in itself, whereas the other point set contains
points from one side of the symmetry plane, only. The
registration in this case is generally less stable, irrespec-
tive of the choice of the weight parameter w,. The case is
affected by an increase in mismatched correspondences

since even the correctly estimated symmetry plane will
not increase the overlap ratio.

— The fourth column illustrates an example of registering
two scans from either side of a partially symmetric shape.
Estimating a plane of symmetry is still helpful in increas-
ing the overlap ratio. Constraints on the weight w, are
similar than in the first situation.

In summary, w, should not be chosen too large and the sen-
sitivity with respect to the threshold parameter c is generally
much lower. Note, however, that the intervals for success-
ful parameter tuning are sufficiently large and no further
parameter tuning for individual experiments is required once
acceptable values have been set. During all experiments in
this paper, the parameters have indeed never been adjusted.
Visualization of iterations Figure 4 illustrates the iterations
of two different registration examples. Note that the orienta-
tion and location of each bounding box is constrained to be
symmetric with respect to the current symmetry plane loca-
tion. In each example, we illustrate the first five instances of
the currently best registration parameters E*, rx, o*, t* and
d*. As can be observed, our proposed algorithm gradually
finds the symmetry plane and leads to a good registration
result.

Error Evaluation for 3D data We compare our method
against Go-ICP [42] as well as the feature-based alignment
method fast global registration (FGR) [48]. For the latter
approach, the parameters for point downsampling and fea-
ture extraction are adjusted to maximize the quality of the
registration results. The maximum number of iterations is
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Fig.4 Iterative registration updates for two different examples
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Fig. 5 Errors of 3D registration on symmetric data compared against 3D Go-ICP [43] and FGR [48], both followed by ransac-based symmetry

detection [15]

set to 500, which is significantly larger than the default value
of 200. For FGR, the symmetry plane is again fitted in a post-
processing step taken from [15]. The stopping threshold 7;
of the outer BnB of both our algorithm and Go-ICP is set to
0.01, while the threshold for the inner BnB is set to 0.03 to
reduce the execution time. Figures 5 and 6 show quantita-
tive results for perfectly symmetric and partially symmetric
shapes, respectively. In order to also evaluate the quality
of the fitted symmetry plane, we continue to evaluate the
(3D) IoU between the recovered and the ground truth bound-
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ing box. Note, however, that, as indicated in subfigures (d),
the measure of the symmetry plane scale accuracy does not
depend much on the actual overlap ratio in the partial point
clouds. If the point sets have a large overlap they may cover
only a part of the object, thus not constraining the symmetry
plane. On the other hand, if the overlap is small, our method
may actually achieve slightly better accuracy.

If we compare Figs. 5 and 6, we observe that our algorithm
performs better than Go-ICP and FGR, for both symmetric
and partially symmetric shapes. The trend of the average
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Fig. 6 Errors of 3D registration on partially symmetric data compared against 3D Go-ICP and FGR, both followed by ransac-based symmetry

detection [15]
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Fig.7 Average success ratio over 1522 pair-points from the 3D shape data

success ratio we evaluated for all 3D shape registrations in
Fig. 7 is similar. We define a registration success when the
rotation error is less than 5 degrees and the translation error
is less than 0.05. As can be observed, when the overlap ratio
is less than 0.4, Go-ICP and FGR have a low success ratio,
whereas our algorithm still obtains more than 30% success
ratio. Figure 8 illustrates more visual examples on registered
point clouds. Noise and overlap ratio are indicated at the
bottom left of each example.

Asymmetric objects and objects with multiple symmetry
planes Our proposed algorithm assumes that the object has at
least one symmetry plane. We therefore evaluate the perfor-
mance of our algorithm on asymmetric objects and objects
with multiple symmetry planes. The objects tested here are
from ModelNet40 [38]. The reader is referred to the deep
shape registration work of [45] to look up how the test cases
are generated. Figure 9 shows three objects: a piano, a stair
and a sofa (the latter one still being partially symmetric).
The detected symmetry varies and is likely to be a hyper-
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Fig.8 3D alignment results for concrete experiments. Overlap ratio and added outliers are indicated for each pair
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Fig.9 Example on asymmetric objects, the three row objects are Piano, Stair, Sofa
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Fig. 10 Visualization of objects with multiple symmetry planes

plane that divides the points into two similarly large point sets
that—if reflected—maximize the symmetry fitting objective
for the points. The situation for objects with multiple sym-
metry planes is slightly different. Figure 10 shows results for
three different tables with 2, 8 and infinitely many symmetry
planes. When an object has more than one symmetry plane,
there will simply be more than one possible registration solu-
tion. While some of the aligned results are different from the
ground truth alignment, they are still valid solutions in the
sense of the fitted objective. Which solution will be picked is
hard to predict and may depend on properties such as noise
and point density.

Time cost

The branch-and-bound algorithm typically searches the
whole parameter space and therefore has an exponential
worst-case time complexity. If we do not make the assump-
tion that objects are placed upright with known gravity
direction, the total number of parameters to estimate in the
3D case will be 9. In the branch step, we need to search
2° = 512 sub-intervals resulting in 16 times more sub-
intervals than in the 5 parameter case. Table 3 gives the time
cost of 9-parameter optimization examples compared against
the original 5 degree of freedom case. The time cost for 9
degrees of freedom is around 16 times higher, which agrees
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Table 3 Runtime comparison

between 5 and 9 parameter Time(s) Chef Dinosaur Chicken Bunny Dragon Buddha
optimizations 5 DoF 36.8417 26.2592 25.6426 22.0002 19.6215 22.3936
9 DoF 1115.7622 1264.3211 1789.4401 1668.7207 1092.5371 1595.2189

ground truth

Fig. 11 Visualization of 5 DoF and 9 DoF optimization

with the initial intuition. Figure 11 illustrates four examples
comparing 5 and 9 parameter scenarios. For 9 degrees of
freedom, the number of potential solutions for registration
and symmetry detection is potentially higher, which further
increases the difficulty to identify the ground truth solution.
Compared against Go-ICP, the improved accuracy of our
algorithm comes at the expense of increased time cost. There
are two reasons. First, our algorithm branches over two addi-
tional variables, which are normal and scale of the symmetry
plane. Second, our algorithm finds the nearest points in a
union of sets of points which is incrementally updated as
the algorithm proceeds. As indicated in Fig. 12, our algo-
rithm is slower than the original Go-ICP. While it is not
suitable for real-time shape matching, it is still instrumental
in demonstrating the value of joint symmetry plane fitting,
and we believe that the algorithm can be employed as part of
a latency-tolerant back-end thread that for example performs
shape completion.
Failure cases Figure 13 illustrates situations in which our
algorithm fails. When the missing part of the source point
set does not have corresponding points in the target set or
its reflection (points indicated by the red dotted circles in
Fig. 13), registration quality decreases. While this result is
common and intuitively clear, we would like to stress that the
achievable accuracy or registration quality by our algorithm
would still be comparable to Go-ICP.
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9 DoF 5 DoF ground truth

Performance on further 3D synthetic scans To evaluate the
performance on more data, we choose 24 symmetric CAD
models from ShapeNet [9] containing 8 individual types of 3
different classes. For each example, we generate 16 depth
images (with occlusions) from random views around the
object (rejecting very similar views). We sample random
pairs of scans from each set of 16 depth images and add ran-
dom transformations, thus leading to a total of about 6000
point-set registration experiments. Figure 14 illustrates some
of the scans aligned by our algorithm. Figure 15 again indi-
cates mean and median errors of all estimated quantities as a
function of the overlap between the sets.

FGR suffers from its reliance on the 3D feature FPFH,
for which the varying density in the synthetic data influences
accuracy. This can be observed from the green lines, indi-
cating angular errors that tend towards 90°, the centre of the
interval [0; 180].

6.3 Experiments on Real Scene

Our last experiment is an exciting application to real data
that goes back to the initial motivation in the introduction.
Figure 16 shows depth images captured by a Kinect cam-
era, each one containing three instances of the same object
under different orientations. By pairwise alignment of partial
object scans, the mutual information is transferred thus lead-
ing to more complete perception of each individual object.



Journal of Mathematical Imaging and Vision (2021) 63:689-707

703
Fig. 12 Execution time for scan T T T T T
registration on the shape dataset 80 | |=©—chef -
with different point densities dinosaur
3 —e—chicken
@ 60 [ -
ot =—8—Dbunny Z
£ —e—dragon
; 40 |- |=—@=—buddha 7
O) J—
o o -----"-2
20 _-—— - — =0
S __—:'i——==g=='-.:==-g
- T mm == I — - = — - =
EEEEE=Cg8-—=—==F-=-=-
AATINLEL 1 | 1
500 1000 1500 2000 2500
Number of data points
our result Go-ICP ground truth our result Go-ICP ground truth

Fig. 14 Alignment results with partial scans generated from CAD models from ShapeNet [9]
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Fig. 16 Shape completion by aligning partial scans of identical objects in RGBD images
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scene

Fig. 17 Further results on shape completion in scenes with multiple instances of the same object, this time with objects from different classes

Note that we use simple ground plane fitting and depth
discontinuity-aware point clustering within object bound-
ing boxes to isolate the partial object scans. With known
position of the ground plane, we then transform the whole
scene to be orthogonal to the ground plane and meet the
assumption that all objects are placed upright and—in terms
of relative rotation—differ only by an angle about the ver-
tical axis. For pair-wise registration, we choose the partial
shape observation with the most points as the reference with
respect to which all other scans are registered. In Fig. 16,
the first column shows the original scan in different orien-
tations, the second one the partial object measurements, the
third one the completion obtained by using Go-ICP as an

alignment algorithm and ransac-based symmetry detection,
and the last one the result obtained by using our algorithm.
As can be observed, our joint alignment strategy outperforms
the comparison method and achieves more meaningful shape
completion results.

Figure 17 shows three more examples on shape comple-
tion, the difference being the fact that these scenes contain
multiple objects of different classes. Using the support of a
semantic object classifier, our method is still able to trans-
fer mutual information between identical objects and thus
complete and improve the individual shape representations.
Note, furthermore, that—while the accurate estimation of the
symmetry plane orientation remains challenging—the addi-
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tional estimation of symmetry parameters strongly supports
the placement of a bounding box with strong hints on the
object’s pose.

7 Discussion

Symmetry detection and point set alignment over sets with
small overlap are challenging problems if handled sepa-
rately. Our work makes two main contributions. First, we
show that those two problems become substantially eas-
ier if solved jointly. Second, we demonstrate a substantial
improvement in both accuracy and success rate of the align-
ment by solving jointly for the symmetry parameters. The
information gained from estimating symmetry and reflecting
points notably makes up for otherwise missing correspon-
dences. Surprisingly, the approach shows benefits even in
the case of only partially symmetric objects. Furthermore,
the approach is tuned such that both large and small overlap
cases can be transparently handled. While branch-and-bound
implementations are not real-time capable, we are still able to
demonstrate practical usefulness, for example, in the context
of back-end shape completion.
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ons.org/licenses/by/4.0/.

References

1. Alexandrov, S.V., Patten, T., Vincze, M.: Leveraging symmetries to
improve object detection and pose estimation from range data. In:
International Conference on Computer Vision Systems, pp. 397—
407. Springer, Berlin (2019)

2. Arun, K.S.,Huang, T.S., Blostein, S.D.: Least-squares fitting of two
3-d point sets. IEEE Trans. Pattern Anal. Mach. Intell. §, 698-700
(1987)

3. Avetisyan, A., Dai, A., NieBner, M.: End-to-end cad model retrieval
and 9d of alignment in 3d scans. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 2551-2560 (2019)

4. Bergstrom, P., Edlund, O.: Robust registration of point sets using
iteratively reweighted least squares. Comput. Optim. Appl. 58(3),
543-561 (2014)

5. Besl, PJ., McKay, N.D.: Method for registration of 3-d shapes. In:
Sensor fusion IV: control paradigms and data structures. Interna-
tional Society for Optics and Photonics, vol. 1611, pp. 586606
(1992)

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Brégier, R., Devernay, F., Leyrit, L., Crowley, J.L.: Symmetry

aware evaluation of 3d object detection and pose estimation in
scenes of many parts in bulk. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision Workshops, pp. 2209-2218
(2017)

. Bustos, A.P., Chin, T.-J.: Guaranteed outlier removal for point

cloud registration with correspondences. IEEE Trans. Pattern Anal.
Mach. Intell. 40(12), 2868-2882 (2017)

. Campbell, D., Petersson, L.: Gogma: Globally-optimal gaussian

mixture alignment. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5685-5694 (2016)

. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang,

Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H. et al.:
Shapenet: an information-rich 3d model repository. arXiv preprint
arXiv:1512.03012 (2015)

Chen, C.-S., Hung, Y.-P., Cheng, J.-B.: Ransac-based darces: a
new approach to fast automatic registration of partially overlap-
ping range images. IEEE Trans. Pattern Anal. Mach. Intell. 21(11),
1229-1234 (1999)

Chen, J., Wu, X., Wang, M.Y,, Li, X.: 3d shape modeling using a
self-developed hand-held 3d laser scanner and an efficient ht-icp
point cloud registration algorithm. Opt. Laser Technol. 45, 414—
423 (2013)

Chen, Y., Medioni, G.: Object modelling by registration of multiple
range images. Image Vis. Comput. 10(3), 145-155 (1992)
Chetverikov, D., Stepanov, D., Krsek, P.: Robust euclidean align-
ment of 3d point sets: the trimmed iterative closest point algorithm.
Image Vis. Comput. 23(3), 299-309 (2005)

Cicconet, M., Hildebrand, D.G., Elliott, H.: Finding mirror sym-
metry via registration and optimal symmetric pairwise assignment
of curves: algorithm and results. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 1759-1763 (2017)
Cohen, A., Zach, C., Sinha, S.N., Pollefeys, M.: Discovering and
exploiting 3d symmetries in structure from motion. In: 2012 IEEE
Conference on Computer Vision and Pattern Recognition, pp.
1514-1521. IEEE (2012)

Engqvist, O., Josephson, K., Kahl, F.: Optimal correspondences
from pairwise constraints. In: 2009 IEEE 12th International Con-
ference on Computer Vision, pp. 1295-1302. IEEE (2009)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM 24(6), 381-395 (1981)
Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global
registration. In: Symposium on Geometry Processing, vol. 2, p. 5.
Vienna, Austria (2005)

Granger, S., Pennec, X.: Multi-scale em-icp: A fast and robust
approach for surface registration. In: European Conference on
Computer Vision, pp. 418—432. Springer (2002)

Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., Kwok, N.M.: A
comprehensive performance evaluation of 3d local feature descrip-
tors. Int. J. Comput. Vis. 116(1), 66-89 (2016)

Hartley, R.I., Kahl, F.: Global optimization through rotation space
search. Int. J. Comput. Vis. 82(1), 64-79 (2009)

Jiang, W., Xu, K., Cheng, Z.-Q., Zhang, H.: Skeleton-based intrin-
sic symmetry detection on point clouds. Graph. Models 75(4),
177-188 (2013)

Liu, Y., Hel-Or, H., Kaplan, C.S., Van Gool, L., et al. Computa-
tional symmetry in computer vision and computer graphics. Found.
Trends Comput. Graph. Vis. 5(1-2), 1-195 (2010)

McCormac, J., Clark, R., Bloesch, M., Davison, A., Leutenegger,
S.: Fusion++: Volumetric object-level slam. In: 2018 International
Conference on 3D Vision (3DV), pp. 32—41. IEEE (2018)

Mian, A.S., Bennamoun, M., Owens, R.: Three-dimensional
model-based object recognition and segmentation in cluttered
scenes. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1584-1601
(2006)


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1512.03012

Journal of Mathematical Imaging and Vision (2021) 63:689-707

707

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Milanese, M.: Estimation and prediction in the presence of
unknown but bounded uncertainty: a survey. In: Robustness in Iden-
tification and Control, pp. 3-24. Springer (1989)

Mitra, N.J., Pauly, M., Wand, M., Ceylan, D.: Symmetry in 3d
geometry: extraction and applications. In: Computer Graphics
Forum, vol. 32, pp. 1-23. Wiley Online Library (2013)

Nagar, R., Raman, S.: Fast and accurate intrinsic symmetry detec-
tion. In: Proceedings of the European Conference on Computer
Vision (ECCV), pp. 417434 (2018)

Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D.,
Davison, A.J., Kohli, P.,, Shotton, J., Hodges, S., Fitzgibbon, A.:
KinectFusion: Real-time dense surface mapping and tracking. In:
International Symposium on Mixed and Augmented Reality (2011)
Pulli, K.: Multiview registration for large data sets. In: Second
International Conference on 3-D Digital Imaging and Modeling
(Cat. No. PR00062), pp. 160-168. IEEE (1999)

Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets
for 3d object detection from rgb-d data. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 918-927 (2018)

Rock, J., Gupta, T., Thorsen, J., Gwak, J., Shin, D., Hoiem, D.:
Completing 3d object shape from one depth image. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 2484-2493 (2015)

Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms
(fpth) for 3d registration. In: 2009 IEEE International Conference
on Robotics and Automation, pp. 3212-3217. IEEE (2009)
Salas-Moreno, R.F., Newcombe, R.A., Strasdat, H., Kelly, PH.,
Davison, A.J.: Slam++: Simultaneous localisation and mapping at
the level of objects. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1352-1359 (2013)
Schiebener, D., Schmidt, A., Vahrenkamp, N., Asfour, T.: Heuristic
3d object shape completion based on symmetry and scene context.
In: 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 74-81. IEEE (2016)

Speciale, P., Oswald, M.R., Cohen, A., Pollefeys, M.: A symme-
try prior for convex variational 3d reconstruction. In: European
Conference on Computer Vision, pp. 313-328. Springer (2016)
Tsin, Y., Kanade, T.: A correlation-based approach to robust point
set registration. In: European Conference on Computer Vision, pp.
558-569. Springer (2004)

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.:
3d shapenets: a deep representation for volumetric shapes. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1912-1920 (2015)

Xu, K., Zhang, H., Tagliasacchi, A., Liu, L., Li, G., Meng, M.,
Xiong, Y.: Partial intrinsic reflectional symmetry of 3d shapes.
ACM Trans. Graph. (TOG) 28(5), 138 (2009)

Yang, H., Antonante, P., Tzoumas, V., Carlone, L.: Graduated non-
convexity for robust spatial perception: From non-minimal solvers
to global outlier rejection. IEEE Robot. Autom. Lett. 5(2), 1127-
1134 (2020)

Yang, H., Shi, J., Carlone, L.: Teaser: fast and certifiable point cloud
registration. arXiv preprint arXiv:2001.07715 (2020)

Yang, J., Li, H., Campbell, D., Jia, Y.: Go-icp: A globally optimal
solution to 3d icp point-set registration. IEEE Trans. Pattern Anal.
Mach. Intell. 38(11), 2241-2254 (2015)

Yang, J., Li, H., Jia, Y.: Go-icp: Solving 3d registration efficiently
and globally optimally. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 1457-1464 (2013)

Yang, S., Scherer, S.: Cubeslam: monocular 3-d object slam. IEEE
Trans. Robot. 35(4), 925-938 (2019)

Yew, Z.J., Lee, G.H.: Rpm-net: Robust point matching using
learned features. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11824-11833
(2020)

46.

47.

48.

Yoshiyasu, Y., Yoshida, E., Guibas, L.: Symmetry aware embed-
ding for shape correspondence. Comput. Graph. 60, 9-22 (2016)
Zhang, Z.: Iterative point matching for registration of free-form
curves and surfaces. Int. J. Comput. Vis. 13(2), 119-152 (1994)
Zhou, Q.-Y., Park, J., Koltun, V.: Fast global registration. In:
European Conference on Computer Vision, pp. 766—782. Springer
(2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Lan Hu received the B.S. degree
from Shanghai University, Shang-
hai, China, in 2016. She is cur-
rently pursuing the Ph.D. degree
with the Shanghai Institute of
Microsystem and Information
Technology, Chinese Academy of
Sciences, and ShanghaiTech Uni-

versity, Shanghai, China. Her
research interests include 3-D
vision, semantic SLAM, and
robotics.

Laurent Kneip holds a Dipl.-

Ing. degree from the Friedrich-
Alexander University Erlangen/
Niirnberg and a PhD degree from
ETH Zurich, where he worked
at the Autonomous Systems Lab.
He also is a former recipient of
the Discovery Early Career
Researcher Award (DECRA) from
the Australian Research Council,
hosted by the Australian National
University, and an associate inves-
tigator of the Australian centre of
excellence for robotic vision. Dr.
Kneip currently holds a position

as an Associate Professor within the School of Information Sci-
ence and Technology at ShanghaiTech, where he founded and directs
the Mobile Perception Laboratory (MPL). Dr Kneip has published
more than 70 papers mostly in top conferences and journals such as
ICCV/CVPR/ECCV/ICRA/TPAMI/TRO. He is the main author of the
open-source project OpenGYV, and his long-term contributions in geo-
metric computer vision have, for example, been awarded by the Marr
Prize (honourable mention) at ICCV in 2017.

@ Springer


http://arxiv.org/abs/2001.07715

	Globally Optimal Point Set Registration by Joint Symmetry Plane Fitting
	Abstract
	1 Introduction
	2 Related Work
	2.1 Point-Set Registration
	2.2 Symmetry Plane Estimation

	3 Preliminaries
	3.1 Notations and Assumptions
	3.2 Registration of Two Point Sets
	3.3 Modelling and Identifying Symmetry
	3.4 Transformed Symmetry Plane Parameters

	4 Alignment and Symmetry as a Joint Optimization Problem
	4.1 Objective Function
	4.2 Derivation of the Upper and Lower Bounds

	5 Implementation
	5.1 Nested BnB
	5.2 Integration with Local ICP
	5.3 Trimming for Outlier Handling

	6 Experiments
	6.1 Performance on 2D Synthetic Data
	6.2 Performance on Open 3D Shape Data
	6.3 Experiments on Real Scene

	7 Discussion
	References




