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ABSTRACT 

The continuous development of steel products generates new challenges for the maintenance of manufacturing machines 

in steel mills. Substantial mechanical stress is inflicted on the machines during the processing of modern high-strength 

steels. This increases the risks of damage and flaws in the processed material may appear if the capability of a machine 

is exceeded. Therefore, new approaches are needed to prevent the machine condition from deteriorating. This study 

introduces an approach to the prediction of mechanical stress inflicted on a roller leveler during the processing of cold 

steel strips. The relative stress level is indicated by features extracted from an acceleration signal. These features are based 

on the calculation of generalized norms. Steel strip properties are used as explanatory variables in regression models to 

predict values for the extracted vibration features. The models tested in this study include multiple linear regression, 

partial least squares regression and generalized regression neural network. The models were tested using an extensive 

data set from a roller leveler that is in continuous operation in a steel mill. The prediction accuracy of the best models 

identified indicates that the relative stress level inflicted by each steel strip could be predicted based on its properties. 
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Introduction 

 

Product diversity in steel mills is continuously growing. The development of modern high-strength steels and advanced 

high-strength steels is driven by demanding market requirements (Silvestre et al. 2015). The production of these modern 

steels pushes the manufacturing equipment close to its limits of endurance. The manufacturing machines, such as roller 

levelers, are often designed for steel products with different properties compared with modern steels. Therefore, the 

machine has to endure harsher conditions than it was originally designed for. The testing and modeling of material 

behavior and the formability of these new steel materials has received attention recently (Bruschi et al. 2014; Dong et al. 

2016; Silvestre et al. 2015; Sriram et al. 2012). The perspective of this study, however, is to evaluate the mechanical stress 

effect on the roller leveler, inflicted when processing various materials, including high-strength steel. The objective is to 

improve the safe operation and damage prevention in roller levelers in the light of increasingly challenging production 

requirements. 

Roller leveling is a method for straightening steel plates or strips after final rolling, heat treatment, or cooling operations. 

Flatness imperfections and uneven stresses can be eliminated by bending the rolled material in alternating directions. The 

literature on roller leveling is largely dominated by modeling based on finite element models (Huh et al. 2003; Seo et al. 

2016; Silvestre et al. 2014) and analytical models (Baumgart et al. 2015; Chen et al. 2015; Cui et al. 2011; Doege et al. 

2002; Liu et al. 2012; Silvestre et al. 2014). A vast number of these models are concerned with process simulation and 

parameter analysis. On the other hand, several studies focus on the analysis and control of material behavior in the leveling 

process (Dratz et al. 2009; Madej et al. 2011; Morris et al. 2001; Park and Hwang 2002). These approaches have a major 

significance for the design and the improvement of the leveling process. However, they do not provide direct solutions to 

the prevention of machine condition deterioration. 

The effects of leveling on machine condition have also been investigated by some authors. Sueoka et al. (2002) and 

Matsuzaki et al. (2008) applied analytical models and actual vibration measurements in the study of polygonal wear on 

work rolls in a hot leveler. Additionally, Karioja et al. (2015) analyzed vibration measurements to study the stress inflicted 

on an industrial roller leveler. The effects of leveling parameters on vibration features were analyzed by Nikula and 

Karioja (2016). Moreover, there is a broader selection of studies related to the vibrations in other steel forming processes 

and especially rolling processes. Numerical vibration modeling approaches have been used to study non-linear vibrations 

(Bar and Świątoniowski 2004), mid-frequency vibrations (Bar and Bar 2005), vertical vibrations (Nizioł and 

Świątoniowski 2005), and the chatter phenomenon (Heidari and Forouzan 2013). Wu et al. (2014) examined the 

relationships of vibration characteristics with local defects on the roll surface and later the chatter phenomenon (Wu et 

al. 2015) using numerical approaches and actual vibration measurements. The effect of vibrations on flatness 

measurements of steel strips has been studied by Usamentiaga et al. (2014) and Usamentiaga et al. (2015). However, the 

analysis of vibration measurements from roller levelers in industrial cases has rarely been discussed in the literature. This 

study extends the work presented by Karioja et al. (2015) and Nikula and Karioja (2016) by introducing a modeling 

approach to the stress evaluation of the industrial leveler. 

In this study, a data-driven approach to modeling is used. This is an especially suitable approach for industrial systems 

that are in continuous use. The model generation is relatively straightforward and detailed information on the physical 

properties of the modeled system can be partly ignored. On the other hand, comprehensive historical data from typical 

operation is needed for model training. Data-driven modeling and its application on machine diagnostics and prognostics 

have been widely studied (Jardine et al. 2006; Lee et al. 2014). The modeling methodologies include linear regression 

models (Wise and Gallagher 1996), such as multiple linear regression (MLR), principal component regression (PCR), 

partial least squares regression (PLSR) and non-linear regression methods, such as artificial neural networks (ANN) 

(Specht 1991) and support vector machines (SVM) (Smola and Schölkopf 2004). Additionally, Bayesian approaches 

(Mosallam et al. 2016) and stochastic modeling approaches such as Markov, semi-Markov (He et al. 2012), hidden 

Markov models (Wang 2007) have gained broad interest in machine prognostics recently. Data-driven modeling has been 

applied in rolling mill applications quite extensively as well. Neural networks have been used in many cases, including 

plate width set-up value estimation in a hot plate mill (Lee et al. 2000), temperature prediction for steel slabs (Laurinen 

and Röning 2005), steel hardness prediction (Das and Datta 2007) and the prediction of work roll thermal expansion 

(Alaei et al. 2016). Furthermore, Faris et al. (2013) used genetic programming to predict rolling force, torque, and slab 

temperature. Serdio et al. (2014) proposed residual-based fault detection using soft computing techniques for condition 

monitoring in rolling mills. However, this investigation differs from those examples in the target of the modeling, which 

is the prediction of the mechanical stress inflicted on the roller leveler. 



Acceleration measurements have been used for mechanical stress evaluation recently in some studies. Acceleration is a 

response to the force applied to the machine, and therefore, it has potential for stress monitoring. In some cases, the 

acceleration signal provides an even better indication of changes in the stress level compared with the strain gauge signal 

(Karioja and Lahdelma 2013). Accelerometers are practical sensors for industrial applications and for various fault 

detection applications as well (Lahdelma and Juuso 2011a). Stress evaluations based on acceleration signals have been 

previously made for steel mill machines such as the steel cutter (Karioja and Lahdelma 2015) and roller leveler (Karioja 

et al. 2015). Cumulative stress indices obtained from vibration measurements have also been proposed for a Kaplan water 

turbine and a load haul dumper (Juuso 2014). Cumulative stress indices were previously introduced for the prediction of 

roller mill fatigue based on torque measurements (Juuso and Ruusunen 2013) and later extended to the real-time risk 

analysis of machines and process devices (Juuso and Galar 2016). The stress contributions were obtained using a data-

driven non-linear scaling approach (Juuso and Lahdelma 2010). The approach proposed in this study has the following 

differences with regard to these previous stress evaluation approaches. A data-driven model is proposed for the prediction 

of the relative stress inflicted by each steel strip. Additionally, the trained model can be used for stress evaluation without 

real-time measurements, in contrast to the aforementioned approaches. The stress contributions are based on linear 

evaluation of vibration feature values instead of the non-linear scaling approach. 

The research question discussed in this study concerns the identification of the relative stress that is inflicted during the 

processing of steel strips. The relative stress defines the relative level of the mechanical stress that each leveling event 

inflicts on the machine. To indicate the relative stress level, features are extracted from an acceleration signal measured 

from the machine structure. These features are based on the generalized norms, which have been used in stress monitoring 

(Karioja and Lahdelma 2015) and various industrial condition monitoring applications previously (Lahdelma and Juuso 

2011a). The requirement for feature extraction comes from the large amount of data produced by an accelerometer. With 

generalized norms, this data can be effectively compressed, and at the same time, both long-term stress and impact stress 

effects can be monitored. Additionally, the automatic computation of large number of such features is practical in 

condition monitoring approaches. 

The working hypothesis is that the correlations of vibration features with steel strip properties could be successfully 

exploited as the basis for model generation. Additionally, the prediction of the relative stress level is studied using the 

generated regression models. These models include multiple linear regression, partial least square regression, and 

generalized regression neural network (GRNN). MLR is used to identify the linear relations between the vibration features 

and steel strip properties, whereas PLSR is used to reduce the dimensionality and collinearity in the explanatory data. 

GRNN is used to build a model that is free from the linearity assumption. The applied modeling approach is validated 

using an extensive data set, which includes data from a wide range of different steel strips. Based on the literature survey, 

multiple models for roller leveling have been introduced, but these models are mainly used for process simulation or the 

analysis of material behavior and process parameters. These models are typically complex and their application requires 

excessive computation. In contrast, this study introduces a straightforward experimental approach that can be applied in 

an industrial environment to support maintenance planning, for instance. 

This paper is organized as follows. The “Materials and methods” section provides a description of the industrial case and 

the methods used to conduct the study. The results from the industrial stress evaluation case are shown and discussed in 

the “Results and discussion” section. Finally, the study is summarized in the “Conclusions” section. 

 

Materials and methods 

 

The principles of roller leveling and the leveler studied here are presented in “Roller leveling” section. The practicalities 

related to vibration measurements are described in the “Vibration measurements” section. The generalized norms, which 

are used as the basis for vibration feature generation, are introduced in the “Generalized norms” section. The “Generalized 

norms in vibration simulation” section demonstrates the effect of the norm order in change detection using simulated 

vibration signals that imitate signals obtained from the industrial leveler. “Feature generation” introduces the features 

generated from the signals and steel strip properties. The modeling approach is presented in the “Regression modeling” 

section. 

 

 



Roller leveling 

The goal of roller leveling is to eliminate shape defects in the material. Steel coils contain flatness defects caused by 

uneven stresses and defects resulting from thickness variation across the product width (Smith Jr 1997). The stress patterns 

create longitudinal and transverse curvature. Edge and center waves are caused by a difference in the length of the sheet 

between the center and the edges (Park and Hwang 2002). Roller leveling is done by subjecting the strip to multiple back 

and forth bending sequences with increasing roll gaps, as illustrated in Fig. 1. In other words, the strip is exposed to 

reverse bending. The rolls on the entry side cause more curvature to the strip than the rolls near the exit. Strains in the 

strip are controlled by the set geometry of the leveler. The principle of roller leveling is based on controlling the plastic 

deformation through the thickness of the material. Plastic deformation determines the resultant flatness and memory and 

it also affects the required force. The roll force is a function of material thickness, width, yield strength, roll spacing, and 

the extent of plastic deformation (Smith Jr 1997). Appropriate control of operational parameters is therefore required for 

the desirable leveling result. 

The roller leveler under investigation is used for strips of cold steel at the SSAB steel mill in Raahe, Finland. Sheets are 

cut from a strip on the production line after the leveler using a flying shear. The cutting is performed simultaneously with 

leveling without the need to stop the strip in the leveler for cutting. The cutting of sheets causes shocks that are conducted 

to the leveler and emerge as peaks in the monitored vibration signal as described in the “Steel cut effect removal” section 

later on. The processed steel strips considered in this study showed a large variation of properties. The range of the yield 

strength was 210–1640 MPa; the length range was 68–1161 m; the thickness range was 1.98–15.21 mm; the weight range 

was 7400–29280 kg, the width range was 861–1875 mm; the number of cut sheets was 4–465 and 55 different steel grades 

were processed altogether. Materials with high yield strength and thickness impart substantial force on the rolls, whereas 

long strips need to be processed for a long duration and potentially inflict a high accumulation of stress. 

 

 

Fig. 1 The principle of a roller leveler 

 

Vibration measurements 

Three accelerometers were stud-mounted on the supporting structure beneath the lower supporting rolls of the leveler. 

The acceleration was measured horizontally in the cross direction compared with the direction of the roller track. Only 

the signal from the sensor located in the middle of the roller track was used in the stress estimation, because one signal 

was considered sufficient for this study. The other signals were used in data preparation, which is explained in the “Data 



preparation” section. The accelerometer used was an SKF CMSS 787A-M8, which has a frequency response from 0.7 Hz 

to 10 kHz with ±3 dB deviation. The measurement hardware included an NI 9234 data acquisition card and an NI 

CompactRIO for data acquisition. The sampling rate was 25.6 kHz and the only filter used at the hardware level was the 

built-in antialiasing filter of the data acquisition card. The measurement system was calibrated using a hand-held 

calibrator. 

 

Generalized norms 

The generalized norm introduced by Lahdelma and Juuso (2008) is defined by 

                    ‖𝑥(𝛼)‖
𝑝
= (

1

𝑁
∑ |𝑥𝑖

(𝛼)|
𝑝𝑁

𝑖=1 )

1

𝑝
.         (1) 

This feature is known as the lp norm of signal x(α) where p is the order of the norm, α is the order of derivation, x stands 

for displacement, and N is the number of data points. The lp norm has the same form as the generalized mean, also known 

as the Hölder mean or power mean (Bullen 2003). The lp norms are defined in such a way that 1 ≤ p < ∞. In the case of 0 

< p <1, norm (1) is not a proper norm in general, because it violates the triangle inequality || x + y || ≤ || x || + || y || 

(Lahdelma and Juuso 2011b). However, in this case, these p values are also valid because y is the null vector. The root 

mean square (rms) and the peak value, which are special cases of norm (1) when p = 2 and p = ∞, respectively, are often 

used as features in condition monitoring (Jantunen and Vaajoensuu 2010; Li et al. 2012). In this study, norms l0.1, l0.5, l1, 

l2, l4, and l10 were calculated from an acceleration signal (α = 2), but other signals could also be used. The features 

generated from generalized norms are introduced in the “Feature generation” section. 

 

Generalized norms in vibration simulation 

The acceleration signal measured from the roller leveler contains varying amplitude levels and peaks with different 

magnitudes. These features were simulated in order to demonstrate the significance of the norm order in feature extraction. 

The simulated signals consist of three cosine components with frequencies of 50, 80, and 150 Hz and 0° phases, 

respectively. The signals were generated by combining 60 samples that had 25600 points, which corresponds to one 

minute of data using sampling frequency of 25.6 kHz. 

In signal 1, the amplitudes (X) of each frequency were X = 0.5 on samples 1–15, X = 1 on samples 16–30, X = 4 on 

samples 31–45, and X = 10 on samples 46–60. Gaussian noise with variance σ2 = 0.5 was added on each sample. The 

signal-to-noise ratios (SNR) of these four 15-second segments were SNR = 20·log10(l2
signal / l2

noise) = [-1.25 4.77 16.81 

24.77], respectively. The complete signal is shown in Fig. 2 on the left. 

Signal 2 was generated by combining the second sample segment (samples 16–30) from signal 1 four times in a row. The 

last three segments were manipulated by adding three events with exceptionally large values on each segment. The 

magnitudes of these values were ±20, ±40, ±60, also shown in Fig. 2 on the right. One negative and one positive value 

were added on each event. Signal 3 is the same as signal 2 but without the exceptionally large values. 

A single norm value was computed from each one-second sample (N = 25600). The norm orders were p = [0.1 0.5 1 2 4 

10]. The sixty values of l0.1, l2, and l10 from signals 1 and 2 are shown in Fig. 2. The increasing amplitude of signal 1 is 

clearly seen in the norm values, as indicated on the left in Fig. 2. The relative magnitude of change between the segments 

is shown in Fig. 3. The leftmost graph in Fig. 3 shows the ratios of norm averages from the 2nd, 3rd, and 4th segments to 

the 1st segment from signal 1. The low order norm (e.g. p = 0.1) results in larger relative change compared with the high 

order norm (e.g. p = 10). This can clearly be seen especially in the ratio of the 4th segment to the 1st segment. This behavior 

shows that the difference between signal amplitude levels is the most distinguishable when norms with low order p are 

used. 

The graphs on the right in Fig. 2 show that exceptionally high signal values have a major influence on the high order 

norms (e.g. p = 10). On the other hand, the effect is small on the low order norms (p ≤ 2). The same effect is illustrated 

by the ratios of maximum norm values in the middle graph in Fig. 3. This behavior indicates that the effect of a single 

peak is large on the high order norms and negligible on the low order norms. 

The rightmost graph of Fig. 3 illustrates the effect of exceptionally high signal values on the sum values of norms, which 

were also used in feature generation, as presented in the next section. The sums of complete signals 2 and 3 were compared 



by studying their ratios. The influence of exceptionally high values was significant in the sums computed using a norm 

that had the order p ≥ 4. When the order of the norm was small, the effects of exceptionally high signal values were 

negligible and the ratios in Fig. 3 are therefore close to one. This behavior illustrates that large peak values may affect the 

norm sums if the order of the norm is high and the number of exceptionally high values is large with relation to the number 

of values summed. 

 

 

Fig. 2 Simulated signals (above) and generalized norms l0.1, l2, and l10 from the corresponding signals (below) 

 

 

Fig. 3 Effect of norm order in the detection of signal changes. 1st, 2nd, 3rd, and 4th segments correspond to points 1–15, 

16–30, 31–45, and 46–60 in the signals, respectively 

 

Feature generation 

The features generated from steel strip properties are shown in Table 1. The yield strength, length, weight, width, and 

thickness of steel strips are features number 1–5, respectively. These features were further transformed using the common 

logarithm, square, cube, square root, and cube root to produce features 6–30. The features with similar transformation 



were multiplied by each other to generate features 31–90. Finally, features 1–5 were multiplied by features 6–30 to 

generate features 91–190. These features were used as the explanatory variables in the modeling approach presented in 

the following section. 

 

Table 1 Steel strip features 

Feature number Description 

1, 2, 3, 4, 5 Yield strength, length, weight, width and thickness, respectively 

6–10 Common logarithm of features 1–5 

11–15 Square of features 1–5 

16–20 Cube of features 1–5 

21–25 Square root of features 1–5 

26–30 Cube root of features 1–5 

31–40 Products of features 1–5. Only different features were multiplied by each other. This also 

concerns features 41–90. 

41–50 Products of features 6–10 

51–60 Products of features 11–15 

61–70 Products of features 16–20 

71–80 Products of features 21–25 

81–90 Products of features 26–30 

91–110 Products of features 1–5 and 6–10 (Feature multiplication by its transformation, such as 

‘log10(length)·length’ was not included. This also concerns features 111–190) 

111–130 Products of features 1–5 and 11–15  

131–150 Products of features 1–5 and 16–20 

151–170 Products of features 1–5 and 21–25 

171–190 Products of features 1–5 and 26–30 

 

In order to obtain the feature values for the relative stress level, the generalized norm sums were computed from the 

acceleration signal. The sums were computed by adding up the norm values of one-second samples (N = 25600) from 

each leveling event. The leveling of one complete steel strip was considered as a leveling event. The summation was done 

to include the effect of stress accumulation during the leveling event on the relative stress features. These features were 

then used as response variables in the models. The response variable set contained ∑l0.1, ∑l0.5, ∑l1, ∑l2, ∑l4, and ∑l10 and 

the square, square root, and common logarithm of each. Twenty-four variables were included in this part of the set. The 

same variables were also computed after the removal of data points that correspond to steel cutting events. The removal 

of steel cut effects is introduced in the “Steel cut effect removal” section. Altogether 48 response variables were included 

in the complete set. In order to produce comparable modeling results, the values of explanatory variables and response 

variables were scaled to range 0–1. 

 

Regression modeling 

This section presents the applied modeling methods, including the multiple linear regression, partial least squares 

regression, and generalized regression neural network. Thereafter, the criteria used for model assessment are shown. The 

last part of this section presents the applied variable selection procedures and the cross-validation approach.  

Multiple linear regression 

Multiple linear regression is a popular and simple regression method, where the response variable is considered a linear 

combination of certain explanatory variables. MLR models the relationship between two or more explanatory variables 

and a response variable by fitting a linear equation to observed data. If the model has only one explanatory variable, the 

model is a simple linear regression model. An MLR model with N observations and k explanatory variables is formally 

defined by   

           𝑦𝑗 = 𝛽0 + 𝛽1𝑥𝑗1 + 𝛽2𝑥𝑗2 +⋯+ 𝛽𝑘𝑥𝑗𝑘 + 𝜀𝑗,        (2) 



where  j = 1, 2,…N, y denotes the value of the response variable, x is the value of the explanatory variable, β0 is the 

intercept, β1–βk are the unknown regression coefficients to be estimated, and ε is the error term. The model is identified 

using the least squares fitting. 

Partial least squares regression 

Partial least squares is an extension of principal component analysis and it has the ability to analyze data with several, 

noisy, collinear and incomplete variables (Wold et al. 2001). The underlying assumption of PLSR is that the observed 

data is generated by a system or process which is driven by a small number of latent variables, which are not directly 

observed or measured. The latent variables are linear combinations of the original variables and hold no correlation with 

each other. The latent variables explain the variation in the explanatory variables X and the variation in X which is the 

most predictive of the response variables Y. That is to say, PLSR maximizes the covariance between matrices X and Y. 

The matrix X is decomposed into a score matrix T, loading matrix P, and residual E. Similarly, the matrix Y is decomposed 

into a score matrix U, loading matrix Q, and residual F. The matrix decompositions are defined by 

          𝑋 = 𝑇𝑃′ + 𝐸 ,        (3) 

          𝑌 = 𝑈𝑄′ + 𝐹.        (4) 

The latent variables are calculated iteratively extracting informative features one at a time. The number of latent variables 

is typically smaller than the number of original variables and thus the method is considered as a dimensionality reduction 

method (May et al. 2011). However, it is also possible to express the PLSR formula in terms of the original variables 

(Rosipal and Krämer, 2006). There are several methods to determine the number of latent variables in a model. In this 

study, the number of latent variables was determined based on the cross-validation test result. The function plsregress in 

Matlab was used for model training.   

Generalized regression neural network 

The generalized regression neural network, developed by Specht (1991), is a memory-based network, which includes a 

one-pass learning algorithm with parallel structure. It approximates any arbitrary function between input and output 

vectors and draws the function estimate directly from the training data. The method is suitable for regression problems 

where an assumption of linearity is not justified. A GRNN configuration consists of four layers, which include the input 

layer, pattern layer, summation layer, and output layer (Kim et al. 2010). Each input unit in the input layer corresponds 

to individual observed parameters. The input layer is fully connected to the pattern layer, where each neuron represents a 

training pattern and its output is a measure of the distance of the input from the stored patterns. The pattern layer is 

connected to the summation layer, which has two different types of summation including S-summation neuron and D-

summation neuron. S-summation neuron determines the sum of the weighted outputs of the pattern layer, whereas the D-

summation neuron determines the unweighted outputs of the pattern neurons. The connection weight between the ith 

neuron in the pattern layer and the S-summation neuron is yi, which is also the target output value corresponding to the 

ith input pattern. The connection weight for D-summation neuron is unity. The output layer divides the output of each S-

summation neuron by that of each D-summation neuron. Therefore, a predicted value ŷ(x) to an unknown input vector x 

can be expressed as (Kim et al. 2010) 

                        𝑦̂𝑖(𝑥) =
∑ 𝑦𝑖exp[−𝐷(𝑥,𝑥𝑖)]
𝑛
𝑖=1

∑ exp[−𝐷(𝑥,𝑥𝑖)]
𝑛
𝑖=1

,         (5) 

where n and xi represent the number of training patterns and the ith training input pattern stored between the input and 

pattern layers, respectively. The Gaussian D function is defined as 

                         𝐷(𝑥, 𝑥𝑖) = ∑ (
𝑥𝑗−𝑥𝑖𝑗

𝜎
)
2

𝑝
𝑗=1 ,        (6) 

where p indicates the number of elements of an input vector. The xj and xij represent the jth element of x and xi, 

respectively. The parameter σ is referred to as the spread parameter, whose optimal value is often experimentally 

evaluated. In this study, the spread parameter of the best model was defined based on the cross-validation test result. The 

tested values were σ = [0.01 0.05 0.1 0.2 0.5 0.7 1 1.5]. The Matlab function newgrnn was used for model training. 

 

 



Criteria for model performance evaluation 

Four criteria were used to evaluate the models in this study. The predictive performance of the models was evaluated 

using the root mean squared error of prediction (RMSE), which gives the average prediction error. The RMSE criterion 

is given by 

                      𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑗 − 𝑦̂𝑗)

2𝑁
𝑗=1 ,         (7) 

where yj, ŷj, and N are the observed value, the corresponding predicted value, and the total number of observations, 

respectively. The goodness of fit for linear models was evaluated with the coefficient of determination (R2). The general 

definition of R2 is 

        𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
,             (8) 

where SSres =∑(yj - ŷj)2 is the sum of the squares of residuals and SStot = ∑(yj - ȳ)2 is the total sum of the squares. When 

the criterion is close to one, the fit of the model is good; when the criterion is close to zero, the fit is poor. The R2 criterion 

is inappropriate for the evaluation of non-linear regression models (Spiess and Neumeyer, 2010), and therefore it was 

used only for linear models. Pearson’s correlation coefficient was used to evaluate the linear correlation between the 

model predictions and the observed values in linear and non-linear models. The correlation coefficient for two variables 

x and y is given by 

                    𝑅𝑥𝑦 =
∑ (𝑥𝑗−𝑥̅)(𝑦𝑗−𝑦̅)
𝑁
𝑗=1

√∑ (𝑥𝑗−𝑥̅)
2
∑ (𝑦𝑗−𝑦̅)

2𝑁
𝑗=1

𝑁
𝑗=1

.        (9) 

Variance inflation factor (VIF) was used to assess the multicollinearity in the models. Multicollinearity is an indication 

of collinearity between three or more variables even if no pair of variables has a high linear correlation. This situation can 

be a serious problem for MLR and neural network models with many explanatory variables (May et al. 2011; James et al. 

2013). The VIF for each explanatory variable can be computed using the formula 

           𝑉𝐼𝐹 =
1

1−𝑅𝑖
2,                                (10) 

where Ri
2 is the R2 from a regression of explanatory variable Xi onto all of the other explanatory variables. If Ri

2 is close 

to one, then collinearity is present and the VIF will be large. The smallest value of VIF is one, which indicates the complete 

absence of collinearity. As a rule of thumb, a VIF value that exceeds 5 or 10 indicates a problematic amount of collinearity 

(James et al. 2013). 

Variable selection and model validation 

Performing the variable selection using an exhaustive subset selection approach requires the evaluation of a very large 

number of subsets. Suboptimal search procedures can significantly reduce the number to be evaluated (Whitney, 1971). 

Therefore, forward selection was applied to variable selection in this study. The exhaustive search, which tests all variable 

combinations in the models, was tested with the MLR models as an alternative variable selection approach. The approach 

was tested to investigate if the optimal subsets are clearly better than the suboptimal subsets defined using the forward 

selection. However, this approach was not tested with the PLSR and GRNN models due to their computationally more 

burdensome training procedure.  

In forward selection, the variables are included in progressively larger subsets so that the prediction performance of the 

model is maximized. First, P models each consisting of only one explanatory variable are built. P is the number of 

candidate variables. The variable that gives the best value for the observed performance criterion is selected. Then, P-1 

models are built each including the already selected variable and each of the remaining variables one at a time. The 

performance of the models is evaluated and the variable leading to the best model performance is added to the model. 

The addition of one variable at a time is repeated until the desired number of variables have been selected. 

Models with one to four explanatory variables were generated using the exhaustive search approach. The whole set of 

steel property features, presented in Table 1, was used in the exhaustive search for models with one and two explanatory 

variables. Features 1–90 were used in models with three explanatory variables and features 1–30 in models with four 

explanatory variables. These reduced sets were selected due to the high computational requirement of exhaustive search.  



The variables for the linear models were selected based on the model performance on the test sets using the cross-validated 

average of R2.  For GRNN, the variables were selected based on the cross-validated average of Rxy on the test sets. The 

selection was done based on the testing results in order to obtain models with the best prediction ability. The collinearity 

of explanatory variables in the best models was estimated using the maximum value of VIF from the particular models. 

A VIF value higher than five was considered as an indication of collinearity. 

Repeated random sub-sampling validation, also known as Monte Carlo cross-validation (Picard and Cook 1984; Shao 

1993), was used to validate the model performance. The data set was split one hundred times into training and test sets. 

Each test set included 20% of the points selected randomly and the remaining 80% of the points were included in the 

training set. All the models with different variable configurations were tested using the same random sets in order to 

enable an equal comparison of the models. 

 

Results and discussion 

 

Measurements in an industrial environment are susceptible to complications that need to be considered in data analysis. 

Signal pre-processing is an important prerequisite for credible results. The applied data preparation is therefore presented 

in the “Data preparation” section in a detailed manner and the removal of the steel cut effect from the signal is introduced 

in the “Steel cut effect removal” section. The main results are presented in the “Modeling results” section. The correlations 

between steel strip properties and vibration features are analyzed thereafter. The concluding discussion on roller leveler 

stress estimation based on the observations is presented in the “Discussion” section. 

 

Data preparation 

Acceleration was measured during a period of 37 days. The measurement was continuous and consequently the data 

included the leveling events as well as other irrelevant events. One minute of data from three sensors was saved in a single 

file. The elimination of unnecessary data was initiated by deleting the individual files that had an l2 value smaller than 

0.045 m/s2 in all three signals. The norm was computed from the data points of each complete signal separately, producing 

three values for each file. Crossing this limit value was considered an indication of action on the leveler.  

The data acquisition hardware was automatically restarted once a day to prevent the measurement system from crashing 

due to an unknown problem. An interruption in sensor power supply caused a large deviation in signal values. High values 

were then obtained for a few seconds as a consequence of the system settling time. Therefore, files that contained a signal 

value higher than 200 m/s2 were completely removed. 

The acceleration signals were then connected to specific steel strips based on the time stamps that indicated the start of 

the processing and the end of the coil tail drive. Expertise and inference were needed to address the inaccuracy in the time 

stamps. Leveling durations that were shorter than five minutes based on the number of files were considered incomplete 

and the corresponding events were thus removed. If the previous leveled strip had more than a 15-minute overlap with 

the strip under review based on the time stamps, the previous strip was also rejected in this case. 

During data analysis, it was noticed that a periodic disturbance was present in some of the signals when the leveler was 

idle. This disturbance increased the l2 value computed from the data points of a complete signal in a file. The files with 

the disturbance were removed by checking the ratio of l10 to l2. However, this was done only for files with an l2 maximum 

over 0.2 m/s2, computed in one-second segments (N = 25600). Files with a lower maximum were automatically accepted 

because the ratio check was not appropriate in these cases. In the ratio check, files with l10/l2 ≥ 3.75 computed from the 

data points of the complete signal were accepted if 10% of the ratios computed in three-second segments (N = 76800) 

from the complete signal were also higher than 2.1. The objective of the three-second examination was to eliminate the 

influence of single ratio peaks that were not caused by the leveler operation. 

After these stages, the leveling events that then contained less than six files or more than 60 files were rejected. These 

events were considered incomplete events or events that still included several minutes of idle machine state. Finally, 752 

steel strip leveling events were accepted for data analysis. The signal average was subtracted from the signals in order to 

ensure they had a zero mean. 

 



Steel cut effect removal 

The flying shear next to the steel leveler causes notable shocks, which can also be seen as high peaks in some of the 

measurements. Fig. 4 shows an example of the acceleration signal from the leveling of a single steel strip. The duration 

of this signal was 11 minutes. The steel strip was relatively thick (15.2 mm) and clearly distinguishable peaks emerged 

in the measured signal. The influence of cutting can also be seen in the l10 values, as shown in Fig. 4. 51 sheets were cut 

from this particular strip. However, it is difficult to define which shocks are definitely caused by cutting based on the 

acceleration signal alone. 

To remove the effect of the flying shear, a steel cut effect removal approach was applied to half of the 48 response 

variables. The l10 value was assumed to represent the steel cut effect if it was larger than the average of l10 computed in 

one-second segments from the whole leveling event and more than 1.5 times larger than the mean of four previous l10 

values. The corresponding data points were removed from all the generalized norms (l0.1, l0.5, l1, l2, l4, l10) based on the 

steel cut effects found in l10. The check was performed starting from the end of the event moving towards the start of the 

event. An example of removing the steel cut effect for one signal is shown in Fig. 4. 

 

 

Fig. 4 Acceleration signal and l10 norm during leveling of a steel strip 

 

Modeling results 

Regression models were generated to predict the relative stress on the machine. Forty-eight vibration features, which were 

introduced in the “Feature generation” section, were used as response variables in the models to indicate the stress level. 

All of the steel strip features shown in Table 1 were used as explanatory variable candidates in forward selection. MLR 

and PLSR were tested using one to ten explanatory variables, whereas GRNN was tested using one to five explanatory 

variables. MLR was also tested using one to four explanatory variables selected using the exhaustive search approach. 

The features tested as explanatory variables are given in Table 2. The rightmost column shows the number of variable 

combinations in each case. It can be seen that the number of possible combinations becomes high when the number of 

explanatory variables in a model increases. 

 

 

 

 

 



Table 2 Data sets in exhaustive search 

Number of explanatory variables Steel strip features Number of variable combinations 

1 1–190 9120 

2 1–190 861840 

3 1–90 5639040 

4 1–30 1315440 

 

Fig. 5 shows the modeling results of the best models with different number of explanatory variables. The results indicate 

that the performance of linear regression models reached the highest level when three to four explanatory variables were 

used. The use of additional variables did not improve the result. When the MLR models built using the exhaustive search 

and forward selection are compared, it is obvious that the exhaustive search approach resulted in better prediction 

accuracy only when two explanatory variables were used. This clearly demonstrates the impracticality of the exhaustive 

search approach for more than two explanatory variables in this case. The result also implies that the reduced candidate 

sets in exhaustive search had weaker predictive power compared with the full set of candidates even when suboptimal 

variable combinations from the full set were used. However, the differences in the model performances are small as shown 

in Fig. 5. 

The number of latent variables in PLSR was in the range from one up to the number of explanatory variables in each 

model. The best modeling results according to R2 with one to four explanatory variables were obtained using the same 

number of latent variables as there were explanatory variables. Therefore, these models were effectively MLR models. 

This indicates that the identification of latent variables from the original data did not improve the models. The best 

performing models with 5–10 explanatory variables had four latent variables each, but the model performance did not 

increase in comparison with the models that included fewer explanatory variables. 

Fig. 5 reveals that GRNN had better performance compared with linear regression models in model training. This implies 

that the neural network learned the training data effectively. However, the performance in model testing was almost the 

same with linear models when one to three explanatory variables were used. With four and five explanatory variables, 

the RMSE criterion for GRNN was clearly lower. This can be partly explained by the use of different response variable 

in the model. The response variable for the best linear regression models with 1–10 explanatory variables and GRNN 

with 1–3 explanatory variables was ‘log10(∑l0.1)’ with steel cut effect removal. The response variable for the best 

performing GRNN with four explanatory variables was ‘(∑l0.1)1/2’. With five explanatory variables, it was ‘(∑l0.5)1/2’. 

However, the correlation coefficient of GRNN models was only slightly higher in comparison with the linear models. 

 

 

Fig. 5 Cross-validation results from training and testing for the models with the best performance. The number of 

explanatory variables is shown on the horizontal axes and the values of performance criteria RMSE, R2, and Rxy are shown 

on the vertical axes 



Fig. 6 shows the maximum VIF values for the models with two to five explanatory variables. The VIF values were 

computed using data from all 752 steel strips. The results reveal that all the models had VIF value over 10 when five 

explanatory variables were used. All the MLR models built using the exhaustive search approach and the MLR models 

built using forward selection with 1–3 explanatory variables had VIF value smaller than five indicating the absence of 

collinearity. Fig. 6 also shows that VIF values increased together with the number of explanatory variables, when variables 

were selected using forward selection and the same response variable was used in the models. In contrast, the maximum 

VIF may also decrease as variables are added in models built using exhaustive search, as shown in Fig. 6. The collinearity 

has to be taken into consideration in the case of PLSR, because the models with 1–4 explanatory variables were MLR 

models in practice. Based on the maximum VIF values, the PLSR models with fewer than four explanatory variables had 

an acceptable level of collinearity. Fig. 6 reveals that the GRNN model had multicollinearity when five explanatory 

variables were used. The rightmost graph shows the maximum VIF values when ‘log10(∑l0.1)’ with steel cut effect removal 

was used as the response variable in GRNN. In that case, VIF values were on the acceptable level when fewer than four 

explanatory variables were used. 

 

 

Fig. 6 Maximum variance inflation factor (VIF) in the best performing models with two to five explanatory variables. 

The horizontal axes show the number of explanatory variables and the bars show the corresponding maximum VIF value 

in the particular model 

 

Table 3 summarizes the modeling results for the best models while the VIF value of explanatory variables was allowed 

to be less than five. The results of the linear models show that the training and testing results were consistent. Over-fitted 

models in training and overly optimistic testing results were avoided with the applied procedure. The results of GRNN 

models show that the neural network learned the data slightly better, but the prediction accuracy for the test data was 

similar to the linear models. This becomes clearly evident by comparing models I, II, and IV, which had the same response 

variable ‘log10(∑l0.1)’ with steel cut effect removal. The GRNN (model III) had the best performance based on the RMSE, 

but the Rxy of testing was almost the same in comparison with other models.  

The explanatory variables selected for the presented models are given in Table 4. The first variable that was selected for 

the linear regression models by using forward selection was ‘log10(strength)·log10(length)’. This indicates that it had the 

strongest linear correlation with the response variable ‘log10(∑l0.1)’ with steel cut effect removal. This result indicates that 

the application of a mathematical transformation of the features improved their correlation. In fact, all the variables in 

Table 4 are mathematical transformations or interaction terms of steel strip features, such as length, yield strength, 

thickness, and weight. The width of steel strip or its transformations were not included in the selected variables.  

The performances of the best MLR model (II) and the best GRNN model (III) are illustrated in Fig. 7. These models were 

trained using all 752 steel strips. The observed values of the response variable in the case of MLR are mainly scattered in 

the range 0.1–0.9. In the case of GRNN, the majority of the observed points lies in the range 0–0.6 and only a small 



sample of points is above that. However, the observed values above 0.8 and the corresponding model predictions agree 

quite well. The vast majority of predicted values lie in the range 0–0.54. In the case of MLR, all of the predicted values 

lie roughly in the range 0.16–0.82. The linear model was unable to predict the values outside this range correctly. 

Fig. 7 shows that the relative stress inflicted by steel grade B, which was the most common steel grade leveled, was 

broadly scattered when using either of the response variables selected for models II and III. In the case of MLR model on 

the left, the residuals of prediction were larger. The observations from steel grades C and D, which are relatively strong, 

seem to agree with the predictions quite well considering both models. The observed values for these steel grades were 

in the range 0.59–0.83 on the left and in the range 0.25–0.54 on the right in Fig. 7. Considering the distributions of 

observed stress values, these ranges indicate that the relative stress was relatively high when these grades were processed. 

Steel grade A, which has the lowest yield strength of the presented grades seems to inflict different stress compared with 

the prediction especially when the MLR predictions on the left are considered.  

 

Table 3 Performance of the best models 

  RMSE  Rxy
  R2 maximum VIF 

Model Model 

no. 

Training Testing Training Testing Training Testing  

MLR 

(exhaustive search) 

I 0.0962 0.0955 0.8562 0.8532 0.7331 0.7233 3.6794 

MLR and PLSR 

(forward selection) 

II 0.0960 0.0953 0.8569 0.8537 0.7343 0.7241 3.3213 

GRNN III 0.0696 0.0831 0.9034 0.8557   2.7433 

GRNN 

(logarithmic 

response variable) 

IV 0.0831 0.0949 0.8952 0.8556   3.2413 

 

Table 4 Explanatory variables in the models 

Model no. 1st variable 2nd variable 3rd variable 4th variable 

I log10(length) thickness2 log10(strength)·log10(weight)  

II log10(strength)·log10(length) thickness3 strength1/2 ·weight  

III log10(strength)·log10(length) strength3·thickness3 thickness1/3·weight weight3·thickness3 

IV log10(strength)·log10(length) thickness2·strength weight 2·strength  

 

 

Fig. 7 Performance of models II (left) and III (right) on training data consisting of 752 steel strips 



Table 5 gives the parameters for model II trained using all 752 steel strips. The parameter significance is assessed using 

the p-value of F-test. The results indicate that each parameter is significant for the model. The spread parameter σ in the 

best GRNN model (III) was 0.05. 

 

Table 5 Parameters in MLR trained using all 752 steel strips. The observed values of explanatory variables and the 

predicted values are defined on the range 0–1 

Model II 

Response variable y = log10(∑l0.1) with steel cut effect removal 

Observed range 0.5296 ≤ y ≤ 2.9382  

     

Explanatory variables Observed range Regression 

coefficients 

p-value VIF 

  β0 = 0.3525 3.3674·10-86  

x1 = log10(strength)·log10(length) 4.6368 ≤ x1 ≤ 8.8844 β1 = 0.3659 3.7458·10-40 3.3213 

x2 = thickness3 7.7624 ≤ x2 ≤ 3.5187·103 β2 = -0.2069 1.1597·10-27 2.5736 

x3 = strength1/2·weight 1.5061·105 ≤ x3 ≤ 1.1579·106 β3 = 0.1464 3.7936·10-12 1.4951 

 

Correlations between steel strip properties and vibration features 

Fig. 8 illustrates the correlations between the steel strip properties and vibration feature ‘∑l0.1’ without scaling. The 

positive correlations of the vibration feature with yield strength and strip length and negative correlation with strip 

thickness are evident. Weight and width have vague correlations with the vibration feature. These observations indicate 

that the norm sum is influenced by the joint effect of steel strip properties rather than the effect of a single property such 

as the length or thickness. 

Fig. 9 illustrates the effect of steel cutting on vibration feature ‘∑l10’ without scaling. The feature values without removing 

the cut effect are presented on the left and the values with steel cut effect removal are shown on the right. The feature is 

presented as a function of yield strength (above) and steel thickness (below). Fig. 9 clearly shows that the processing of 

certain types of steel strips inflicts shocks that have a major effect on the norm sums. It seems that the steel cut effect is 

pronounced on signals measured during the leveling of 5–8 mm thick strips and strips with a yield strength from 900 MPa 

upwards. Otherwise, the removal of the steel cut effect has a relatively minor influence on the sums. These observations 

demonstrate the importance of removing the steel cut effect when analyzing the relative stress inflicted by the leveler 

operation alone. However, the shocks caused by steel cutting probably stress the roller leveler as well. 

Pearson’s linear correlation coefficients between the steel strip properties and vibration feature ‘∑l0.1‘ for four example 

steel grades are presented in Table 6. The correlations for different steel grades vary significantly. For instance, the 

correlation of length is close to zero for grade A, but seems to increase together with increasing yield strength, while 

grade B is around 400 MPa, grade C is around 1040 MPa, and grade D is around 1540 MPa. The correlation of yield 

strength, on the other hand, is around -0.5 for grades A and D, whereas it is close to zero for grades B and C. Steel grades 

A and D had slightly more varying yield strength than grades B and C, and this resulted in higher correlation. The non-

consistent correlations in Table 6 indicate that tailored stress models for different steel grades could improve the modeling 

performance for particular steel grades. However, the development of such models requires a larger data set, because 

most of the 55 steel grades in this study included only a few strips in the data set analyzed. 

 

Table 6 Linear correlations between steel strip properties and ∑l0.1 for four different steel grades 

 grade A 

(12 strips) 

grade B 

(123 strips) 

grade C 

(27 strips) 

grade D 

(23 strips) 

yield strength -0.5050 0.0072 -0.0849 -0.5224 

length -0.0772 0.5378 0.6736 0.7092 

weight 0.0345 0.0707 0.4162 0.1453 

width 0.0773 -0.0676 -0.0601 0.0749 

thickness 0.0855 -0.5281 -0.2483 -0.5556 



 

Fig. 8 Scatter plots of steel strip properties with ∑l0.1  

 

 

Fig. 9 The effect of shocks caused by steel cutting on the feature ∑l10. The effect is included in the feature values in the 

plots on the left and removed on the right 

 

Discussion 

The modeling results indicate that combinations of steel strip properties could be used to predict the mechanical stress 

inflicted on the roller leveler. The results also show that the application of mathematical transformations of the features 

increased the linear correlations between the steel strip properties and vibration features. In this case, the vibration feature 

‘log10(∑l0.1)’ with steel cut effect removal was the best response variable for MLR. The best response variable for GRNN 

was ‘(∑l0.1)1/2’. These results indicate that a low-order norm was generally more appropriate than a high-order norm in 

the applied vibration features. The sorted values of the selected features are shown in Fig. 10, which demonstrates the 

effects of mathematical transformations on the features. The use of logarithm on ‘∑l0.1’ made the relative stress values 

spread more evenly in the relative stress range 0–1, while the values of ‘∑l0.1’ had a distribution with strongly positive 

skew. A steep deviation can be seen at both ends of the ‘log10(∑l0.1)’ curve. MLR was not able to estimate these extreme 

values correctly, which was also evident in Fig. 7. The use of the square root in ‘∑l0.1’ changed the distribution of relative 



stress so that the majority of points were in the range 0–0.6. As shown in Fig. 7, GRNN was also able to learn the values 

above this range quite well. 

 

 

Fig. 10 The observed relative stress during the processing of 752 steel strips in ascending order illustrating the distribution 

of the values in the stress range 0–1  

 

The usability and reliability of prediction models in industrial practice are significant matters. Linear models often have 

advantage over the non-linear models in terms of interpretability. As shown in Table 5, the best MLR model can be used 

with four model parameters, which means it can be applied by using standard office software in a straightforward manner. 

In contrast, the best GRNN model has to remember the hundreds of training patterns and a multiple number of connection 

weights defined during model training. Consequently, the explicit analysis of model parameters and the transferability to 

standard office software bring challenges. However, there are ways to reduce the amount of training patterns, such as 

clustering (Specht 1991), but that is a topic for another study. Another weakness in the non-linear data-driven models 

may be their performance when new data are introduced. Steel mills often manufacture a large range of products and new 

products are continuously developed. The trained models may become repeatedly outdated as new products arrive. The 

transparency of MLR enables reasonable testing for new data, because the effect of explanatory variable manipulation on 

the model response can be easily interpreted. Such testing is considerably more difficult with complex models. Moreover, 

the GRNN predictions had a clear difference between the training and testing results, while MLR produced consistent 

results. These considerations indicate that the MLR is the most reasonable model option from the tested models for 

practical stress prediction. Other prediction algorithms presented in the literature could be tested in future investigations. 

The testing of alternative variable selection methods could potentially lead into improved models as well. 

The strong steel grades C and D resulted in higher observed values of relative stress compared with the values from steel 

grades A and B which was also demonstrated in Fig. 7. The MLR predicted the stress inflicted by these strong steel grades 

more accurately in comparison with the most common steel grade B. This can be explained by the effect of the logarithm 

on high values. In the case of GRNN, differences in the prediction accuracy for different steel grades were smaller. The 

generation of steel grade specific stress models is a potential topic for future development. The data set should be more 

extensive than the one used in this study. The studied data set had 55 steel grades, but the number of strips representing 

each grade varied and consequently the data were dominated by certain steel grades. However, the general correlations 

between steel strip properties and vibration features were discovered using this approach. Nonetheless, the effects of 

relative stress values still need to be investigated in future studies. This could be done by estimating the stress of leveling 

events in process history and then investigating the relation of the estimates with fault and maintenance history. However, 

the use of vibration data as the response of machine operation can already be considered as an improved approach to 

stress evaluation compared with assessments relying solely on production data. 



The combination of work roll movement or motor power with the vibration signal, which was not possible in this study, 

could improve the reliability of the proposed approach. It would then be certain that the effects of the idle state and 

possible measurement disturbances during the idle state could be avoided in the norm sums. The operational parameters 

of the roller leveler and steel strip properties correlate strongly (Nikula and Karioja 2016). Therefore, based on the results, 

it is assumed that the steel strip properties alone could be used for stress prediction. On the other hand, the prediction 

accuracy shows variation that cannot be explained based solely on the effects of steel strip properties. The combination 

of instantaneous operational parameter values with the vibration signal could provide additional possibilities for stress 

estimation. 

The steel cut effect was removed from the response variable of the best linear model. Therefore, the values of this variable 

mainly represent the effects incited by the leveling operation and the influence of steel cutting is mostly avoided. This 

also means that the presented observations could be useful in the development of monitoring approaches to other roller 

levelers that are not influenced by steel cutting.  

The relative stress proposed in this study could be used for the estimation of condition deterioration in roller levelers. 

Plenty of recent studies focus on the prediction of remaining useful life and prognosis of deteriorating systems 

(Benkedjouh et al. 2015; He et al. 2012; Mosallam et al. 2016; Ragab et al. 2016; Shi and Zheng 2016; Son et al. 2016). 

The proposed relative stress features could be used as the monitored indicators in these kind of approaches. These features 

could be utilized in risk assessments that are based on cumulative stress. 

 

Conclusions 

 

In this paper, an approach to the prediction of the relative stress inflicted on a roller leveler was introduced and validated 

using measurements from an industrial case. The stress estimates were based on the sums of generalized norms computed 

from an acceleration signal acquired during the leveling of steel strips. Regression models were used to identify the steel 

strip properties and combinations of them that could be used to explain the values of the norm sums. The mathematical 

transformations of steel strip properties and norm sums improved their linear correlation, which consequently improved 

the performance of the linear regression models. The generalized regression neural network had the best prediction 

accuracy from the tested models, but the superiority over other models was remote. In addition, the neural network 

structure is complicated in comparison with the tested linear regression models, and therefore its application potential 

may be limited in practice. The results indicate that the stress effects seen during the processing of various steel grades 

were diverse, and consequently, more elaborate modeling approaches could improve stress predictions in some cases. 

However, a regression model trained based on extensive measurement data is an advanced approach to stress prediction 

when compared with assessments made only on the basis of production data. The use of relative stress for long-term risk 

assessment is a topic for future research. 
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