Skip to main content
Log in

Shockley-Ramo theorem measures conformation changes of ion channels and proteins

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Theorems are rarely used in biology because they rarely help the descriptive experimentation to which biologists are devoted. A generalization of Kirchoff’s current law—the Shockley-Ramo (SR) theorem [1–6]—seems an exception. SR allows interpretation of macroscopic scale ‘gating’ currents associated with atomic scale charge movements within proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoder, P.D., et al.: Optimized terminal current calculation for Monte Carlo device simulation. IEEE Trans. Comp.-Aided Design Integr. Circuits Syst. 16, 1082–1087 (1997)

    Article  Google Scholar 

  2. Yoder, P.D., Gärtner, K., Fichtner, W.: A generalized Ramo-Shockley theorem for classical to quantum transport at arbitrary frequencies. J. Appl. Phys. 79, 1951–1954 (1996)

    Article  Google Scholar 

  3. Shockley, W.: Currents to conductors induced by a moving point charge. J. Appl. Phys. 9, 635–636 (1938)

    Article  Google Scholar 

  4. Ramo, S.: Currents induced by electron motion. Proc. IRE. 27, 584–585 (1939)

    Google Scholar 

  5. Pellegrini, B.: Electric charge motion, induced current, energy balance, and noise. Phys. Rev. B 34, 5921–5924 (1986)

    Article  Google Scholar 

  6. Kim, H., et al.: An extended proof of the Ramo-Shockley theorem. Solid-State Elect. 34, 1251–1253 (1991)

    Article  Google Scholar 

  7. Bottinger, E., Furshpan, E.: Recording flight movements in insects. Science 116, 60–61 (1952)

    Article  Google Scholar 

  8. Almers, W.: Gating currents and charge movements in excitable membranes. Rev. Physiol. Biochem. Pharmacol. 82, 96–190 (1978)

    Article  Google Scholar 

  9. Armstrong, C.M.: Ionic pores, gates, and gating currents. Quart. Rev. Biophys. 7, 179–210 (1975)

    Google Scholar 

  10. Armstrong, C.M.: Sodium channels and gating currents. Physiol. Rev. 61, 644–683 (1981)

    Google Scholar 

  11. Bezanilla, F.: Gating of sodium and potassium channels. J. Membr. Biol. 88(2), 97–111 (1985)

    Article  Google Scholar 

  12. Bezanilla, F.: The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80(2), 555–592 (2000)

    Google Scholar 

  13. Bezanilla, F., Armstrong, C.M.: A low-cost signal averager and data-acquisition device. Am. J. Physiol. 232(5), C211–C215 (1977)

    Google Scholar 

  14. Chanda, B., et al.: Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436(7052), 852–856 (2005)

    Article  Google Scholar 

  15. Hille, B.: Ionic Channels of Excitable Membranes. 3rd ed. pp. 1–814. Sinauer Associates Inc, Sunderland (2001)

  16. Nonner, W.: Effects of Leiurus scorpion venom on the “gating’ current in myelinated nerve. Adv. Cytopharmacol. 3, 345–352 (1979)

    Google Scholar 

  17. Roux, M.J., et al.: Fast inactivation in Shaker K+ channels. Properties of ionic and gating currents. J. Gen. Physiol. 111(5), 625–638 (1998)

    Article  Google Scholar 

  18. Seoh, S.A., et al.: Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16(6), 1159–1167 (1996)

    Article  Google Scholar 

  19. Sigworth, F.: Voltage gating of ion channels. Quart. Rev. Biophys. 27, 1–40 (1994)

    Google Scholar 

  20. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  21. Schneider, M., Chandler, W.K.: Voltage-dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling. Nature (London) 242, 244–246 (1973)

    Article  Google Scholar 

  22. Bezanilla, F., Armstrong, C.M.: Inactivation of the sodium channel. I. Sodium current experiments. J. Gen. Physiol. 70(5), 549–566 (1977)

    Article  Google Scholar 

  23. Bezanilla, F., Rojas, E., Taylor, R.E.: Sodium and potassium conductance changes during a membrane action potential. J. Physiol. (London) 211, 729–751 (1970)

    Google Scholar 

  24. Bezanilla, F., Rojas, E., Taylor, R.E.: Time course of the sodium influx in squid giant axon during a single voltage clamp pulse. J. Physiol. 207(1), 151–164 (1970)

    Google Scholar 

  25. Weiss, T.F.: Cellular Biophysics, vol. 1 and 2, p. 552. MIT Press, Cambridge MA USA (1996)

  26. Hodgkin, A.L.: Chance and Design, p. 401. Cambridge University Press, New York (1992)

  27. Cole, K.S.: Four lectures on biophysics. Institute of Biophysics, University of Brazil, Rio De Janeiro (1947)

    Google Scholar 

  28. Huxley, A.: Kenneth Stewart Cole. Biograph. Mem. Roy. Soc. 38, 99–110 (1992)

    Google Scholar 

  29. Hodgkin, A., Huxley, A., Katz, B.: Ionic currents underlying activity in the giant axon of the squid. Arch. Sci. Physiol. 3, 129–150 (1949)

    Google Scholar 

  30. Neher, E., Sakmann, B.: Single channel currents recorded from the membrane of denervated muscle fibers. Nature 260, 799–802 (1976)

    Article  Google Scholar 

  31. Neher, E., Sakmann, B., Steinbach, J.H.: The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflügers. Arch. 375, 219–228 (1978)

    Article  Google Scholar 

  32. Sakmann, B., Neher, E.: Single Channel Recording, 2nd ed, p. 700. Plenum New York (1995)

  33. Miller, C. (ed.): Ion Channel Reconstitution. Plenum, New York (1986)

    Google Scholar 

  34. Rudy, B., Iverson, L.E., (eds.): Ion Channels Methods in Enzymology. vol. 207, p. 917. Academic, New York (1992)

  35. Bezanilla, F.: Single sodium channels from the squid giant axon. Biophys. J. 52(6), 1087–1090 (1987)

    Article  Google Scholar 

  36. Roux, B.: Influence of the membrane potential on the free energy of an intrinsic protein. Biophys. J. 73(12), 2980–2989 (1997)

    MathSciNet  Google Scholar 

  37. Nonner, W., et al.: Relating microscopic charge movement to macroscopic currents: the Ramo-Shockley theorem applied to ion channels. Biophys. J. 87(6), 3716–3722 (2004)

    Article  Google Scholar 

  38. Aboud, S., et al.: A poisson P3M force field scheme for particle-based simulations of ionic liquids. J. Comput. Elect. 3, 117–133 (2004)

    Article  Google Scholar 

  39. Aksimentiev, A., Schulten, K.: Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys. J. 88(6), 3745–3761 (2005)

    Article  Google Scholar 

  40. Saraniti, M., Aboud, S., Eisenberg, R.: The simulation of ionic charge transport in biological ion channels: an introduction to numerical methods. Rev. Comp. Chem. 22, 229–294 (2005)

    Article  Google Scholar 

  41. van der Straaten, T.A., et al.: BioMOCA—a Boltzmann transport Monte Carlo model for ion channel simulation. Mole. Simul. 31, 151–171 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bob Eisenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenberg, B., Nonner, W. Shockley-Ramo theorem measures conformation changes of ion channels and proteins. J Comput Electron 6, 363–365 (2007). https://doi.org/10.1007/s10825-006-0130-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-006-0130-6

Keywords

Navigation