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Abstract
In this paper, Ni0.6Mn0.2Co0.2(OH)2 precursors with several different morphologies and particle sizes are mixed with Li2CO3 
and heat treated for 5, 7.5 and 10 h. The effects of the precursor properties on the degree of lithiation, electrochemical prop-
erties and volumetric capacities of lithiated product are compared. Based on the characterization results, a small (3 μm), 
narrow span precursor can be lithiated in a short period of time (5 h) and has good initial discharge capacity (185 mA h g− 1) 
and capacity retention (93% for 55 cycles). In contrast, a large wide-span precursor requires over 10 h for full lithiation. A 
highly porous precursor can be lithiated faster than traditional large wide-span materials, and has low cation mixing and 
good crystallinity. However, the volumetric energy density of porous material is low after lithiation compared to the other 
tested materials. Capacity retention after washing correlated with crystallographic properties of the sample.
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1  Introduction

Layered lithium-nickel-manganese-cobalt oxide (NMC) 
cathode materials are used in battery applications that 
require high energy density. They were first introduced by 
Ohzuku and Makimura [1] and later, researchers system-
atically investigated different nickel, cobalt and manganese 
ratios. LiNi0.6Mn0.2Co0.2O2 (NMC622) was one ratio of 
interest in Noh et al. [2]. By today’s standards, NMC622 
can almost be considered low-nickel because there is a con-
stant push towards increasing the nickel content to 80% or 
higher in order to increase capacity. However, NMC622 is 
a very stable material compared to, for example, NMC811. 
It shows a lower amount of oxygen release from structure 
during heating, which improves safety [3], and it has con-
siderably smaller variation in cell volume during cycling, 
which leads to less microcracking and longer cycle life [2].

Chemical composition is not the only way to affect elec-
trochemical properties. To get the best possible performance 
out of a cathode material, particle size and morphology need 
to also be considered. In addition, successful lithiation is 
the most important factor defining the capacity of cathode 
materials. Precursors with different physical properties, such 
as particle size and porosity, have different requirements for 
lithiation time and temperature. In this work, we lithiated 
four precursors with different physical properties to deter-
mine how the precursor affects the optimal lithiation time.

Generally, the lithiation times used in the literature 
range from 12 to 24 h. Cabelguen et al. [4] lithiated at 
850–1000 °C for 24 h to obtain LiNi1/3Mn1/3Co1/3O2. Luo 
et al. [5] investigated the optimal lithiation conditions for 
NMC111 and concluded that 18 h at 850 °C was optimal. 
Their process included several steps, such as pre-calcination 
and pressing the material into pellets. Nie et al. [6] compared 
NMC523 precursors with different particle sizes (3, 6 and 
9 μm). Their lithiation process, which was the same for all 
particle sizes, included preheating at 650 °C for 6 h and then 
12 h in 800 °C. Particles 3 μm in size had the best layered 
structure after lithiation, and cation mixing was lower when 
particle size decreased.

Long lithiation time guarantees full lithiation but is 
not necessarily optimal for precursors with small particle 
sizes. If oxidation of precursor and lithium diffusion into 
the oxide structure has limited speed of reaction, it is logi-
cal to assume that small particles will be fully lithiated in 
shorter time. Long heating might also sinter small particles 
together. In addition to time, lithiation temperature is also 
important. Too low lithiation temperature will not guarantee 
fully lithiated structure, while too high lithiation temperature 
will cause cation mixing and structural changes that lower 

the materials electrochemical performance. Optimal lithia-
tion temperature depends on the material’s nickel content. 
Materials with high nickel content require lower lithiation 
temperatures. [2, 7, 8] Wang et al. [9] found that 850 °C was 
the optimal temperature to lithiate NMC622, although their 
starting precursor was nano scale (100–200 nm).

Excess amount of lithium is added during lithiation 
because it helps to prevent local lithium deficiencies and 
cation mixing. This is especially important for nickel rich 
materials. This also means that the over stoichiometric lith-
ium needs to be considered in the manufacture process. The 
excess lithium is on the surface as Li2O, LiOH and Li2CO3 
[10, 11]. Amount of Li2CO3 on the surface is related to stor-
age conditions because Li2O will react to LiOH in the pres-
ence of moisture and LiOH reacts to Li2CO3. Because the 
extra lithium is not in the material structure, it will only do 
side reactions and not provide capacity. Lithium carbonate 
on the surface of the cathode material has been linked to 
gas formation in the cells [12]. In coin cells, gas forma-
tion can mostly be ignored because the volume of gas will 
be very small and coin cells have hard casing that keeps 
the electrodes pressed together. In commercial batteries gas 
formation can, however, cause bulging of the cell, which 
can break electrochemical contact. Residual surface lithium 
may also lower first cycle capacity [13], so to compare the 
material properties, a complete removal of excess surface 
lithium was deemed necessary. Exposure of cathode mate-
rial to water will, however, lead to surface layer structural 
changes which form a resistance layer [14–16]. Because 
of this the cycling performance of water exposed sample 
will be worse than unwashed sample. Washing with ethanol 
does not cause similar structural changes [14]. However, 
because water is occasionally used in industry for washing, 
we wanted to compare if there is any difference in how the 
materials react to water washing.

Another variable that is rarely given attention in scientific 
articles, but is an important consideration for cathode mate-
rials, is volumetric capacity (mA h cm− 3). Porous materials 
have been studied for their improved lithium ion diffusion 
kinetics, which enable faster C-rates during charge and dis-
charge [17]. In their review of porous lithium ion battery 
materials, Vu et al. [18] conclude that their porosity leads 
to low cathode volumetric capacity and needs to be compen-
sated for somehow.

In addition to porosity, particle size distribution has an 
influence on final volumetric capacity and cycling stabil-
ity. Zhang et al. [19] found that a 7:2:1 mixture of 9, 6 and 
3 μm particles provided better volumetric capacity (394.3 
mA h cm− 3 with 1 C-rate charge/discharge) than any single 
particle size. They calculated volumetric capacity based on 
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the tap density of the material and its specific gravimetric 
capacity (mA h g− 1). On the other hand, differences in par-
ticle size in cathode material might lead to uneven states of 
charge in different-sized particles, leading to either structural 
collapse in small particles that become over-charged or unu-
tilized charge in large particles where lithium extraction is 
slower [20].

Cabelguen et al. [4] compared the tap densities of mate-
rials to calculate the volumetric energy density for several 
cathode materials with different morphology. They con-
cluded that tap density might not accurately correspond 
to real packing in the electrode. Tap density is the optimal 
packing density of a material, and it depends on several fac-
tors, including how well the particles fit together. A mate-
rial that is a blend of different-sized particles has higher tap 
density, because packing spheres of same size will inevita-
bly leave empty space between particles. Therefore, using 
tap density to calculate a specific volumetric capacity for 
the active material does not necessarily correlate with final 
volumetric capacity of the cathode electrode, because the 
electrode is a mixture of active material, conductivity carbon 
and binder.

Loading is the mass of active cathode material per cm2 on 
cathode electrode. The used loading is sometimes very low 
in research samples, as low as 2–4 mg cm− 2. The amount of 
loading is not standardized in any way and there are reasons 
why low loading might be good choice. It uses less sample, 
and the ratio of conductivity carbon can be higher which 
guarantees that lack of conductivity does not cause prob-
lems. Further, thin cathode allows accurate testing of how 
active material reacts to higher c-rates. [21] In our study, 
we use a larger loading (10 mg cm− 2). This allows better 
accuracy and repeatability for electrode volumetric capacity 
estimation. Commercial loadings are around 20 mg cm− 2 
or even higher by optimizing particle size of active material 
and other components, and the calendering pressure. [22]

Optimization of production chain from precursors to 
battery cell production requires the knowledge of how pre-
cursors with different size and morphology react to lithi-
ation conditions. When precursors are compared, it might 

make sense to judge materials on the lithiation process 
they require, and the final volumetric capacity of cathode 
electrode, not specific capacity of the active material. This 
study also highlights the importance of considering lithia-
tion behaviour when comparing the electrochemical perfor-
mance of different cathode active materials. Differences in 
electrochemical performance can arise just from precursor 
size and porosity.

2 � Experimental

2.1 � Precursors

NMC622 precursors with varying morphology and parti-
cle size were obtained from Umicore Finland. The tap den-
sity, BET surface area, particle size and Na and S impurity 
analysis results for precursors are presented in Table 1, and 
field electron scanning microscope (FESEM) images are 
presented in Fig. 1. The VSN (very small and narrow span) 
and SN (small and narrow span) precursors are small, dense 
particles with a narrow size distribution. Both have simi-
lar morphologies and amounts of impurities, but they have 
slightly different average particle sizes (D50). The LD (low-
density) precursor has low tap density because of voids in 
the primary particle packing. The WS (wide-span) precursor 
represents a common wide-span precursor material. It has 
the widest particle size distribution, the largest particle size 
and the highest tap density of compared precursors.

2.2 � Lithiation

The precursors were mixed with Li2CO3 (Rockwood 99%) in 
an IKA A 11 Basic Analytical Mill. The amount of lithium 
we used was 5% over the stoichiometric lithium ratio (i.e. 
molar ratio of lithium to metal is 1). Mixed materials were 
lithiated in a chemical vapour deposition oven (Firstnano 
EasyTube 3000 EXT) with 1 L min− 1 oxygen gas flow (Aga 
99%) at 850 °C for 5, 7.5 and 10 h. The lithiation time does 
not include heating ramp time, only the hold time at the set 

Table 1   Precursor material 
properties

a Very small and narrow
b Small and narrow
c Low density
d Wide-span

Name Tap density (g 
cm− 3)

BET Surface area 
(m2 g− 1)

D50 (µm) Span Na (g t− 1) S (g t− 1)

VSNa 2.02 5.40 3.2 0.59 89 535
SNb 2.13 5.60 4.1 0.49 53 416
LDc 1.18 18.5 5.3 0.79 115 969
WSd 2.23 3.2 8.3 1.67 140 1255
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temperature. The heating ramp was 5 °C min− 1 in all lithia-
tions. Lithiation temperature of 850 °C was chosen based on 
Wang et al. [9] and our own unpublished data showing good 
capacity for NMC622 in this temperature.

2.3 � Washing

After lithiation, all samples were washed with water to 
remove excess lithium. Washing was done in order to deter-
mine how much lithium was in the structure. Samples were 
washed by strongly mixing the solid material for 10 min in 
deionised water with a magnetic stirrer. The ratio of sample 
to water was 4:100 to ensure that all lithium carbonate was 
dissolved. After the washed samples were filtered, the solid 
material on the filter paper was washed with a small amount 
of water, and samples were dried overnight in a vacuum oven 
at 190 °C. The electrochemical properties for both washed 
and unwashed lithiated samples were tested in coin cells.

2.4 � Analysis of precursors and lithiated materials

Particle sizes were measured with a Malvern Mastersizer 
3000 with an attached Hydro EV sample dispersion unit. 
The refractive index and absorption index values used were 
1.7 and 0.006, respectively, for the precursors and 3 and 
0.02, respectively, for the lithiated materials.

The transition metal and Li contents were measured from 
dissolved samples by ICP-OES (Horiba Ultima Expert). 
Microwave digestion was used for total dissolution of these 
samples without any leaching residue. This was done based 
on EPA3051A standard using nitric acid: hydrochloric acid 
with the ratio of 3:1 as solvent. XRD was measured with a 
Rigaku SmartLab 9 kW X-ray diffractometer using Co as a 
source at 40 kV, 135 mA. Diffractograms were collected in 
the 2θ range of 5–120° at 0.01° intervals and a scan speed 
of 4.06 deg min− 1. The software for analysis was PDXL2, 

which is included with the XRD device. The peaks were 
identified based on International Centre for Diffraction Data 
(ICDD PDF-4 + 2020). The crystallite sizes, anisotropy and 
distribution were computed using Rigaku PDXL2 analysis 
package. Whole powder pattern fitting (WPPF) was used 
with decomposition, least-square Pawley method. [23] Peak 
shape was modelled using the fundamental parameter (FP) 
method with continuous scan and the Cheary–Coelho axial 
model using experimental geometry and optics. The crys-
tallite shape is refined as ellipsoidal model with lognormal 
distribution used as free parameters for iterative refinement. 
The method had been tested and proven to agree with trans-
mission electron microscope (TEM) measurement of SnO2 
crystallites.

The microstructure shown in field emission scanning 
electron microscope (FESEM) images were obtained using 
a Zeiss Sigma FESEM at the Centre for Material Analysis 
in the University of Oulu operated at 5 kV.

2.5 � Electrochemical testing

All electrodes and coin cells were prepared in a dry room. 
Coin cell type was 2016. A cathode slurry was made using 
4% polyvinylidene fluoride (Kureha #1100) as binder, 4% 
conductivity carbon (Timcal Super C65) and 92% active 
material and 1-methyl-2-pyrrolidinone (Alfa Aesar anhy-
drous 99.5%) as a solvent. The ratio of solid material to 
solvent in the slurry could not be kept constant, because 
of the very different particle sizes of the samples. Smaller 
particle sizes result in a slurry with higher viscosity if no 
extra solvent is added, which leads to thicker electrode and 
has a clear effect on electrochemical properties. Instead, the 
loading (mass of active material per cm2) was kept as close 
to 10 mg cm− 2 as possible.

The cathode slurry was spread on aluminium foil with an 
MTI AFA-III automatic film coater using a 100 μm spreader 

Fig. 1   FESEM of VSN, SN, LD and WS precursors with 50,000× magnification and 5,000× magnification
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bit. Then it was dried on a hot plate under a fume hood at 
50 °C for 2 h and finally at vacuum oven at 120 °C overnight. 
The cathode electrode was calendered three times with a roll-
ing press (MTI Hot Rolls Press HR-02) before coin cell assem-
bly. After calendering three times the cathode thickness no 
longer changed. Two coin cells were assembled from each 
sample cathode electrode, with metallic lithium (Alfa Aesar 
99.9% 0.75 mm foil) serving as the anode and 1 M LiPF6 
(Novolyte Technologies) in 1:1:1 ethylene carbonate–diethyl 
carbonate–dimethyl carbonate serving as the electrolyte (ethyl-
ene carbonate Sigma-Aldrich anhydrous 99%, diethyl carbon-
ate Sigma-Aldrich anhydrous 99%, dimethyl carbonate Novo-
lyte Technologies ≥ 99 % sealed under nitrogen). The cathode 
electrodes were cut to size using a cutting press with a set 
diameter of 14 mm. Each cut cathode electrode was weighed, 
and the thickness was measured using a micrometre screw. 
Cell information can be found as supplementary data (S1). A 
Maccor series 4000 battery tester was used for electrochemical 
analysis. Cells were cycled between 3.0 and 4.3 V for 60 cycles 
at 25 °C. See Table 2 for the C-rates that were used. The theo-
retical capacity used to calculate the C-rate was 160 mA h g− 1.

3 � Resultsand discussion

3.1 � Effectof precursor on optimal lithiation time

SEM images of the lithiated products are shown in Fig. 2. 
The only precursor that outwardly exhibited a significant 
change from precursor to lithiated product is LD, which goes 
from having empty space in the precursor structure to being 
a lumpy uneven lithiated product. Other precursors maintain 
their appearance through lithiation. Morphology was not much 
affected by the lithiation time at this temperature.

The lithium molar amount divided by the transition metal 
molar amount (Li/Me) as a function of lithiation time after 
washing is shown in Fig. 3 for all samples. As shown, the 
precursor has a big impact on how quickly lithium is inter-
calated to cathode structure during lithiation. In particular, 
after lithiation for 5 h, VSN and SN were lithiated close to the 
stoichiometric ratio, while LD and WS lack lithium (Li/Me 
around 0.93). Counterintuitively, VSN and SN lithiated for 
5 h, achieved more complete lithiation than when the lithiation 
time was longer. The reason for this behaviour is not clear.

When lithiation time is increased to 7.5 and 10 h, LD has 
Li/Me ratio closest to stoichiometric ratio (0.98 and 0.99). 
This indicates that the loose packing of primary particles in 
this precursor has a beneficial effect on lithium penetration 

of the structure, as has been previously reported for porous 
materials [17]. The trends for all samples indicate that 
increasing lithiation time over 10 h could slightly improve 
the Li/Me ratio, especially for WS, which at best has a Li/
Me ratio of about 0.97.

The Li/Me results measured from lithiated samples with-
out washing matched the amount that was added to the pre-
cursor before lithiation so there was no significant lithium 
loss due to vaporization. Our lithium excess was also high 
so lithium loss in this way would is not significant factor in 
lithiation.

Differences in degree of lithiation (seen in Li/Me) are 
supported by the XRD results. The XRD patterns of lithiated 
samples are attached as supplementary data (S2) and showed 
no impurity phases. All samples had clear peak splitting 
of (006)/(102) and (108)/(110) caused by a well-defined 
α-NaFeO2 structure (i.e. an ordered hexagonal structure) 
[24, 25].

The values of c/3a and the (003)/(104) peak integrated 
intensity ratio are commonly considered to be indicators of 
cation mixing. An ideal cubic close packed lattice would 
have a c/3a ratio of 1.633, with higher ratio indicating higher 
ordering and less cation mixing [26]. Values for the a-axis, 
c-axis and c/3a are presented in Fig. 4. The trend of c/3a 
is almost identical to the measured lithium amount in the 
sample after washing (Fig. 3). VSN and SN show the same 
V-shaped behaviour when lithiation time is increased in c/3a 
as was seen in Li/Me. This could be explained by the fact 
that cation mixing is increased when the structure is lithium 
poor (Ni can take Li position) [27, 28] or the fact that c/3a 
correlates more strongly with lithium amount in the structure 
than cation mixing. There will always be some amount of 
cation mixing, but when examining NMC111, Zhang et al. 
[28] found that amounts less than 2% do not affect electro-
chemical performance of the cell.

The (003)/(104) ratio presented in Fig. 4d is also com-
monly used as indicator of cation mixing, with higher value 
meaning lower amount of cation mixing. The (003) peak, 
which is the transition metal plane, will have lower inten-
sity when there is lithium in transition metal places, and 
(104) peak, which is a plane crossing Li layer and transi-
tion metal oxide layer, will have higher intensity when there 
is transition metal in lithium places [29]. The (003)/(104) 
ratio mostly agrees with c/3a, but there are some differ-
ences. For VSN behaviour is V-shaped like c/3a and sample 
lithiated for 5 h has highest ratio among all samples. LD 
has the highest ratio in 7.5 and 10 h lithiations. For SN, 

Table 2   Coin cell testing 
programme

Cycle number 1 2 3 4 5 6–29 30 31–59 60

Charge C-rate 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Discharge C-rate 0.1 0.2 1 2 4 2 0.2 2 0.2
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however, the ratio (003)/(104) is lower when lithiation time 
is increased. According to common sense, SN and VSN 
should behave similarly because they have very similar 
properties (Table 1). This situation could be explained by 
the crystallite sizes presented in Fig. 4. The crystallite size 
after lithiation is quite large for VSN compared to SN. As 
shown in Fig. 4e, crystallite size is relatively unaffected by 
lithiation time, except for LD, which exhibits a clear grow-
ing trend. Figure 4f presents the full width at half maximum 
(FWHM) for the (003) peak, which is used as indicator of 
crystallinity because uniform crystal structure causes sharp 
peaks. LD achieves the best crystallinity and is more affected 
by lithiation time than the other precursors. In other samples, 
crystallinity is also improved by longer lithiation time, but 
the effect is less dramatic.

Figure 5 shows the first cycle discharge capacity and Li/
Me in relation to the precursor D50 for different lithiation 
times. The dependence of Li/Me and the first cycle discharge 

capacity on precursor particle size is very linear after lithi-
ation for 5 h, meaning that the larger the particle size, the 
longer it takes to complete lithiation. Lithiation time of 7.5 h 
seems to be enough for the three smallest precursors, but not 
for WS. After 10 h, the differences have mostly disappeared.

First cycle discharge capacity is lower in samples that 
are far from the stoichiometric lithium amount. The best 
initial capacity (185 mA h g− 1) was measured from sample 
that seemed to be slightly over-lithiated. Samples that are 
close to the stoichiometric Li/Me ratio have initial capacity 
close to each other regardless of the precursor or lithiation 
time that is used. Thus, 185 mA h g− 1 can be tentatively 
presumed to be the maximum initial capacity for this mate-
rial (regardless of morphology) in these testing conditions. 
Presumably, longer lithiation time would only raise the other 
materials to this level. Noh et al. [2] found that NMC622 had 
an initial capacity of 187 mA h g− 1, which is compatible 
with our results.

Fig. 2   SEM images of overall morphology and a close-up of the surface of VSN, SN, LD and WS lithiated at 850 °C for 5 h, 7.5 and 10 h
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3.2 � Effect of precursor on capacity retention 
and C‑rate capability

The capacity retention of materials was tested for unwashed 
samples and after washing, and the results are presented in 
Fig. 6. Figure 7 shows the capacity during coin cell cycling 
for washed samples, with two cells from each sample shown. 
Voltage profiles are added as supplementary data (S3–4). No 
significant differences were seen in voltage profiles between 
the samples. Figures of capacities in different C-rates are 
presented as supplementary material (S5–6). Capacity in 
higher C-rates follows similar trend as first cycle capacity. 
In samples lithiated for 10 h the 4 C capacity correlates with 
particle size, smallest VSN has 4 C capacity around 157 mA 
h g− 1, while largest WS has 4 C capacity of 140 mA h g− 1. 
For VSN 4 C capacity is unchanged by lithiation time (157 
mA h g− 1) and SN has only small variation (~ 145–154 h 
g− 1). The larger particles lithiated for short time (LD 5 h 
and WS 5 and 7.5 h) show clearly lower 4 C capacities, 
likely due to insufficiently lithiated structure. WS 5 h has 
the lowest capacity at 4 C, only 112 mA h g− 1. Other poorly 
lithiated samples also have low 4 C capacity.

After cycling for 55 cycles using 0.2 C charge and 2 C 
discharge, the unwashed samples lithiated for 5 h had clear 
differences in capacity retention. VSN had the highest capac-
ity retention (95%) and WS the lowest capacity retention 
(85%). In samples lithiated for 10 h the differences in cycle 
retention have almost completely disappeared and all sam-
ples have capacity retention of around 94%. In washed sam-
ples lithiated for 5 h, the differences in capacity retention 

are much more pronounced than in unwashed samples. VSN 
still has highest capacity retention (92%) and WS the low-
est (41%). In washed samples with longer lithiation time, 
the capacity retention is improved for all samples except 
for VSN and the differences between samples remain larger 
than in unwashed samples. In samples lithiated for 10 h LD 
has the highest capacity retention (89%), while WS has the 
lowest (82%). Based on the results, capacity retention seems 
to correlate with precursor particle size in the same way first 
cycle capacity does (Fig. 5). Smallest sample VSN has good 
capacity retention even after 5 h lithiation, while retention 
of larger samples is lower. After longer lithiation the dif-
ferences disappear. This is most likely because the smallest 
precursor was fully lithiated in 5 h, while precursors with 
larger particle size required longer time for complete oxida-
tion and lithiation of the structure.

In washed samples, LD lithiated for 7.5 and 10 h stands 
out as having clearly better capacity retention than other 
samples. Water having detrimental effect on the cathode sur-
face structure has been shown to be the cause for decreased 
cycle retention after washing. [14–16] It is logical to assume 
that materials resistance to the effects caused by washing is 
related to the materials surface area and how deep the water 
can penetrate inside the particles. According to XRD results 
(Fig. 4) LD lithiated for 10 h has the largest crystallite size, 
lowest FWHM which indicates uniform crystallographic 
structure, and one of the highest (003)/(104) ratios which 
indicates low amount of cation mixing. This also seems to 
correlate with Li/Me measured from the samples (Fig. 3). 
Based on these results material with uniform structure and 
large crystallite size has better resistance to washing, and 
this kind of material was produced by lithiating precursor 
with low density and porous surface (LD).

We did not perform surface area measurements for these 
samples, but typically lithiated cathode materials have very 
low surface area (~ 1 m2 g− 1) and the differences are very 
small. Li et al. [30] used Brunauer–Emmett–Teller method 
to measure the surface area of single-crystal cathode mate-
rial and polycrystalline cathode material and concluded that 
there was no difference between the samples. Our samples 
look very similar to each other in SEM images, so to detect 
any difference a method dedicated for very low surface areas 
would be necessary.

Wu et al. found that NMC523 precursors with small pri-
mary particle size had largest primary particle size after lith-
iation, and achieved the best cycling performance. [7] Our 
results agree with this in that LD shows the most growth in 
primary particle size and crystallite size, and after 7.5 h lith-
iation shows good cyclability. However, VSN, which even as 
precursor has quite large primary particle size, shows very 
good cyclability in our results when lithiated for a short time. 
Increasing lithiation time brings cycling curves of different 
materials closer together, but the capacity retention of WS 

Fig. 3   Ratio of lithium to transition metal (measured from lithiated 
samples by ICP-OES after washing away water-soluble lithium resi-
dues) as a function of lithiation time
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remains lowest, while LD is highest. It was also observed 
that the first cycle efficiencies (Fig. 7a) become closer as 
lithiation time increases. The sample with the highest first 
cycle efficiency is LD lithiated for 7.5 h, though VSN lithi-
ated for 5 h was very close to it.

3.3 � Effect of precursor on volumetric capacity

Volumetric capacities of the cathode electrode are shown 
in Fig. 8. Volumetric capacity has been calculated using 
the first cycle capacity (C-rate 0.1 C) of washed sample. 
Cross section SEM images of cathode electrodes are pre-
sented as supplementary data (S7–10). There is a clear 

difference in the volumetric capacity of the finished elec-
trodes, with WS lithiated for 10 h having the highest volu-
metric capacity (503 mA h cm− 3) and VSN lithiated for 
10 h the second highest (484 mA h cm− 3). Based on the 
SEM images, in the finished cathode electrode the second-
ary particle morphology of LD has mostly been broken to 
smaller primary particles. In VSN, SN and WS the par-
ticles remain mostly intact, although VSN and SN show 
some loose primary particles.

The difference in the initial specific capacity achieved by 
different precursors lithiated for 10 h was minimal (Fig. 5), 
so differences in volumetric capacity come from the packing. 
Comparing the two samples with best volumetric capacity, 

Fig. 4   a Lattice parameter a, b lattice parameter c, and c ratio of c/3a 
for all lithiated and washed materials. d Ratio of integrated peak area 
(003)/(104), e the crystallite size along the c-axis and f the full width 

at half maximum (FWHM) of the (003) peak for all lithiated and 
washed samples as function of lithiation time
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VSN 10 h and WS 10 h, their particle fit is quite different 
(S7–10). In WS the largest particles are significant portion of 
the cathode electrode width, and the packing is more depend-
ent on particle size distribution, whether there are optimal 
amount of small particles around to fit in the empty spaces. 
In VSN the particles are smaller and the empty spaces are 
smaller, and it might benefit from further calendering pres-
sure. Even though LD seems to be easiest to lithiate fully, it 
is worst compared to the other precursors when volumetric 
capacity is considered. The best volumetric capacity was 
achieved by appropriately lithiating a precursor that already 
has high packing density. The shorter, and therefore less 
energy consuming, lithiation time for the small precursors 
could be taken advantage of by mixing separately lithiated 
particles of different sizes, as demonstrated by Zhang et al. 
[19] However, this would remove any benefit of cyclability 
caused by uniform particle size distribution [20].

4 � Conclusions

Our results show that there is a clear difference in how 
quickly the different-sized precursors are lithiated, but there 
is no significant difference in the initial capacity of products 
that have been sufficiently lithiated. The results show that 
the most important factor determining capacity and cycling 
performance is completeness of lithiation, which has been 
determined by measuring the ratio of lithium to transition 
metals after washing. Precursors with larger size require 
longer lithiation time to achieve complete stoichiometric 
lithiation. This makes sense if we consider that lithiation 
must have a certain speed of reaction. Precursors around 
3–4 μm in size are well lithiated after 5 h, the 5 μm low-den-
sity precursor takes 7.5 h and an 8 μm wide-span precursor 
would likely still benefit from increasing the lithiation time 
to more than 10 h. The best initial capacity (185 mA h g− 1) 
and capacity retention (93% for 55 cycles) was seen in the 
3 μm precursor lithiated for 5 h. C-rate capability of samples 
correlates with precursor particle size, with smaller particles 
having better 4 C capacity, although the difference between 

Fig. 5   a The y-axis shows the first cycle (0.1  C) discharge current 
of all lithiated and washed samples. The x-axis indicates the particle 
size of the precursor. The graph is divided into three parts based on 
the length of lithiation time (5  h, 7.5  h, 10  h). b  The y-axis shows 
mole ratio of lithium divided by the transition metal content meas-
ured from lithiated samples after washing. The graph is arranged by 
precursor particle size and divided into three parts according to the 
length of lithiation
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5 μm, 4 and 3 μm particles is minimal. Capacity retention 
was similar in all samples that were fully lithiated. Washing 
had the least effect on capacity retention of LD which had 
achieved the best crystallographic properties.

The effect of precursor on electrode volumetric capacity 
was also studied. Based on the results, low density of precur-
sor does not lower the capacity (mA h g− 1) if the product is 
sufficiently lithiated. On the contrary, porous material seems 
to lithiate closest to the stoichiometric ratio and exhibits a 
lower amount of cation mixing and the best cycle retention 
in the 7.5 and 10 h lithiations. However, their volumetric 
capacity (mA h cm− 3) will remain lower than materials that 
have better tap density, as concluded by Cabelguen et al. [4]. 
This could mean that low-density precursor is good for sin-
gle-crystal lithiation, in which the lithiated product does not 
inherit the precursor’s morphology. Traditional large wide-
span material, despite having the lowest amount of lithium 
in its structure, achieves the best volumetric capacity (~ 500 
mA h cm− 3). The very small dense precursor lithiated for 
10 h comes closest with (~ 480 mA h cm− 3) and has slightly 
better capacity retention.
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Fig. 7   a First cycle coulom-
bic efficiency for all washed 
samples according to lithiation 
time. Coin cell cycling profiles 
for washed samples lithiated for 
b 5 h, c 7.5 h, and d 10 h. Coin 
cells were cycled between 3.0 
and 4.3 V at 25 °C. The C-rate 
varied during cycling as shown 
in Table 2
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